Nanomaterials and Biocompatibility: Carbon Nanotubes and Fullerenes

  • Sean T. Zuckerman
  • Weiyuan John Kao
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


The definition of “biocompatibility” and the related background material are detailed in the previous chapter covering the biocompatibility of biological microelectricalmechanical systems and dendrimers. This chapter will focus on the biocompatibility of current and emerging carbon-based nanomaterials such as carbon nanotubes and fullerenes from a structure–function standpoint. We will present trends and data from current primary literature correlating the structure of a material with its observed effect on the body ranging from cytotoxicity to hypersensitivity. In addition, we will highlight the differences in the data obtained ranging from different material preparation methods to different animal models and how these upstream choices influence the comparison of conclusions drawn regarding each type of material. The subjective nature of assessing the extent of a biological phenomenon such as the host response to a given material for a species should become apparent.



Alveolar Macrophage Lipid Oxidation Malonic Acid Intratracheal Instillation Carbon Black Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alemany, R., Suzuki, K., & Curiel D.T. (2000). Blood clearance rates of adenovirus type 5 in mice. Journal of General Virology, 81, 2605–9.PubMedGoogle Scholar
  2. Andrievsky, G., Klochkov, V., & Derevyanchenko, L. (2005). Is the C60 fullerene toxic?! Fullerene, Nanotubes, and Carbon Nanostructures, 13, 363–76.CrossRefGoogle Scholar
  3. Baddour, C.E. & Briens, C. (2005). Carbon nanotube synthesis: A review. International Journal of Chemical Reactor Engineering, 3, R3:1–20.CrossRefGoogle Scholar
  4. Barlow, P.G., Donaldson, K., MacCallum, J., Clouter, A., & Stone, V. (2005). Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicology Letters, 155, 397–401.CrossRefPubMedGoogle Scholar
  5. Benson, J.M., Carpenter, R.L., Hahn, F.F., Haley, P.J., Hanson, R.L., Hobbs, C.H., Pickrell, J.A., & Dunnick, J.K. (1987). Comparative inhalation toxicity of nickel subsulfide to F344/N rats and B6C3F1 mice exposed for 12 days. Fundamental and Applied Toxicology, 9, 251–65.CrossRefPubMedGoogle Scholar
  6. Bernstein, R., Prat, F., & Foote, C.S. (1999). On the mechanism of DNA cleavage by fullerenes investigated in model systems: electron transfer from guanosine and 8-oxo-guanosine derivatives to C60. Journal of the American Chemical Society, 121, 464–5.CrossRefGoogle Scholar
  7. Bosi, S., Feruglio, L., Da Ros, T., Spalluto, G., Gregoretti, B., Terdoslavich, M., Decorti, G., Passamonti, S., Moro, S., & Prato, M. (2004). Hemolytic effects of water-soluble fullerene derivatives. Journal of Medicinal Chemistry, 47, 6711–5.CrossRefPubMedGoogle Scholar
  8. Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Bergamaschi, A., & Mustelin, T. (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Letters, 160, 121–6.CrossRefPubMedGoogle Scholar
  9. Carbon Nanotechnologies Incorporated. (2003). Material Safety Data Sheet Product: Single Wall Carbon Nanotubes. Retrieved October 20, 2006, from
  10. Carrero-Sanchez, J.C., Elias, A.L., Mancilla, R., Arrelin, G., Terrones, H., Laclette, J.P., & Terrones, M. (2006). Biocompatibility and toxicological studies of carbon nanotubesdoped with nitrogen. Nano Letters, 6, 1609–16.CrossRefPubMedGoogle Scholar
  11. Cerutti, P.A. (1985). Prooxidant states and tumor promotion. Science, 227, 375–81.CrossRefPubMedGoogle Scholar
  12. Cheng, F.Y., Yang, X.L., & Zhu, H.S. (2000). Hydroxyl radical scavenging and producing activities of water-soluble malonic acid C-60. Fullerene Science and Technology, 8, 113–24.Google Scholar
  13. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., & Weisman, R.B. (2004) Near-infrared fluorescence miscroscopy of single-walled carbon nanotubes in phagocytic cells. Journal of theAmerican Chemical Society, 126, 15638–9.CrossRefGoogle Scholar
  14. Chiang, L.Y., Lu, F.-J., & Lin, J.-T. (1995). Free radical scavenging activity of water-soluble fullerenols. Journal of the Chemical Society-Chemical Communications, 12, 1283–4.CrossRefGoogle Scholar
  15. Cui, D., Tian, F., Ozkan, C.S., Wang, M., & Gao, H. (2005). Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters, 155, 73–85.CrossRefPubMedGoogle Scholar
  16. Cusan, C., Da Ros, T., Spalluto, G., Foley, S., Janot, J.-M., Seta, P., Larroque, C., Tomasini, M.C., Antonelli, T., Ferraro, L., & Prato, M. (2002). A new multi-charged C60 derivative: synthesis and biological properties. European Journal of Organic Chemistry, 17, 2928–34.CrossRefGoogle Scholar
  17. Dash, P.R., Read, M.L., Barrett, L.B., Wolfert, M.A., & Seymour, L.W. (1999). Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Therapy, 6, 643–50.CrossRefPubMedGoogle Scholar
  18. DeLeo, F.R. (2004). Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis, 9, 399–413.CrossRefPubMedGoogle Scholar
  19. Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J.P., Cooke, P.A., Gray, J.W., & Chen, F.F. (2005). Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblasts. Nano Letters, 5, 2448–64.CrossRefPubMedGoogle Scholar
  20. Donaldson, K. & Tran, C.L. (2002). Inflammation caused by particles and fibers. Inhalation Toxicology, 14, 5–27.CrossRefPubMedGoogle Scholar
  21. Donaldson, K. & Tran, C.L. (2004). An introduction to the short-term toxicology of respirable industrial fibres. Mutation Research, 553, 5–9.PubMedGoogle Scholar
  22. Driscoll, K.E., Carter, J.M., Howard, B.W., Hassenbein, D.G., Pepelko, W., Baggs, R.B., & Oberdoerster, G. (1996). Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and Applied Pharmacology, 136, 372–80.CrossRefPubMedGoogle Scholar
  23. Dugan, L.L., Turetsky, D.M., Du, C., Lobner, D., Wheeler, M., Almli, C.R., Shen, C.K.-F., Luh, T.-Y, Choi, D.W., & Lin, T.-S. (1997). Carboxyfullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences of the United States of America, 94, 9434–9.CrossRefPubMedGoogle Scholar
  24. Dupuis, A.C. (2005). The catalyst in the CCVD of carbon nanotubes – a review. Progress in Materials Science, 50, 929–61.CrossRefGoogle Scholar
  25. Fenoglio, I., Tomatis, M., Lison, D., Muller, J., Fonseca, A., Nagy, J.B., & Fubini, B. (2006). Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radical Biology & Medicine, 40, 1227–33.CrossRefGoogle Scholar
  26. Fiorito, S., Serafino, A., Andreola, F., & Bernier, P. (2006). Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon, 44, 1100–5.CrossRefGoogle Scholar
  27. Flahaut, E., Durrieu, M.C., Remy-Zolghadri, M., Bareille, R., & Baquey, C.H. (2006). Study of the cytotoxicity of CCVD carbon nanotubes. Journal of Materials Science, 41, 2411–6.CrossRefGoogle Scholar
  28. Forman, H.J. & Torres, M. (2002). Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. American Journal of Respiratory and Critical Care Medicine, 166, S4–S8.CrossRefPubMedGoogle Scholar
  29. Gallagher, J., Sams II, R., Inmon, J., Gelein, R., Elder, A., Oberdorster, G., & Prahalad, A.K. (2003). Formation of 8-oxo-7,8-dihydro-2’deoxyguanosine in rat lung DNA following subchronic inhalation of carbon black. Toxicology and Applied Pharmacology, 190, 224–31.CrossRefPubMedGoogle Scholar
  30. Garibaldi, S., Brunelli, C., Bavastrello, V., Ghigliotti, G., & Nicolini, C. (2006). Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology, 17, 391–7.CrossRefGoogle Scholar
  31. Glosli, H., Tronstad, K.J., Wergedal, H., Muller, F., Svardal, A., Aukrust, P., Berge, R.K., & Prydz, H. (2002). Human TNF-α in transgenic mice induces differential changes in redox status and glutathione-regulating enzymes. FASEB Journal, 16, 1450–2.PubMedGoogle Scholar
  32. Grubek-Jaworska, H., Nejman, P., Czuminska, K., Przybylowski, T., Huczko, A., Lange, H., Bystrzejewski, M., Baranowski, P., & Chazan, R. (2006). Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons. Carbon, 44, 1057–63.CrossRefGoogle Scholar
  33. Hamano, T., Okuda, K., Mashino, T., Hirobe, M., Arakane, K., Ryu, A., Mashiko, S., & Nagano, T. (1997). Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Journal of the Chemical Society-Chemical Communications, 1, 21–2.Google Scholar
  34. Hansen, J.M., Zhang, H., & Jones, D.P. (2006). Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-α-induced reactive oxygen species generation, NF-κB activation, and apoptosis. Toxicological Sciences, 91, 643–50.CrossRefPubMedGoogle Scholar
  35. Hesterberg, T.W., Chase, G., Axten, C., Miller, W.C., Musselman, R.P., Kamstrup, O., Hadley, J., Morscheidt, C., Bernstein, D.M., & Thevenaz, P. (1998). Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicology and Applied Pharmacology, 151, 262–75.CrossRefPubMedGoogle Scholar
  36. Huang, Y.-L, Shen, C.K.-F., Luh, T.-Y., Yang, H.C., Hwang, K.C., & Chou, C.-K. (1998). Blockage of apoptotic signaling of transforming growth factor-β in human hepatoma cells by carboxyfullerene. European Journal of Biochemistry, 254, 38–43.CrossRefPubMedGoogle Scholar
  37. Huczko A. & Lange H. (2001). Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Science and Technology, 9, 247–50.Google Scholar
  38. Huczko, A., Lange, H., Calko, E., Grubek-Jaworksa, H., & Droszcz, P. (2001). Physiological testing of carbon nanotubes: Are they asbestos like? Fullerene Science and Technology, 9, 251–4.Google Scholar
  39. Huzcko, A., Lange, H., Bystrzejewski, M, Baranowski, P, Grubek-Jaworska H, Nejman, P., Przybylowski, T., Czuminska, K., Glapinski, J., Walton, D.R.M., & Kroto, H.W. (2005). Pulmonary toxicity of 1-D nanocarbon materials. Fullerenes, Nanotubes, and Carbon Nanostructures, 13, 141–45.CrossRefGoogle Scholar
  40. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., & Guo X. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science and Technology, 39, 1378–83.CrossRefPubMedGoogle Scholar
  41. Kagan, V.E., Tyurina, Y.Y., Tyurin, V.A., Konduru, N.V., Potapovich, A.I., Osipov, A.N., Kisin, E.R., Schwegler-Berry, D., Mercer, R., Castranova, V., & Shvedova, A.A. (2006). Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicology Letters, 165, 88–100.CrossRefPubMedGoogle Scholar
  42. Kam, N.W.S., Jessop, T.C., Wender, P.A., & Dai, H. (2004). Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. Journal of American Chemical Society, 126, 6850–1.CrossRefGoogle Scholar
  43. Kletsas, D., Barbieri, D., Stathakos, D., Botti, B., Bergamini, S., Tomasi, A., Monti, D., Malorni, W., & Franceschi, C. (1998). The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochemical and Biophysical Research Communications, 243, 416–25.CrossRefPubMedGoogle Scholar
  44. Koyama, S., Tanaka, S., Yamaguchi, Y., Haniu, H., Takeichi,T. Konishi, G., & Koyama, H. (2002). Different tissue reactions to activated carbon fibers – pathological and immunological findings after subcutaneous implantation. Molecular Crystals and Liquid Crystals, 388, 581–5.Google Scholar
  45. Koyama, S., Endo, M., Kim, Y.A., Hayashi, T., Yanagisawa, T., Osaka, K., Koyama, H., Haniu, H., & Kuroiwa, N. (2006). Role of systemic T-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice. Carbon, 44, 1079–92.CrossRefGoogle Scholar
  46. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl., R.F., & Smalley, R.E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–3.CrossRefGoogle Scholar
  47. Krusic, P.J., Wasserman, E., Keizer, P.N., Morton, J.R., & Preston, K.F. (1991). Radical reactions of C60. Science, 254, 1183–5.CrossRefPubMedGoogle Scholar
  48. Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L. (2004). Pulmonary toxicity of single-walled carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77, 126–34.CrossRefPubMedGoogle Scholar
  49. Lin, A.M.Y., Chyi, B.Y., Wang, S.D., Yu, H.-H., Kanakamma, P.P., Luh, T.-Y., Chou, C.K., & Ho, L.T. (1999). Carboxyfullerene prevents iron-induced oxidative stress in rat brain. Journal of Neurochemistry, 72, 1634–40.CrossRefPubMedGoogle Scholar
  50. Lippmann, M., (1986). Respiratory tract deposition and clearance of aerosols. In S.D. Lee, T. Schneider, L.D. Grant, & P.J. Verkerk (Eds.), Aerosols (pp.43–57). Chelsea, MI: Lewis Publishers.Google Scholar
  51. Lippmann, M. (1994). Nature of exposure to chrysotile. Annals of Occupational Hygiene, 38, 459–67.CrossRefPubMedGoogle Scholar
  52. Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B., & Forro, L. (2006). Cellular toxicity of carbon-based nanomaterials. Nano Letters, 6, 1121–25.CrossRefPubMedGoogle Scholar
  53. Manna, S.K., Sarkar, S., Barr, J., Wise, K., Barrera, E.V., Jejelowo, O., Rice-Ficht, A.C., &Ramesh G.T. (2005). Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Letters, 5, 1676–84.CrossRefPubMedGoogle Scholar
  54. Matsui, H., Ito, T., & Ohnishi, S.I. (1983). Phagocytosis by macrophages: III. Effects of heat-labile opsonin and poly(L-lysine). Journal of Cell Science, 59, 133–43.PubMedGoogle Scholar
  55. Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y., Riviere, J.E. (2005). Multi-walled carbon nanotube interactions with human epidermal keratinocytes. ToxicologyLetters, 155, 377–84.Google Scholar
  56. Monti, D., Moretti, L., Salvioli, S., Straface, E., Malorni, W., Pellicciari, R., Schettini, G., Bisaglia, M., Pincelli, C., Fumelli, C., Bonafe, M., & Franceschi, C. (2000). C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 277, 711–7.CrossRefPubMedGoogle Scholar
  57. Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.-F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B., Lison, D. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology, 207, 221–31.PubMedGoogle Scholar
  58. Nakajima, N., Nishi, C., Li, F.M., & Ikada, Y. (1996). Photo-induced cytotoxicity of water-soluble fullerene. Fullerene Science and Technology, 4, 1–19.Google Scholar
  59. Nikula, K.J., Snipes, M.B., Barr, E.B., Griffith, W.C., Henderson, R.F., & Mauderly, J.L. (1995). Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon-black in F344 rats. Fundamental and Applied Toxicology, 25, 80–94.CrossRefPubMedGoogle Scholar
  60. Noon, W.H., Kong, Y., & Ma, J. (2002). Molecular dynamics analysis of a buckyball-antibody complex. Proceedings of the National Academy of Sciences of the United States of America, 99, 6466–70.CrossRefPubMedGoogle Scholar
  61. Orfanopoulos, M. & Kambourakis, S. (1995). Chemical evidence of singlet oxygen production from C60 and C70 in aqueous and other polar media. Tetrahedron Letters, 36, 435–8.CrossRefGoogle Scholar
  62. Oupicky, D., Howard, K.A., Konak, C., Dash, P.R., Ulbrich, K., & Seymour, L.W. (2000). Steric stabilization of poly-L-lysine/DNA complexes by the covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjugate Chemistry, 11, 492–501.CrossRefPubMedGoogle Scholar
  63. Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications, 1, 16–17.CrossRefPubMedGoogle Scholar
  64. Park, K.H., Chhowalla, M., Iqbal, Z., & Sesti, F. (2003). Single-walled carbon nanotubes are a new class of ion channel blockers. The Journal of Biological Chemistry, 278, 50212–6.CrossRefPubMedGoogle Scholar
  65. Porter, A.E., Muller, K., Skepper, J., Midgley, P., & Welland, M. (2006). Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomaterialia, 2, 409–19.CrossRefPubMedGoogle Scholar
  66. Rajagopalan, P., Wudl, F., Schinazi, R.F., & Boudinot, F.D. (1996). Pharmacokinetics of a water-soluble fullerene in rats. Antimicrobial Agents and Chemotherapy, 40, 2262–5.PubMedGoogle Scholar
  67. Reynolds, I.J. & Hastings, T.G. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. The Journal of Neuroscience, 15, 3318–27.PubMedGoogle Scholar
  68. Rosenberg, A.S., Mizuochi, T., Sharrow, S.O., & Singer, A. (1987). Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. Journal of Experimental Medicine, 165, 1296–315.CrossRefPubMedGoogle Scholar
  69. Sato, Y., Yokoyama, A., Shibata, K.-I., Akimoto, Y., Ogino, S.-I., Nodasaka, Y., Kohgo, T., Tamura, K., Akasaka, T., Uo, M., Motomiya, K., Jeyadevan, B., Ishiguro, M., Hatakeyama, R., Watari, F., & Tohji K. (2005). Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Molecular Biosystems, 1, 176–82.CrossRefPubMedGoogle Scholar
  70. Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., West, J.L., & Colvin, V.L. (2004). The differential cytotoxicity of water soluble fullerenes. Nano Letters, 4, 1881–7.CrossRefGoogle Scholar
  71. Sayes, C.M., Gobin, A.M., Ausman, K.D., Mendez, J., West, J.L., & Colvin, V.L. (2005). Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 26, 7587–95.CrossRefPubMedGoogle Scholar
  72. Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray A.R., Gandelsman, V.Z., Maynard, A., & Baron, P. (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health, Part A, 66, 1909–26.CrossRefGoogle Scholar
  73. Shvedova, A.A., Kisin, E.R., Mercer, R., Murray A.R., Johnson, V.J., Potapovich, A.I., Tyurina, Y.Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D. Hubbs, A.F., Antonini, J., Evans, D.E., Ku, B.-K., Ramsey, D. Maynard, A., Kagan, V.E., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology – Lung Cellular and Molecular Physiology, 289, L698–L708.CrossRefPubMedGoogle Scholar
  74. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., & Kostarelos, K. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America-Physical Sciences, 103, 3357–62.CrossRefGoogle Scholar
  75. Smart, S.K, Cassady, A.I., Lu, G.Q., & Martin, D.J. (2006). The biocompatibility of carbon nanotubes. Carbon, 44, 1034–47.CrossRefGoogle Scholar
  76. Soto, K.F., Carrasco, A., Powell, T.G., Garza, K.M, & Murr, L.E. (2005). Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. Journal of Nanoparticle Research, 7, 145–69.CrossRefGoogle Scholar
  77. Soto, K.F., Carrasco, A., Powell, T.G., Murr, L.E., & Garza K.M. (2006). Biological effects of nanoparticulate materials. Materials Science and Engineering C-Biomimetic and Supramolecular Systems, 26, 1421–27.Google Scholar
  78. Sprent, J., Schaefer, M., Lo, D., & Kormgold, R. (1986). Properties of purified T cell subsets: II. In vivo responses to class I vs. class II H-2 differences. Journal of Experimental Medicine, 163, 998–1011.CrossRefPubMedGoogle Scholar
  79. Stone, V., Shaw, J., Brown D.M., Macnee, W., Faux, S.P., & Donaldson, K. (1998). The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicology In Vitro, 12, 649–59.CrossRefPubMedGoogle Scholar
  80. Tabata, Y., Murakami, Y., Ikada, Y. (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Japanese Journal of Cancer Research, 88, 1108–16.PubMedGoogle Scholar
  81. Tian, F., Cui, D., Schwarz, H., Estrada, G.G., & Kobayashi H. (2006). Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicology In Vitro, 20, 1202–12.CrossRefPubMedGoogle Scholar
  82. Tokuyama, H., Yamago, S., Nakamura, E., Shiraki, T., & Sugiura, Y. (1993). Photoinduced biochemical activity of fullerene carboxylic acid. Journal of the American Chemical Society, 115, 7918–9.CrossRefGoogle Scholar
  83. Tran, C.L., Buchanan, D., Cullen, R.T., Searl A., Jones, A.D., & Donaldson K. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology, 12, 1113–26.CrossRefPubMedGoogle Scholar
  84. Tsuchiya, T., Oguri, I., Yamakoshi, Y.N., & Miyata, N. (1996). Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Letters, 393, 139–45.CrossRefPubMedGoogle Scholar
  85. Valko, M., Morris, H., & Cronin, M.T.D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.CrossRefPubMedGoogle Scholar
  86. Wang, I.C., Tai, L.A., Lee, D.D., Kanakamma, P.P., Shen, C.K.-F., Lauh, T.-Y., Cheng, C.H., & Hwang, K.C. (1999). C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. Journal of Medicinal Chemistry, 42, 4614–20.CrossRefPubMedGoogle Scholar
  87. Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A.M., & Webb, T.R. (2004). Comparative pulmonary toxicity assessment of single-walled carbon nanotubes in rats. Toxicological Sciences, 77, 117–25.CrossRefPubMedGoogle Scholar
  88. Worle-Knirsch, J.M., Pulskamp, K., & Krug, H.F. (2006). Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters, 6, 1261–68.CrossRefPubMedGoogle Scholar
  89. Yamago, S., Tokuyama, H., Nakamura, E., Kikuchi, K., Kananishi, S., Sueki, K., Nakahara, H., Enomoto, S., & Ambe, F. (1995). In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion, and acute toxicity. Chemistry and Biology, 2, 385–9.CrossRefPubMedGoogle Scholar
  90. Yamakoshi, Y.N., Yagami, T., Fukuhara, K., Sueyoshi, S., & Miyata, N. (1994). Solubilizationof fullerenes into water with polyvinylpyrrolidone applicable to biological tests. Journal of the Chemical Society-Chemical Communications, 4, 517–8.CrossRefGoogle Scholar
  91. Yamakoshi, Y.N., Yagami, T., Sueyoshi, S., & Miyata, N. (1996). Acridine adduct of [60] fullerene with enhanced DNA-cleaving activity. Journal of Organic Chemistry, 61, 7236–7.Google Scholar
  92. Yamawaki, H. & Iwai, N. (2006). Cytotoxicity of water-soluble fullerene in vascular endothelial cells. American Journal of Physiology-Cell Physiology, 290, C1495–C1502.CrossRefPubMedGoogle Scholar
  93. Yang, X.L., Fan, C.H., & Zhu, H.S. (2002). Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicology In Vitro, 16, 41–6.CrossRefPubMedGoogle Scholar
  94. Ye, J., Shi, X., Jones, W., Rojanasakul, Y., Cheng, N., Schwegler-Berry, D., Baron, P., Deye, G.J., Li, C. & Castranova, V. (1999). Critical role of glass fiber length in TNF-α production and transcription factor activation in macrophages. American Journal of Physiology- Lung Cellular and Molecular Physiology, 276, L426–L434.Google Scholar
  95. Zhao, X., Striolo, A., & Cummings, P.T. (2005). C60 binds to and deforms nucleotides. Biophysical Journal, 89, 3856–62.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Sean T. Zuckerman
    • 1
  • Weiyuan John Kao
    • 1
  1. 1.Department of Biomedical Engineering School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations