Proton Conductivity in Perovskite Oxides

Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

Perovskite oxides offer in almost all respects a wide variety of properties because of the structure’s ability to host varying cations, substitutions, nonstoichiometry, and defects of many kinds. Proton conduction, resulting from oxide ability to dissolve protons from water vapor or hydrogen, is no exception: Some perovskites contain virtually no protons at all and are thus barriers to protons, hydrogen, and water vapor. Other perovskites are dominated by proton defects to high temperatures and are predominantly proton conductors.


Fuel Cell Proton Conductivity Acceptor Dopant Proton Migration Complex Perovskite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to acknowledge the results, input, and help from colleagues and students at the University of Oslo over the years that have enabled the writing of this chapter. Also, I am grateful for support from several projects funded by the Research Council of Norway (RCN) and The University of Oslo/FUNMAT@UiO that have contributed to the same.


  1. 1.
    T. Takahashi, H. Iwahara, Solid-state ionics: protonic conduction in perovskite type oxide solid solutions. Rev. Chim. Miner. 17(4), 243–253 (1980)Google Scholar
  2. 2.
    H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3–4, 359–363 (1981)CrossRefGoogle Scholar
  3. 3.
    H. Uchida, K. Ogaki, H. Iwahara, High temperature hydrogen sensor and steam sensor using barium cerium oxide (BaCeO3)-based proton conducting ceramics. Proc. Electrochem. Soc. 87–9 (Proc. Symp. Chem. Sens.), 172–179 (1987)Google Scholar
  4. 4.
    W.-K. Lee, A. S. Nowick, L. A. Boatner, Protonic conduction in acceptor-doped KTaO3 crystals. Solid State Ionics, 18–19, 989–993 (1986)CrossRefGoogle Scholar
  5. 5.
    K.C. Liang, A.S. Nowick, High-temperature protonic conduction in mixed perovskite ceramics. Solid State Ionics 61, 77–81 (1993)CrossRefGoogle Scholar
  6. 6.
    K.C. Liang, Yang Du, A.S. Nowick, Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics 69, 117–120 (1994)CrossRefGoogle Scholar
  7. 7.
    T. Yajima, K. Koide, H. Takai, N. Fukatsu, H. Iwahara, Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries. Solid State Ionics 79, 333–337 (1995)CrossRefGoogle Scholar
  8. 8.
    H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168, 299–310 (2004)CrossRefGoogle Scholar
  9. 9.
    N. Ito, M. Iijima, K. Kimura, S. Iguchi, New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J. Power Sources 152, 200–203 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Hartvigsen, S. Elangovan, A. Khandkar, AICHE Meeting, St. Louis, MO, USA, Aug. 1993Google Scholar
  11. 11.
    T. Norby, R. Haugsrud, Dense ceramic membranes for hydrogen separation. In: Nonporous Inorganic Membranes (A. F. Sammells, M.V. Mundschau, eds.). Wiley-VCH, Weinheim, 2006, pp. 1–48.CrossRefGoogle Scholar
  12. 12.
    K.D. Kreuer, W. Münch, M. Ise, T. He, A. Fuchs, U. Traub, J. Maier, Defect interaction in proton conducting perovskite-type oxides. Ber. Bunsenges. Phys. Chem. 101(9), 1344 (1997)Google Scholar
  13. 13.
    M.S. Khan, M.S. Islam, D.R. Bates, Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J. Phys. Chem. B 102(17), 3099–3104 (1998)Google Scholar
  14. 14.
    T. Norby, M. Widerøe, R. Gløckner, Y. Larring, Hydrogen in oxides. Dalton Trans. (19), 3012–3018 (2004)Google Scholar
  15. 15.
    D. F. Shriver, P.W. Atkins, C.H. Langford, Inorganic Chemistry, 2nd edn. Oxford University Press, Oxford (1994), pp. 165–166Google Scholar
  16. 16.
    T.S. Bjørheim, A. Kuwabara, I. Ahmed, R. Haugsrud, S. Stølen, T. Norby, A combined conductivity and DFT study of protons in PbZrO3 and the alkaline earth zirconates. Solid State Ionics, under publication.Google Scholar
  17. 17.
    A. Magrasó, R. Haugsrud, M. Segarra, T. Norby, Defects and transport in Gd-doped BaPrO3. J. Electroceramics, in print. DOI 10.1007/s10832-008-9541-z.Google Scholar
  18. 18.
    W. Münch, K.D. Kreuer, G. Seifert, J. Maier, A quantum molecular dynamics study of proton diffusion in SrTiO3 and CaTiO3. Solid State Ionics 125, 39–45 (1999)CrossRefGoogle Scholar
  19. 19.
    A.S. Nowick, A.V. Vaysleyb, Isotope effect and proton hopping in high-temperature protonic conductors. Solid State Ionics 97, 17–26 (1997)CrossRefGoogle Scholar
  20. 20.
    K.D. Kreuer, S.T. Adams, W. Münch, A. Fuchs, U. Klock, J. Maier, Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295–306 (2001)CrossRefGoogle Scholar
  21. 21.
    K.A. Furøy, R. Haugsrud, M. Hänsel, A. Magrasó, T. Norby, Role of protons in the electrical conductivity of acceptor-doped BaPrO3, BaTbO3, and BaThO3. Solid State Ionics 178 (7–10), 461–467 (2007)CrossRefGoogle Scholar
  22. 22.
    P.I. Dahl, R. Haugsrud, H.L. Lein, T. Grande, T. Norby, M.-A. Einarsrud, Synthesis, densification and electrical properties of strontium cerate ceramics. J. Eur. Ceramic Soc. 27, 4461–4471 (2007)CrossRefGoogle Scholar
  23. 23.
    J.H. Yu, J.-S. Lee, J. Maier, Formation of protonic defects in perovskite-type oxides with redox-active acceptors: case study on Fe-doped SrTiO3. Phys Chem Chem Phys, 7, 3560–3564 (2005)Google Scholar
  24. 24.
    J.B. Smith, M.Sc. Thesis (in Norwegian). Dept. of Chemistry, University of Oslo, 1999Google Scholar
  25. 25.
    S. Yamaguchi, K. Kobayashi, T. Higuchi, S. Shin, Y. Iguchi, Electronic transport properties and electronic structure of InO1.5-doped CaZrO3. Solid State Ionics, 136–137, 305–311 (2000)CrossRefGoogle Scholar
  26. 26.
    D. Lybye, N. Bonanos, Proton and oxide ion conductivity of doped LaScO3. Solid State Ionics, 125, 339–344 (1999)CrossRefGoogle Scholar
  27. 27.
    Y. Larring, T. Norby, Protons in LaErO3. Solid State Ionics 70–71, 305–10 (1994)CrossRefGoogle Scholar
  28. 28.
    K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125, 285–302 (1999)CrossRefGoogle Scholar
  29. 29.
    P. Murugaraj, K.D. Kreuer, T. He, T. Schober, J. Maier, High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98, 1–6 (1997)CrossRefGoogle Scholar
  30. 30.
    R. Glöckner, Thesis, University of Oslo (2000)Google Scholar
  31. 31.
    C. Haavik, E.M. Ottesen, K. Nomura, J.A. Kilner, T. Norby, Temperature dependence of oxygen ion transport in Sr + Mg substituted LaGaO3 (LSGM) with varying grain sizes. Solid State Ionics 174 (1–2), 233–243 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Cherry, M.S. Saiful, J.D. Gale, C.R.A. Catlow, J. Phys. Chem. 99, 14614–14618 (1995)CrossRefGoogle Scholar
  33. 33.
    A.S. Nowick, K.C. Liang, Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr2(ScNb)O6: a complex perovskite. Solid State Ionics 129, 201–207 (2000)CrossRefGoogle Scholar
  34. 34.
    A.S. Nowick, Y. Du, K.C. Liang, Some factors that determine proton conductivity in nonstoichiometric complex perovskites. Solid State Ionics 125, 303–311 (1999)CrossRefGoogle Scholar
  35. 35.
    T. Shimura, K. Suzuki, H. Iwahara, Conduction properties of Mg-, Fe- or Co-substituted Sr2TiO4 at elevated temperatures. Solid State Ionics 125, 313–318 (1999)CrossRefGoogle Scholar
  36. 36.
    K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125, 285–302 (1999)CrossRefGoogle Scholar
  37. 37.
    F. Iguchi, N. Sata, T. Tsurui, H. Yugami, Microstructures and grain boundary conductivity of BaZr1 xYxO3 (x = 0.05, 0.10, 0.15) ceramics. Solid State Ionics 178, 691–695 (2007)CrossRefGoogle Scholar
  38. 38.
    S.B.C. Duval, P. Holtappels, U.F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, T. Graule, Electrical conductivity of the proton conductor BaZr0.9Y0.1O3 δ obtained by high temperature annealing. Solid State Ionics 178, 1437–1441 (2007)CrossRefGoogle Scholar
  39. 39.
    C. Kjølseth, H. Fjeld, P.I. Dahl, C. Estournés, R. Haugsrud, T. Norby, Space Charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ. under publication.Google Scholar
  40. 40.
    T. Schober, Phase diagrams in the proton conductor systems Sr6Ta2O11×nH2O and Sr5.92Ta2.08O11.12×nH2O. Solid State Ionics 177(5–6), 471–474 (2006)CrossRefGoogle Scholar
  41. 41.
    I. Animitsa, A. Neiman, N. Kochetova, B. Melekh, A. Sharafutdinov, Proton and oxygen-ion conductivity of Ba4Ca2Nb2O11. Solid State Ionics 162–163, 63–71 (2003)CrossRefGoogle Scholar
  42. 42.
    I. Animitsa, T. Norby, S. Marion, R. Glöckner, A. Neiman, Incorporation of water in strontium tantalates with perovskite-related structure. Solid State Ionics 145, 357–364 (2001)CrossRefGoogle Scholar
  43. 43.
    T. Shimura, M. Komori, H. Iwahara, Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature. Solid State Ionics 86–88, 685–689 (1996)CrossRefGoogle Scholar
  44. 44.
    Y. Larring, T. Norby, Protons in rare earth oxides. Solid State Ionics 77, 147–151 (1995)CrossRefGoogle Scholar
  45. 45.
    T. Norby, N. Christiansen, Proton conduction in Ca- and Sr-substituted LaPO4. Solid State Ionics 77, 240–243 (1995)CrossRefGoogle Scholar
  46. 46.
    R. Haugsrud, T. Norby, Proton conduction in rare earth ortho-niobates and ortho-tantalates. Nat. Mater. 5, 193–196 (2006)CrossRefGoogle Scholar
  47. 47.
    R. Haugsrud, T. Norby High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics 177(13–14), 1129–1135 (2006)CrossRefGoogle Scholar
  48. 48.
    R. Haugsrud, T. Norby, High-temperature proton conductivity in acceptor-substituted rare-earth ortho-tantalates, LnTaO4. J. Am. Ceram. Soc. 90(4), 1116–1121 (2007)CrossRefGoogle Scholar
  49. 49.
    T. Shimura, Y. Tokiwa, H. Iwahara, Protonic conduction in lanthanum strontium aluminate and lanthanum niobate-based oxides at elevated temperatures. Solid State Ionics 154–155, 653–658 (2002)CrossRefGoogle Scholar
  50. 50.
    F. Schönberger, E. Kendrick, M.S. Islam, P.R. Slater, Investigation of proton conduction in La1 xBa1+xGaO4 x/2 and La1 xSr2+xGaO5 x/2. Solid State Ionics 176, 2951–2953 (2005)CrossRefGoogle Scholar
  51. 51.
    E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P. Slater, Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007)CrossRefGoogle Scholar
  52. 52.
    W. Münch, K.D. Kreuer, U. Traub, J. Maier, A molecular dynamics study of the high proton conducting phase of CsHSO4. Solid State Ionics 77, 10–14 (1995)CrossRefGoogle Scholar
  53. 53.
    K.D. Kreuer, W. Münch, M. Ise, T. He, A. Fuchs, U. Traub, J. Maier, Defect interaction in proton conducting perovskite-type oxides. Ber. Bunsenges. Phys. Chem. 101 (9), 1344 (1997)Google Scholar
  54. 54.
    T. Omata, K. Ikeda, R. Tokashiki, S. Otsuka-Yao-Matsuo, Proton solubility for La2Zr2O7 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ionics 167, 389–397 (2004)CrossRefGoogle Scholar
  55. 55.
    Y. Larring, T. Norby, The equilibrium between oxygen vacancies, water vapour and protons in rare earth oxides. Solid State Ionics 97, 523–528 (1997)CrossRefGoogle Scholar
  56. 56.
    K. Amezawa, Y. Tomii, N. Yamamoto, High temperature protonic conduction in LaPO4 doped with alkaline earth metals. Solid State Ionics 176, 135–141 (2005)CrossRefGoogle Scholar
  57. 57.
    R. Haugsrud, H. Fjeld, K. R. Haug, T. Norby, Mixed ionic and electronic conductivity of undoped and acceptor doped Er6WO12. J. Electrochem. Soc. 154 (1), B77–B81 (2007)CrossRefGoogle Scholar
  58. 58.
    R. Haugsrud, Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er). Solid State Ionics 178 (7–10), 555–560Google Scholar
  59. 59.
    K. Amezawa, Y. Kitajima, Y. Tomii, N. Yamamoto, M. Widerøe, T. Norby, Protonic conduction in acceptor-doped LaP3O9. Solid State Ionics 176 (39–40), 2867–2870 (2005)CrossRefGoogle Scholar
  60. 60.
    M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino, M. Sano, Proton conduction in In3+-doped SnP2O7 at intermediate temperatures. J. Electrochem. Soc. 153, A1604–A1609 (2006)CrossRefGoogle Scholar
  61. 61.
    V. Nalini, T. Norby, A.M. Anuradha, Protonic conduction in TiP2O7. Proc. 10th Asian Conf. Solid State Ionics, B.V.R. Chowdari, M.A. Careem, M.A.K.I. Dissanayake, R.M.G. Rajapakse, V.A. Seneviratne (eds.), Kandy, Sri Lanka, June 12–16, 2006. World Scientific, Singapore, pp 321–328Google Scholar
  62. 62.
    K. Amezawa, J. Yamada, N. Kitamura, Y. Tomii, T. Handa, N. Yamamoto, High temperature protonic conduction in Sr-doped La2Si2O7. Solid State Ionics 176, 341–347 (2005)CrossRefGoogle Scholar
  63. 63.
    H. Fjeld, R. Haugsrud, A.E. Gunnæs, T. Norby, Proton and oxide ion conductivity in the grain interior and grain boundaries of Ca-doped Er2Ti2O7 with Si impurities. Solid State Ionics, 179(33–34), 1849–1853 (2008)Google Scholar
  64. 64.
    K. Amezawa, N. Takahashi, N. Kitamura, Y. Tomii, N. Yamamoto, High temperature protonic conduction in LaBO3 with the aragonite-type structure. Solid State Ionics 175, 575–579 (2004)CrossRefGoogle Scholar
  65. 65.
    S. Noirault, S. Célérier, O. Joubert, M.T. Caldes, Y. Piffard, Incorporation of water and fast proton conduction in the inherently oxygen-deficient compound La26O27(BO3)8. Adv. Mater. 19, 867–870 (2007)CrossRefGoogle Scholar
  66. 66.
    D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, High-performance solid acid fuel cells through humidity stabilization. Science 303 (5654), 68–70 (2004)CrossRefGoogle Scholar
  67. 67.
    V. Agarwal, M.L. Liu. Electrochemical properties of BaCe0.8Gd0.2O3 electrolyte films deposited on Ni-BaCe0.8Gd0.2O3 substrates. J. Electrochem. Soc. 144(3), 103 (1997)CrossRefGoogle Scholar
  68. 68.
    N. Bonanos, K.S. Knight, B. Ellis, Perovskite solid electrolytes: Structure, transport properties and fuel cell applications. Solid State Ionics 79, 161–170 (1995)CrossRefGoogle Scholar
  69. 69.
    W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane. J Power Sources 118, 150–156 (2003)CrossRefGoogle Scholar
  70. 70.
    K.-D. Kreuer, Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–59 (2003)CrossRefGoogle Scholar
  71. 71.
    F.W. Dynys, M.H. Berger, A. Sayir, Pulsed laser deposition of high temperature protonic films. Solid State Ionics 177, 2333–2337 (2006)CrossRefGoogle Scholar
  72. 72.
    G. Meng, G. Ma, Q. Ma, R. Peng, X. Liu, Ceramic membrane fuel cells based on solid proton electrolytes. Solid State Ionics 178, 697–703 (2007)CrossRefGoogle Scholar
  73. 73.
    W.A. Meulenberg, J.M. Serra, T. Schober, Preparation of proton conducting BaCe0.8Gd0.2O3 thin films. Solid State Ionics 177, 2851–2856 (2006)CrossRefGoogle Scholar
  74. 74.
    K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics 125, 355–367 (1999)CrossRefGoogle Scholar
  75. 75.
    T. Shimada, C. Wen, N. Taniguchi, J. Otomo, H. Takahashi, The high temperature proton conductor BaZr0.4Ce0.4In0.2O3 α. J. Power Sources 131, 289–292 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryCentre for Materials Science and Nanotechnology, University of Oslo, FERMiONorway

Personalised recommendations