LaCrO3-Based Perovskite for SOFC Interconnects

  • Teruhisa Horita
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

Lanthanum chromite-based perovskite oxides (LaCrO3) have been widely recognized as promising interconnect materials for solid oxide fuel cells (SOFCs). The interconnects must separate fuel and oxidant gases and also have high electronic conductivity at high temperature (773–1273 K). Therefore, interconnects should meet the following requirements


Oxygen Vacancy Thermal Expansion Coefficient Oxygen Partial Pressure Solid Oxide Fuel Cell Oxygen Permeation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N.Q. Minh, Ceramic fuel cells. J. Am. Ceram. Soc. 76 (3) (1993)Google Scholar
  2. 2.
    N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells. Elsevier, Amsterdam, pp. 165–198 (1995)Google Scholar
  3. 3.
    S.C. Singhal, Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305–313 (2000)CrossRefGoogle Scholar
  4. 4.
    H.U. Anderson and F. Tietz, Chapter 7: Interconnects. High Temperature Solid Oxide Fuel Cells, S.C. Singhal, K. Kendall (eds.), pp. 173–195. Elsevier Advanced Technology, UK (2003)Google Scholar
  5. 5.
    J.W. Fergus, Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics 171, 1–4 (2004)CrossRefGoogle Scholar
  6. 6.
    N. Sakai, H. Yokokawa, T. Horita, K. Yamaji, Lanthanum chromite-based interconnects as key materials for SOFC stack development. Int. J. Appl. Ceramic Technol. 1 (1), 23–30 (2004)CrossRefGoogle Scholar
  7. 7.
    D.B. Meadowcroft, Properties of strontium doped lanthanum chromite. Br. J. Appl. Phys. Ser. 2, 2, 1225–1233 (1969)Google Scholar
  8. 8.
    N. Sakai, T. Kawada, H. Yokokawa, and M. Dokiya, Sinterability and electrical conductivity of calcium-doped lanthanum chromites. J. Material Sci. 25, 4531 (1990)CrossRefGoogle Scholar
  9. 9.
    N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, T. Iwata, Thermal expansion of some chromium deficient lanthanum chromites. Solid State Ionics 40/41, 394–397 (1990)CrossRefGoogle Scholar
  10. 10.
    N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, I. Kojima, Liquid-phase assisted sintering of calcium-doped lanthanum chromites. J. Am. Ceram. Soc. 76(3), 609–616 (1993)CrossRefGoogle Scholar
  11. 11.
    H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J. Electrochem. Soc. 138 (4), 1018–1027 (1991)CrossRefGoogle Scholar
  12. 12.
    J.L. Bates, L.A. Chick, and W.J. Weber, Synthesis, air sintering and properties of lanthanum and yttrium chromites and manganites. Solid State Ionics 52, 235–242 (1992)CrossRefGoogle Scholar
  13. 13.
    L.A. Chick, J. Liu, J.W. Stevenson, T.R. Armstrong, D.E. McCready, G.D. Maupin, G.W. Coffery, C.A. Coyle, Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite. J. Am. Ceram. Soc. 80 (8), 2109–2120 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Mori, T. Yamamoto, T. Ichikawa, Y. Takeda, Dense sintered conditions and sintering mechanisms for alkaline earth metal (Mg, Ca, and Sr)-doped LaCrO3 perovskites under reducing atmosphere. Solid State Ionics 148, 93–101 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Nishiyama, M. Aizawa, H. Yokokawa, T. Horita, N. Sakai, M. Dokiya, T. Kawada, Stability of lanthanum chromite-lanthanum strontium manganite interface in solid oxide fuel cells. J. Electrochem. Soc. 143(7), 2332–2341 (1996)CrossRefGoogle Scholar
  16. 16.
    J.D. Carter, C.C. Appel, M. Mogensen, Reaction at calcium doped lanthanum chromite-yttria stabilized zirconia interface. J. Solid State Chem. 122, 407–415 (1996)CrossRefGoogle Scholar
  17. 17.
    T. Horita, K. Yamaji, N. Sakai, M. Ishikawa, H. Yokokawa, M. Dokiya, Cation diffusion in (La,Ca)CrO3 perovskite by SIMS. Solid State Ionics 108, 383–390 (1998)CrossRefGoogle Scholar
  18. 18.
    T. Horita, M. Ishikawa, K. Yamaji, N. Sakai, H. Yokokawa, M. Dokiya, Calcium tracer diffusion in (La,Ca)CrO3 by SIMS. Solid State Ionics 124, 301–307 (1999)CrossRefGoogle Scholar
  19. 19.
    T. Akashi, T. Maruyama, T. Goto, Transport of lanthanum ion and hole in LaCrO3 determined by electrical conductivity measurements. Solid State Ionics 164, 177–183 (2003)CrossRefGoogle Scholar
  20. 20.
    N. Sakai, K. Yamaji, T. Horita, H. Negishi, H. Yokokawa, Chromium diffusion in lanthanum chromites . Solid State Ionics 135, 469–474 (2000)CrossRefGoogle Scholar
  21. 21.
    W.J. Weber, C.W. Griffin, J.L. Bates, Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70 (4), 265–270 (1987)CrossRefGoogle Scholar
  22. 22.
    I. Yasuda, T. Hikita, Electrical conductivity and defect structure of calcium-doped lanthanum chromites. J. Electrochem. Soc. 140 (6), 1699–1704 (1993)CrossRefGoogle Scholar
  23. 23.
    J. Mizusaki, S. Yamauchi, K. Fueki, A. Ishikawa, Nonstoichiometry of the perovskite-type oxide La1 xSrxCrO3 δ. Solid State Ionics 12, 119–124 (1984)CrossRefGoogle Scholar
  24. 24.
    S. Onuma, K. Yashiro, S. Miyoshi, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada, J. Mizusaki, K. Kawamura, N. Sakai, H. Yokokawa, Oxygen nonstoichiometry of perovskite-type oxide La1–xCaxCrO3–δ (x=0.1, 0.2, 0.3). Solid State Ionics 174, 287–293 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Oishi, K. Yashiro, J.-O. Hong, Y. Nigara, T. Kawada, J. Mizusaki, Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ionics 178 (3–4), 307–312 (2007)CrossRefGoogle Scholar
  26. 26.
    B.A. van Hassel, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, Oxygen permeation modeling of La1–yCayCrO3–δ. Solid State Ionics 66, 41–47 (1993)CrossRefGoogle Scholar
  27. 27.
    B.A. van Hassel, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, H.J.M. Bouwmeester, Oxygen permeation modeling of perovskite. Solid State Ionics 66, 295–305 (1993)CrossRefGoogle Scholar
  28. 28.
    I. Yasuda, M. Hishinuma, Electrochemical properties of doped lanthanum chromites as interconnectors for solid oxide fuel cells. J. Electrochem. Soc. 143 (5), 1583–1590 (1996)CrossRefGoogle Scholar
  29. 29.
    I. Yasuda, M. Hishinuma, Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 141 (5), 1268–1273 (1994)CrossRefGoogle Scholar
  30. 30.
    N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, M. Dokiya, K. Hiwatashi, A. Ueno, M. Aizawa, Determination of the oxygen permeation flux through La0.75Ca0.25CrO3–δ by an electrochemical method. J. Electrochem. Soc. 146 (4), 1341–1345 (1999)CrossRefGoogle Scholar
  31. 31.
    T. Kawada, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya, Experimental determination of oxygen permeation flux through bulk and grain boundary of La0.7Ca0.3CrO3. Solid State Ionics 79, 201–207 (1995)CrossRefGoogle Scholar
  32. 32.
    H. Yakabe, M. Hishinuma, I. Yasuda, Static and transfer model analysis on expansion behavior of LaCrO3 under an oxygen potential gradient. J. Electrochem. Soc. 147 (11), 4071–4077 (2000)CrossRefGoogle Scholar
  33. 33.
    H. Yakabe, I. Yasuda, Model analysis of the expansion behavior of LaCrO3 interconnector under solid oxide fuel cell operation. J. Electrochem. 150 (1), A35–A45 (2003)CrossRefGoogle Scholar
  34. 34.
    F. Boroomand, E. Wessel, H. Bausinger, K. Hilpert, Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs. Solid State Ionics 129, 251–258 (2000)CrossRefGoogle Scholar
  35. 35.
    M. Mori, Enhancing effect on densification and thermal expansion compatibility for La0.8Sr0.2Cr0.9Ti0.1O3–δ based SOFC interconnect with B-site doping. J. Electrochem. Soc. 149 (7), A797–A803 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, 1-1-1 HigashiTsukubaJapan

Personalised recommendations