Overview of Intermediate-Temperature Solid Oxide Fuel Cells

  • Harumi Yokokawa
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

The first breakthrough in solid oxide fuel cell (SOFC) technology was achieved by Westinghouse Power Corporation (WHPC; currently Siemens Power Generation Corporation) [1] in the late 1980s in their efforts in establishing tubular SOFCs with the following technologically important points: 1. Optimizing the materials [yttrium-stabilized zirconia (YSZ) for the electrolyte, lanthanum strontium manganite for the cathode, nickel for the anode, and lanthanum magnesium chromite for the interconnect]. 2. Adopting an excellent processing technology of electrochemical vapor deposition (EVD) [2] that has extraordinary advantages in fabricating dense films on porous materials or in anchoring nickel on YSZ. 3. Adopting a sealless tubular stack design to avoid usage of sealant materials. 4. Aiming for stationary applications. This breakthrough leveraged up the development of the SOFC stacks/systems from the R&D stage to a more realistic stage with specifically targeted market sectors. The long operation life was successfully demonstrated, and also the high conversion efficiency from natural gas to electricity was demonstrated as 47% Lower Heating Value (LHV) for stationary 100-kW SOFC systems and as 52% for combined SOFC-gas turbine systems.


Oxide Scale Solid Oxide Fuel Cell Lower Heating Value Sulfur Poisoning Lanthanum Strontium Manganite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.C. Singhal, “Recent Progress in Tubular Solid Oxide Fuel Cell Technology,” in Solid Oxide Fuel Cells V, U. Stimming et al. Ed., The Electrochemical Society, Inc., PV 97–40, pp. 37–50 (1997)Google Scholar
  2. 2.
    A.O. Isenberg, Solid State Ionics 3/4, 431 (1981)Google Scholar
  3. 3.
    D.C. Fee, S.A. Zwick, J.P. Ackerman, “Solid Oxide Fuel Cell Performance,” in Proc. Conf. High Temperature Solid Oxide Electrolytes, “Anion Conductors,” F.J. Salzano Ed., Brookhaven National Laboratory, Vol. 1, pp. 29–38 (1983)Google Scholar
  4. 4.
    H. Yokokawa, N. Sakai, “History of High Temperature Fuel Cell Development,” Fuel Cell Handbook, Vol. 1, pp. 217–266 (2003)Google Scholar
  5. 5.
    S.C. Singhal, K. Kendall Ed. “High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Applications,” Elsevier (2003)Google Scholar
  6. 6.
    N.Q. Minh, T. Takahashi, “Science and Technology of Ceramic Fuel Cells,” Elsevier, Amsterdam (1995)Google Scholar
  7. 7.
    T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  8. 8.
    T. Ishihara, “Chapter 79. Novel electrolytes operating at 400–600 C,” Fuel Cell Handbook Vol. 4, pp. 1109–1122 (2003)Google Scholar
  9. 9.
    S. Mukerjee et al. “Solid Oxide Fuel Cell Auxilliary Power Unit – A New Paradigm in Electric Supply for Transportation,” Solid Oxide Fuel Cells VII(SOFC VII), H. Yokokawa and S.C. Singhal Eds., The Electrochemical Society, PV 2001-16, pp. 173–179 (2001)Google Scholar
  10. 10.
    D.C. Fee et al., “Monolithic Fuel Cell Development,” Fuel Cell Seminar, Tucson, Arizona, pp. 40–43 (1986)Google Scholar
  11. 11.
    M. Suzuki, T. Sogi, K. Higaki, T. Ono, N. Takahashi, K. Shimazu, T. Shigehisa, “Development of SOFC Residential Cogeneration System at Osaka Gas and Kyocera,” SOFC X, ECS Trans. 7(1) 27–30 (2007)Google Scholar
  12. 12.
    H. Yokokawa, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells Fundam. Syst. 1(2), 1–15 (2001)Google Scholar
  13. 13.
    K. Hilpert, W.J. Quadakkers, L. Singheiser, “Chapter 74. Interconnects,” Fuel Cell Handbook Vol. 4, pp. 1037–1054 (2003)Google Scholar
  14. 14.
    H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, “Solid Oxide Electrolytes for High Temperature Fuel Cells,” Electrochemistry 73, 20–30 (2005)Google Scholar
  15. 15.
    H. Yokokawa, T. Horita, “Chapter 5. Cathode”, in High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Application,” S.C. Singhal and K. Kendall Eds., Elsevier, pp. 119–147 (2003)Google Scholar
  16. 16.
    S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, T. Saitoh, J. Power Sources 55, 73–79 (1995)CrossRefGoogle Scholar
  17. 17.
    C.S. Tedmon, Jr., H.S. Spacil, S.P. Mitoff, J. Electrochem. Soc. 116, 1170 (1969)CrossRefGoogle Scholar
  18. 18.
    Y. Matsuzaki, I. Yasuda, J. Electrochem. Soc. 148, A126 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Yokokawa, “Understanding Materials Compatibility,” Annu. Rev. Mater. Res. 33, 581–610 (2003)CrossRefGoogle Scholar
  20. 20.
    H. Yokokawa, T. Horita, N. Sakai, J. Yamaji, M.E. Brito, Y.P. Xiong, H. Kishimoto, “Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes,” Solid State Ionics 177, 3193–3198 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Yokokawa, H. Sakai, T. Horita, K. Yamaji, M.E. Brito, H. Kishimoto, “Thermodynamic and Kinetic Considerations on Degradations in Solid Oxide Fuel Cell Cathodes,” J. Alloy Comp. 452, 41–47 (2008)Google Scholar
  22. 22.
    H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Y.-P. Xiong, “Thermodynamic Correlation Among Defects in Ceria-Zirconia Solid Solutions,” High Temperature Materials: A Symposium in Honor of the 65th Birthday of Professor Wayne L. Worell, The Electrochemical Soc. Inc., PV 2002-5,p.26–37, (2002)Google Scholar
  23. 23.
    H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M.E. Brito, Y.P. Xiong, H. Kishimoto, “Protons in Ceria and Their Roles in SOFC Electrode Reactions from Thermodynamic and SIMS Analyses,” Solid State Ionics 174, 205–221 (2004)CrossRefGoogle Scholar
  24. 24.
    H. Mitsuyasu, Y. Nonaka, K. Eguchi, “Analysis on Solid State Reaction at the Interface of Yttria-Doped Ceria/Yttria-Stabilized Zirconia,” Solid State Ionics 113–115, 279–284 (1998)CrossRefGoogle Scholar
  25. 25.
    N. Sakai, H. Kishimoto, K. Yamaji, T. Horita, M.E. Brito, H. Yokokawa, “Degradation Behavior at Interface of LSCF Cathodes and Rare Earth Doped Ceria,” SOFC X, ECS Transactions, 7(1) 389–398 (2007)CrossRefGoogle Scholar
  26. 26.
    K. Huang, M. Feng, J.B. Goodenough, C. Milliken, J. Electrochem. Soc. 144, 3620 (1997)CrossRefGoogle Scholar
  27. 27.
    T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, Y. Takita, “Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor,” J. Electrochem. Soc. 145(9), 3177–3183 (1998)CrossRefGoogle Scholar
  28. 28.
    T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, H. Yokokawa, “Active parts for CH4 decomposition and electrochemical oxidation at metla/oxide interface by isotope labeling-secondary ion mass spectrometry,” Solid State Ionics 177, 3179–3185 (2006)CrossRefGoogle Scholar
  29. 29.
    Y. Matsuzaki, I. Yasuda, Solid State Ionics 132, 261–269 (2000)CrossRefGoogle Scholar
  30. 30.
    G. Robert, A. Kaiser, E. Batawi, “Anode Substrate Design for Redox-Stable ASE Cells,” Proc. 6th European Solid Oxide Fuel Cell Forum, European Fuel Cell Forum, Vol. 1, pp. 193–200 (2004)Google Scholar
  31. 31.
    H. Kishimoto, K. Yamaji, T. Horita, Y.-P. Xiong, N. Sakai, M. E. Brito, H. Yokokawa, “Reaction Process in the Ni-ScSZ Anode for Hydrocarbon Fueled SOFCs,” J. Electrochem. Soc. 153(6), A982–A988 (2006)CrossRefGoogle Scholar
  32. 32.
    K. Sasaki, K. Suzuki, A. Iyoshi, M. Uchimura, N. Imamura, H. Kusaba, Y. Teraoka, H. Fuchino, K. Tsujimoto, Y. Uchida, N. Jingo, “H2S poisoning of Solid Oxide Fuel Cells,” J. Electrochem. Soc. 153(11), A2023–A2029 (2006)CrossRefGoogle Scholar
  33. 33.
    N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, unpublished dataGoogle Scholar
  34. 34.
    H. Yokokawa, T. Watanabe, A. Ueno, K. Hoshino, “Investigation on Degradation in Long-Term Operations of Four Different Stacks/Modules,” in Solid Oxide Fuel Cells 10 (SOFC-X) K. Eguchi, S.C. Singhal, H. Yokokawa, J. Mizusaki Eds., ECS Transactions, 7(1), 133–140 (2007)Google Scholar
  35. 35.
    N. Sakai, H. Yokokawa, T. Horita, K. Yamaji, “Lanthanum Chromite-Based Interconnects as Key Materials for SOFC Stack Development,” Int. J. Appl. Ceram. Technol. 1, 23–30 (2004)CrossRefGoogle Scholar
  36. 36.
    N. Sakai, K. Yamaji, T. Horita, Y.P. Xiong, H. Yokokawa, “Rare-Earth Materials for Solid Oxide Fuel Cells (SOFC),” Handbook on the Physics and Chemistry of Rare Earths Vol. 35, K.A. Gschneidner, Jr., J.-C.G. Bünzli, V.K. Pecharsky Eds., pp. 1–43 (2005)Google Scholar
  37. 37.
    K. Ogasawara, H. Kameda, Y. Matsuzaki, T. Sakurai, T. Uehara, A. Toji, N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, “Chemical Stability of Ferritic Alloy Interconnect for SOFCs,” J. Electrochem. Soc. 154(7), B657–B663 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Shibata, N. Murakami, T. Akbay, H. Eto, K. Hosoi, H. Nakajima, J. Kano, F. Nishiwaki, T. Inagaki, S. Yamasaki, “Development of Intermediate-Temperature SOFC Modules and Systems,” Solid Oxide Fuel Cells 10 (SOFC-X), ECS Transactions, 7(1), 77–83 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, AIST Central No.5TsukubaJapan

Personalised recommendations