Advertisement

Ionic Conduction in Perovskite-Type Compounds

  • Hiroyasu Iwahara
Chapter
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

A perovskite-type oxide typically expressed by ABO3 is structurally stable because of its well-balanced geometrical array of constituent atoms and their valences, as described in Chapter 1, which means that the deviation from its strict stoichiometric composition is allowed to a considerable extent, keeping the original perovskite-type structure. Thus, a nonstoichiometric perovskite such as oxygen-deficient ABO3–δ, A-deficient A1−δBO3, or B-deficient AB1−δO3 often appears, where δ expresses the number of deficient atoms per unit formula. In the first case, an oxygen vacancy would be formed, and in the second and third cases deviation from stoichiometric composition (A:B = 1:1) would result in the formation of some lattice imperfections. Also, it is possible to partially substitute a foreign atom M for A or B in ABO3 forming A1−xMxBO3−δ or AB1−xMxO3−δ. If the valence of M is different from A or B, lattice defects would be formed to maintain the electrical neutrality of the crystal.

Keywords

Oxygen Vacancy Protonic Conduction Transport Number Trivalent Cation Good Ionic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.A. Groger, “The Chemistry of Imperfect Crystals,” North Holland, Amsterdam (1964)Google Scholar
  2. 2.
    F.S. Galasso, “Structure, Properties and Preparation of Perovskite Type Compounds,” Pergamon Press (1969)Google Scholar
  3. 3.
    S. Swanson, Phys. Rev. 69, 546 (1946)Google Scholar
  4. 4.
    C.V. Stephenson, Bull. Am. Phys. Soc. 3, 299 (1958)Google Scholar
  5. 5.
    C.V. Stephenson, C.E. Franagan, J. Chem. Phys. 34, 2203 (1961)CrossRefGoogle Scholar
  6. 6.
    K. Kuikkola, C. Wagner, J. Electrochem. Soc. 104, 379 (1957)CrossRefGoogle Scholar
  7. 7.
    R.C. Heckman, D.D. Glower, C.R. Hills, Bull. Am. Phys. Soc., Series 2, 8, 601 (1963)Google Scholar
  8. 8.
    A. Ezis, J.G. Burt, R.A. Krakowski, J. Am. Ceram. Soc. 53, 521 (1970)CrossRefGoogle Scholar
  9. 9.
    D.D. Glower, R.C. Heckman, D.L. Hester, Bull. Am. Phys. Soc., Series 2, 8, 601 (1963)]Google Scholar
  10. 10.
    D.D. Glower, R.C. Heckman, J. Chem. Phys. 41, 877 (1964)CrossRefGoogle Scholar
  11. 11.
    W. van Gool, Phillips Res. Rep. 20, 81 (1965)Google Scholar
  12. 12.
    F. Forrat, R. Jansen, P. Trevoux, Compt. Rend. 257, 1271 (1963)Google Scholar
  13. 13.
    T. Takahashi, H. Iwahara, Denki Kagaku 35, 433 (1967)Google Scholar
  14. 14.
    R.V. Coates; J. Appl.Chem. 14, 346 (1964)CrossRefGoogle Scholar
  15. 15.
    T. Takahashi, H. Iwahara, Denki Kagaku 37, 857 (1969)Google Scholar
  16. 16.
    T. Takahashi, H. Iwahara, Energy Conversion 11, 105–111 (1971)CrossRefGoogle Scholar
  17. 17.
    B.H.C. Steele, B.E. Powell, P.M.R. Moody, Proc. Br. Ceram. Soc., No87, (1968)Google Scholar
  18. 18.
    T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  19. 19.
    K. Mader, H.K. Muller-Bushbaum, J. Less Common Metals 15, 771 (1990)Google Scholar
  20. 20.
    J.B. Goodenough, J.E. Ruiz-Diaz, Y.S. Zhen, Solid State Ionics 44, 21 (1990)CrossRefGoogle Scholar
  21. 21.
    H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3/4, 359 (1981)CrossRefGoogle Scholar
  22. 22.
    H. Iwahara, H. Uchida, N. Maeda, J. Power Sources 7, 293 (1982)CrossRefGoogle Scholar
  23. 23.
    Hi. Iwahara, Solid State Ionics 125, 271 (1999)Google Scholar
  24. 24.
    T. Takahashi, H. Iwahara, Rev. Chim. Minerale 17, 243 (1980)Google Scholar
  25. 25.
    P.J. Jorgensen, F.J. Norton, Phys. Chem. Glasses 10, 23 (1969)Google Scholar
  26. 26.
    S. Stotz, C. Wagner, Ber. Bunsenges. Physik. Chem. 70, 781 (1966)Google Scholar
  27. 27.
    F. Forrat, D. Dauge, P. Trevoux, Compt. Rend. 258, 1271 (1964)Google Scholar
  28. 28.
    D.A. Shores, R.A. Papp, J. Electrochem. Soc. 119, 300 (1972)Google Scholar
  29. 29.
    H. Iwahara, H. Uchida, K. Ono, K. Ogaki. J. Electrochem. Soc. 135, 529 (1988)CrossRefGoogle Scholar
  30. 30.
    N. Bonanos, B. Ellis, M.N. Mahmood, Solid State Ionics 44, 305 (1991)CrossRefGoogle Scholar
  31. 31.
    H. Iwahara, T. Shimura, H. Matsumoto, Electrochemistry 68, 154 (2000)Google Scholar
  32. 32.
    H. Uchida, N. Maeda, H. Iwahara, Solid State Ionics 11, 117 (1983)CrossRefGoogle Scholar
  33. 33.
    H. Uchida, H. Yoshikawa, H. Iwahara, Solid State Ionics 34, 103 (1989)CrossRefGoogle Scholar
  34. 34.
    T. Yajima, H. Iwahara, Solid State Ionics 50, 281 (1992)CrossRefGoogle Scholar
  35. 35.
    W. Lee, A.S. Nowick, L.A. Boaturmer, Solid State Ionics, 18/19, 989 (1986)CrossRefGoogle Scholar
  36. 36.
    T. Norby, P. Kofstad, J. Am. Ceram. Soc. 67, 786 (1984)CrossRefGoogle Scholar
  37. 37.
    T. Yajima, H. Kazeoka, T. Yogo, H. Iwahara, Solid State Ionics 47, 271 (1991)CrossRefGoogle Scholar
  38. 38.
    H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Solid State Ionics 61, 65 (1993)CrossRefGoogle Scholar
  39. 39.
    H. Fujii, K. Katayama, T. Shimura, H. Iwahara, J. Electroceramics 2, 199 (1998)CrossRefGoogle Scholar
  40. 40.
    H. Iwahara, T. Yajima, T. Hibino, H. Ushida, J. Electrochem. Soc. 140, 1687 (1993)CrossRefGoogle Scholar
  41. 41.
    T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, Solid State Ionics 51, 101 (1992)CrossRefGoogle Scholar
  42. 42.
    K.D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, J. Maier, Solid State Ionics 145, 295 (2001)CrossRefGoogle Scholar
  43. 43.
    A.S. Nowick, Y. Du, Solid State Ionics 77, 137 (1995)CrossRefGoogle Scholar
  44. 44.
    T. Shimura, K. Suzuki, H. Iwahara, Solid State Ionics 104, 79 (1997)CrossRefGoogle Scholar
  45. 45.
    T. Shimura, K. Suzuki, H. Iwahara, Solid State Ionics 113, 355 (1998)CrossRefGoogle Scholar
  46. 46.
    L. Latie, G. Villenur, D. Conte, G.L. Flem, J. Solid State Chem. 51, 293 (1984)CrossRefGoogle Scholar
  47. 47.
    Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, Solid State Commun. 86, 689 (1993)CrossRefGoogle Scholar
  48. 48.
    Y. Inaguma, M. Ito, Solid State Ionics 86, 257 (1996)CrossRefGoogle Scholar
  49. 49.
    M. Ito, Y. Inaguma, W.H. Yong, L. Chen, T. Nakamura., Solid State Ionics 70, 203 (1994)CrossRefGoogle Scholar
  50. 50.
    Y.J. Shan, L. Chen, Y. Inaguma, M. Shikano, M. Itoh, T. Nakamura, Solid State Ionics 70, 409 (1994)Google Scholar
  51. 51.
    J. Mizusaki, K. Arai, K. Fueki, Solid State Ionics 11, 203 (1983)CrossRefGoogle Scholar
  52. 52.
    A.V. Chadwick, J.H. Strange, G. A M. Terenzi, Solid State Ionics 9, 555 (1983)CrossRefGoogle Scholar
  53. 53.
    T. Takahashi, O. Yamamoto, Electrochim. Acta 11, 911 (1966)CrossRefGoogle Scholar
  54. 54.
    S. Hoshino, T. Sakuma, Y. Fujii, J. Phys. Soc. Jpn. 47, 1252 (1979)CrossRefGoogle Scholar
  55. 55.
    F. Billi, H.E. Roman, Dietrich, Solid State, Ionics 28, 58 (1988)CrossRefGoogle Scholar
  56. 56.
    B. Reuter, K. Hardel, Z. Anorg. Allgem. Chem. 340, 168 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Nagoya University, Furo-choChigusakuJapan

Personalised recommendations