Nanomaterials and Biocompatibility: BioMEMS and Dendrimers

  • Sean T. Zuckerman
  • Weiyuan John Kao
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Extensor Digitorum Longus PAMAM Dendrimers Carbosilane Dendrimers Hemolytic Property Liver Accumulation 


  1. Allen, M., Butter, R., Chandra, L., Lettington, A., & Rushton, N. (1995). Toxicity of particulate silicon carbide for macrophage, fibroblasts and osteoblast-like cells in vitro. Bio-medical Materials and Engineering, 5, 151–9.PubMedGoogle Scholar
  2. Amon, M., Bolz, A., & Schaldach, M. (1996). Improvement of stenting therapy with a silicon carbide coated tantalum stent. Journal of Materials Science-Materials in Medicine, 7, 273–8.CrossRefGoogle Scholar
  3. American Society for Testing Materials Standards International. (2004). ASTM F 748-04: Standard practice for selecting generic biological test methods for materials and devices. Retrieved October 20, 2006, from
  4. Bayliss, S.C. & Buckberry, L.D. (1999). A material for melding humans and machines. Materials World, 7, 213–5.Google Scholar
  5. Bayliss, S.C., Heald, R., Fletcher, D.I., & Buckberry, L.D. (1999). The culture of mammalian cells on nanostructured silicon. Advanced Materials, 11, 318–21.CrossRefGoogle Scholar
  6. Bayliss, S.C., Buckberry, L.D., Harris, P.J., & Tobin, M. (2000). Nature of the silicon-animal cell interface. Journal of Porous Materials, 7, 191–5.CrossRefGoogle Scholar
  7. Bayliss, S.C., Harris, P.J., Buckberry, L., & Rousseau, C. (1997). Phosphate and cell growth on nanostructured semiconductors. Journal of Materials Science Letters, 16, 737–40.CrossRefGoogle Scholar
  8. Blattler, T., Huwiler, C., Ochsner, M., Stadler, B., Solak, H., Voros, J., & Grandin, H.M. (2006). Nanopatterns with biological functions. Journal of Nanoscience and Nanotechnology, 6, 2237–64.CrossRefPubMedGoogle Scholar
  9. Boas, U. & Heegaard, P.M.H. (2004). Dendrimers in drug research. Chemical Society Reviews, 33, 43–63.CrossRefPubMedGoogle Scholar
  10. Brazeau, G.A., Attia, S., Poxon, S., & Hughes, J.A. (1998). In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharmaceutical Research, 15, 680–4.CrossRefPubMedGoogle Scholar
  11. Chen, H.Y., Elkasabi, Y., & Lahann, J. (2005). Surface modification of confined microgeometries via vapor-deposited polymer coatings. Journal of the American Chemical Society, 128, 374–80.CrossRefGoogle Scholar
  12. Chen, Z., Zhang, R.F., Kodama, M., & Nakaya, T. (1999). Preparations and properties of a novel grafted segmented polyurethane-bearing glucose groups. Journal of Biomaterials Science-Polymer Edition, 10, 901–16.CrossRefPubMedGoogle Scholar
  13. Chin, V.I., Taupin, P., Sanga, S., Scheel, J., Gage, F.H., & Bhatia, S.N. (2004). Microfabricated platform for studying stem cell fates. Biotechnology and Bioengineering, 88, 399–415.CrossRefPubMedGoogle Scholar
  14. Choksakulnimitr, S., Masuda, S., Tokuda, H., Takakura, Y., & Hashida, M. (1995). In vitro cytotoxicity of macromolecules in different cell culture systems. Journal of Controlled Release, 34, 233–41.CrossRefGoogle Scholar
  15. De Jesus, O.L.P, Ihre, H.R., Gagne, L., Frechet, J.M.J., & Szoka, F.C. (2002). Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry, 13, 453–61.CrossRefGoogle Scholar
  16. Duncan, R. & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57, 2215–37.CrossRefPubMedGoogle Scholar
  17. Elam, J.H. & Nygren, H. (1992). Adsorption of coagulation proteins from whole blood on to polymer materials – relation to platelet activation. Biomaterials, 13, 3–8.CrossRefPubMedGoogle Scholar
  18. El-Sayed, M., Ginski, M., Rhodes, C., & Ghandehari, H. (2002). Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Journal of Controlled Release, 81, 355–65.CrossRefPubMedGoogle Scholar
  19. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 24, 1121–31.CrossRefPubMedGoogle Scholar
  20. Gebhart, C.L. & Kabanov, A.V. (2001). Evaluation of polyplexes as gene transfer agents. Journal of Controlled Release, 73, 401–16.CrossRefPubMedGoogle Scholar
  21. Gibbins, J.M. (2004). Platelet adhesion signaling and the regulation of thrombus formation. Journal of Cell Science, 117, 3415–25.CrossRefPubMedGoogle Scholar
  22. Goto, R. & Ibuki, Y.D. (1994). Tissue distribution of liposomes prepared from synthetic amphiphiles after intraperitoneal injection into mice. Applied Radiation and Isotopes, 45, 47–62.CrossRefGoogle Scholar
  23. Gourley, P.L. (2005). Brief overview of biomicronano technologies. Biotechnology Progress, 21, 2–10.CrossRefPubMedGoogle Scholar
  24. Haensler, J. & Szoka Jr., F.C. (1993). Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chemistry, 4, 372–9.CrossRefPubMedGoogle Scholar
  25. Hanein, Y., Pan, Y.V., Ratner, B.D., Denton, D.D., & Bohringer, K.F. (2001). Micromachining of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B-Chemical, 81, 49–54.CrossRefGoogle Scholar
  26. Hiratsuka, Y., Miyata, M., Tada, T., & Uyeda, T.Q.P. (2006). A microrotary motor powered by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 103, 13618–23.CrossRefPubMedGoogle Scholar
  27. Ihre, H.R., De Jesus, O.L.P., Szoka, F.C., & Frechet, J.M.J. (2002). Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chemistry, 13, 443–52.CrossRefPubMedGoogle Scholar
  28. International Organization for Standards. (2003). Biological evaluation of medical devices. Retrieved October 20, 2006, from
  29. Ishikawa, M., Schmidtke, D.W., Raskin, P., & Quinn, C.A.P. (1998). Initial evaluation of a 290-μm diameter subcutaneous glucose sensor: glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. Journal of Diabetes and Its Complications, 12, 295–301.CrossRefPubMedGoogle Scholar
  30. Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N.B., D’Emanuele, A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics, 252, 263–6.CrossRefPubMedGoogle Scholar
  31. Johansson, C.B., Hansson, H.A., & Albrektsson, T. (1990). Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium. Biomaterials, 11, 277–80.CrossRefPubMedGoogle Scholar
  32. Kaneda, Y. (2000). Virosomes: evolution of the liposome as a targeted drug delivery system. Advanced Drug Delivery Reviews, 43, 197–205.CrossRefPubMedGoogle Scholar
  33. Kim, K., Kim, C., & Byun, Y. (2001). Preparation of a dipalmitoylphosphatidylcholine/cholesterol Langmuir–Blodgett monolayer that suppresses protein adsorption. Langmuir, 17, 5066–70.CrossRefGoogle Scholar
  34. Kim, T.-I., Seo, H.J., Choi, J.S., Jang, H.-S., Baek, J.-U., Kim, K., & Park J.-S. (2004). PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules, 5, 2487–92.CrossRefPubMedGoogle Scholar
  35. Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Hiraga, A., Ishimori, T., Konishi, J., Togashi, K., & Brechbiel, M.W. (2001). Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnetic Resonance in Medicine, 46, 781–8.CrossRefPubMedGoogle Scholar
  36. Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J.M., & Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23, 2737–50.CrossRefPubMedGoogle Scholar
  37. Kros, A., Gerritsen, M., Sprakel, V.S.I., Sommerdijk, N.A.J.M., Jansen, J.A., & Nolte, R.J.M. (2001). Silica-based hybrid materials as biocompatible coatings for glucose sensors. Sensors and Actuators B-Chemical, 81, 68–75.CrossRefGoogle Scholar
  38. Kubo, K., Tsukasa, N., Uehara, M., Izumi, Y., Ogino, M., Kitano, M., & Sueda, T. (1997). Calcium and silicon from bioactive glass concerned with formation of nodules in periodontal ligament fibroblasts in vitro. Journal of Oral Rehabilitation, 24, 70–5.CrossRefPubMedGoogle Scholar
  39. Kue, R., Sohrabi, A., Nagle, D., Frondoza, C. & Hungerford, D. (1999). Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials, 20, 1195–201.CrossRefPubMedGoogle Scholar
  40. Kuo, J.S., Jan, M.S., & Chiu, H.W. (2005). Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells. Journal of Pharmacy and Pharmacology, 47, 489–95.CrossRefGoogle Scholar
  41. Lan, S., Veiseh, M., & Zhang, M. (2005). Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosensors and Bioelectronics, 20, 1697–708.CrossRefPubMedGoogle Scholar
  42. Lee, K.K., Bhushan, B., & Hansford, D. (2005). Nanotribological characterization of fluorpolymer thin films for biomedical micro/nanoelectromechanical system applications. Journal of Vacuum Science & Technology: A, 23, 804–10.CrossRefGoogle Scholar
  43. Lian, T. & Ho, R.J.Y. (2001). Trends and developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90, 667–80.CrossRefPubMedGoogle Scholar
  44. Lin, G., Pister, K.S.J., & Roos, K.P. (2000). Surface micromachined polysilicon heart cell force transducer. Journal of Microelectromechanical Systems, 9, 9–17.CrossRefGoogle Scholar
  45. Madou, M. (1997). Fundamentals of microfabrication (p. 471). Boca Raton, FL: CRC Press LLC.Google Scholar
  46. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., & Duncan, R. (2000). Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release, 65, 133–148.CrossRefPubMedGoogle Scholar
  47. Margerum, L.D., Campion, B.K., Koo, M., Shargill, N., Lai, J.-J., Marumoto, A., & Sontum, P.C. (1997). Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers – effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. Journal of Alloys and Compounds, 249, 185–90.CrossRefGoogle Scholar
  48. Matsumura, Y. & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer- chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Research, 46, 6387–92.PubMedGoogle Scholar
  49. Meyer, J.U. (2002). Retina implant – a bioMEMS challenge. Sensors and Actuators A – Physical, 97–98, 1–9.CrossRefGoogle Scholar
  50. Moussy, F., Harrison, D.J., & Rajotte, R.V. (1994). A miniaturized Nafion-based glucose sensor – in vitro and in vivo evaluation in dogs. International Journal of Artificial Organs, 17, 88–94.PubMedGoogle Scholar
  51. Nagayasu, A., Uchiyama, K., & Kiwada, H. (1999). The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Advanced Drug Delivery Reviews, 40, 75–87.CrossRefPubMedGoogle Scholar
  52. Naji, A. & Harmand, M.F. (1991). Cytocompatibility of two coating materials, amorphous alumina and silicon carbide, using human differentiated cell cultures. Biomaterials, 12, 690–4.CrossRefPubMedGoogle Scholar
  53. Neerman, M.F., Zhang, W., Parrish, A.R., & Simanek, E.E. (2004). In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. International Journal of Pharmaceutics, 281, 129–32.CrossRefPubMedGoogle Scholar
  54. Nordsletten, L., Hogasen, A.K.M., Konttinen, Y.T., Santavirta, S., Aspenberg, P., & Aasen, A.O. (1996). Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. Biomaterials, 17, 1521–7.CrossRefPubMedGoogle Scholar
  55. Ortega, P., Bermejo, J.F., Chonco, L., de Jesus, E., de la Mata, F.J., Fernandez, G., Flores, J.C., Gomez, R., Serramia, M.J., & Munoz-Fernandez, M.A. (2006). Novel water-soluble carbosilane dendrimers: synthesis and biocompatibility. European Journal of Inorganic Chemistry, 7, 1388–96.CrossRefGoogle Scholar
  56. Papra, A., Bernard, A., Juncker, D., Larsen, N.B., Michel, B., & Delamarche, E. (2001). Microfluidic networks made of poly(dimethylsiloxane), Si, and Au coated with polyethylene glycol for patterning proteins onto surfaces. Langmuir, 17, 4090–5.CrossRefGoogle Scholar
  57. Patri, A.K., Kukowska-Latallo, J.F., & Baker Jr., J.R. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews, 57, 2203–14.CrossRefPubMedGoogle Scholar
  58. Plank, C., Mechtler, K., Szoka, F.C., & Wagner, E. (1996). Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Human Gene Therapy, 7, 1437–46.CrossRefPubMedGoogle Scholar
  59. Richards Grayson, A.C., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y., Cima, M.J., & Langer, R. (2004). A bioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the Institute of Electrical and Electronics Engineers, 92, 6–21.Google Scholar
  60. Roberts, J.C., Bhalgat, M.K., & Zera, R.T. (1996). Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. Journal of Biomedical Materials Research, 30, 53–65.CrossRefPubMedGoogle Scholar
  61. Schatzlein, A.G., Zinselmeyer, B.H., Elouzi, A., Dufes, C., Chim, Y.T.A., Roberts, C.J., Davies, M.C., Munro, A., Gray, A.I., & Uchegbu, I.F. (2005). Preferential liver gene expression with polypropyleneimine dendrimers. Journal of Controlled Release, 101, 247–58.CrossRefPubMedGoogle Scholar
  62. Sharma, S., Popat, K.C., & Desai, T.A. (2002). Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly(ethylene glycol) films. Langmuir, 18, 8728–31.CrossRefGoogle Scholar
  63. Sohrabi, A., Holland, C., Kue, R., Nagle, D., Hungerford, D.S., & Frondoza, C.G. (2000). Proinflammatory cytokine expression of IL-1β and TNF-α by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro. Journal of Biomedical Materials Research, 50, 43–9.CrossRefPubMedGoogle Scholar
  64. Stoldt, C.R. & Bright, V.M. (2006). Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems. Journal of Applied Physics D: Applied Physics, 39, R163–70.CrossRefGoogle Scholar
  65. Tokachichu, D.R. & Bhushan, B. (2006). Bioadhesion of polymers for bioMEMS. Institute of Electrical and Electronics Engineers Transactions on Nanotechnology, 5, 228–31.Google Scholar
  66. Tomalia, D.A., Naylor, A.M., & Goddard, W.A. (1990). Starburst dendrimers – molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition-England, 29, 138–175.CrossRefGoogle Scholar
  67. United States Food and Drug Administration. (1995). Required Biocompatibility Training and Toxicology Profiles for Evaluation of Medical Device. Retrieved October 20, 2006, from
  68. Voskerician, G., Shive, M.S., Shawgo, R.S., von Recum, H., Anderson, J.M., Cima, M.J., & Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 24, 1959–67.Google Scholar
  69. Wan, H., Williams, R.L., Doherty, P.J., & Williams, D.F. (1994). Cytotoxicity evaluation of Kevlar and silicon carbide by MTT assay. Journal of Materials Science-Materials in Medicine, 5, 441–5.CrossRefGoogle Scholar
  70. Wan, G.J., Yang, P., Shi, X.J., Wong, M., Zhou, H.F., Huang, N., & Chu, P.K. (2005). In vitro investigation of hemocompatibility of hydrophilic SiNx:H films fabricated by plasma-enhanced chemical vapor deposition. Surface & Coatings Technology, 200, 1945–9.CrossRefGoogle Scholar
  71. Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., & Bizios, R. (2000). Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Materials Research, 51, 475–83.CrossRefPubMedGoogle Scholar
  72. Weisenberg, B.A. & Mooradian, D.L. (2002). Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. Journal of Biomedical Materials Research, 60, 283–91.CrossRefPubMedGoogle Scholar
  73. Wisniewski, N. & Reichert, M. (2000). Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B-Biointerfaces, 18, 197–219.CrossRefGoogle Scholar
  74. Woodle, M.C. & Scaria, P. (2001). Cationic liposomes and nucleic acids. Current Opinion in Colloid & Interface Science, 6, 78–84.CrossRefGoogle Scholar
  75. Yang, H. & Kao, W.J. (2006). Dendrimers for pharmaceutical and biomedical applications. Journal of Biomedical Materials Research-Polymer Edition, 17, 3–19.Google Scholar
  76. Yoo, H. & Juliano, R.L. (2000). Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Research, 28, 4225–31.CrossRefPubMedGoogle Scholar
  77. Zhang, W., Jiang, J., Qin, C., Perez, L.M., Parrish, A.R., Safe, S.H., & Simanek, E.E. (2003). Triazine dendrimers for drug delivery: evaluation of solubilization properties, activity in cell culture, and in vivo toxicity of a candidate vehicle. Supramolecular Chemistry, 15, 607–16.CrossRefGoogle Scholar
  78. Zhu, Z., Zhang, J., & Zhu J. (2005). An overview of Si-based biosensors. Sensor Letters, 3, 71–88.CrossRefGoogle Scholar
  79. Ziaie, B., Baldi, A., Lei, M., Gu, Y., & Siegel, R.A. (2004). Hard and soft micromachining for bioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews, 56, 145–72.CrossRefPubMedGoogle Scholar
  80. Zimmerman, S., Fienbork, D., Flounders, A.W., & Liepmann, D. (2004). In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sensors and Actuators B-Chemical, 99, 163–73.CrossRefGoogle Scholar
  81. Zinselmeyer, B.H., Mackay, S.P., Schatzlein, A.G., & Uchegbu, I.F. (2002). The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharmaceutical Research, 19, 960–7.CrossRefPubMedGoogle Scholar
  82. Zuruzi, A.S., Butler, B.C., MacDonald, N.C., & Safinya, C.R. (2006). Nanostructured TiO2 thin films as porous cellular interfaces. Nanotechnology, 17, 531–5.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Sean T. Zuckerman
    • 1
  • Weiyuan John Kao
    • 1
  1. 1.Department of Biomedical Engineering School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations