Skip to main content

Nanomaterials and Biocompatibility: BioMEMS and Dendrimers

  • Chapter
Book cover Nanotechnology in Drug Delivery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M., Butter, R., Chandra, L., Lettington, A., & Rushton, N. (1995). Toxicity of particulate silicon carbide for macrophage, fibroblasts and osteoblast-like cells in vitro. Bio-medical Materials and Engineering, 5, 151–9.

    CAS  PubMed  Google Scholar 

  • Amon, M., Bolz, A., & Schaldach, M. (1996). Improvement of stenting therapy with a silicon carbide coated tantalum stent. Journal of Materials Science-Materials in Medicine, 7, 273–8.

    Article  CAS  Google Scholar 

  • American Society for Testing Materials Standards International. (2004). ASTM F 748-04: Standard practice for selecting generic biological test methods for materials and devices. Retrieved October 20, 2006, from http://www.astm.org.

  • Bayliss, S.C. & Buckberry, L.D. (1999). A material for melding humans and machines. Materials World, 7, 213–5.

    CAS  Google Scholar 

  • Bayliss, S.C., Heald, R., Fletcher, D.I., & Buckberry, L.D. (1999). The culture of mammalian cells on nanostructured silicon. Advanced Materials, 11, 318–21.

    Article  CAS  Google Scholar 

  • Bayliss, S.C., Buckberry, L.D., Harris, P.J., & Tobin, M. (2000). Nature of the silicon-animal cell interface. Journal of Porous Materials, 7, 191–5.

    Article  CAS  Google Scholar 

  • Bayliss, S.C., Harris, P.J., Buckberry, L., & Rousseau, C. (1997). Phosphate and cell growth on nanostructured semiconductors. Journal of Materials Science Letters, 16, 737–40.

    Article  CAS  Google Scholar 

  • Blattler, T., Huwiler, C., Ochsner, M., Stadler, B., Solak, H., Voros, J., & Grandin, H.M. (2006). Nanopatterns with biological functions. Journal of Nanoscience and Nanotechnology, 6, 2237–64.

    Article  CAS  PubMed  Google Scholar 

  • Boas, U. & Heegaard, P.M.H. (2004). Dendrimers in drug research. Chemical Society Reviews, 33, 43–63.

    Article  CAS  PubMed  Google Scholar 

  • Brazeau, G.A., Attia, S., Poxon, S., & Hughes, J.A. (1998). In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharmaceutical Research, 15, 680–4.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.Y., Elkasabi, Y., & Lahann, J. (2005). Surface modification of confined microgeometries via vapor-deposited polymer coatings. Journal of the American Chemical Society, 128, 374–80.

    Article  Google Scholar 

  • Chen, Z., Zhang, R.F., Kodama, M., & Nakaya, T. (1999). Preparations and properties of a novel grafted segmented polyurethane-bearing glucose groups. Journal of Biomaterials Science-Polymer Edition, 10, 901–16.

    Article  CAS  PubMed  Google Scholar 

  • Chin, V.I., Taupin, P., Sanga, S., Scheel, J., Gage, F.H., & Bhatia, S.N. (2004). Microfabricated platform for studying stem cell fates. Biotechnology and Bioengineering, 88, 399–415.

    Article  CAS  PubMed  Google Scholar 

  • Choksakulnimitr, S., Masuda, S., Tokuda, H., Takakura, Y., & Hashida, M. (1995). In vitro cytotoxicity of macromolecules in different cell culture systems. Journal of Controlled Release, 34, 233–41.

    Article  CAS  Google Scholar 

  • De Jesus, O.L.P, Ihre, H.R., Gagne, L., Frechet, J.M.J., & Szoka, F.C. (2002). Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry, 13, 453–61.

    Article  Google Scholar 

  • Duncan, R. & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57, 2215–37.

    Article  CAS  PubMed  Google Scholar 

  • Elam, J.H. & Nygren, H. (1992). Adsorption of coagulation proteins from whole blood on to polymer materials – relation to platelet activation. Biomaterials, 13, 3–8.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed, M., Ginski, M., Rhodes, C., & Ghandehari, H. (2002). Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Journal of Controlled Release, 81, 355–65.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 24, 1121–31.

    Article  CAS  PubMed  Google Scholar 

  • Gebhart, C.L. & Kabanov, A.V. (2001). Evaluation of polyplexes as gene transfer agents. Journal of Controlled Release, 73, 401–16.

    Article  CAS  PubMed  Google Scholar 

  • Gibbins, J.M. (2004). Platelet adhesion signaling and the regulation of thrombus formation. Journal of Cell Science, 117, 3415–25.

    Article  CAS  PubMed  Google Scholar 

  • Goto, R. & Ibuki, Y.D. (1994). Tissue distribution of liposomes prepared from synthetic amphiphiles after intraperitoneal injection into mice. Applied Radiation and Isotopes, 45, 47–62.

    Article  Google Scholar 

  • Gourley, P.L. (2005). Brief overview of biomicronano technologies. Biotechnology Progress, 21, 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Haensler, J. & Szoka Jr., F.C. (1993). Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chemistry, 4, 372–9.

    Article  CAS  PubMed  Google Scholar 

  • Hanein, Y., Pan, Y.V., Ratner, B.D., Denton, D.D., & Bohringer, K.F. (2001). Micromachining of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B-Chemical, 81, 49–54.

    Article  Google Scholar 

  • Hiratsuka, Y., Miyata, M., Tada, T., & Uyeda, T.Q.P. (2006). A microrotary motor powered by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 103, 13618–23.

    Article  CAS  PubMed  Google Scholar 

  • Ihre, H.R., De Jesus, O.L.P., Szoka, F.C., & Frechet, J.M.J. (2002). Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chemistry, 13, 443–52.

    Article  CAS  PubMed  Google Scholar 

  • International Organization for Standards. (2003). Biological evaluation of medical devices. Retrieved October 20, 2006, from http://www.iso.org.

  • Ishikawa, M., Schmidtke, D.W., Raskin, P., & Quinn, C.A.P. (1998). Initial evaluation of a 290-μm diameter subcutaneous glucose sensor: glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. Journal of Diabetes and Its Complications, 12, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N.B., D’Emanuele, A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics, 252, 263–6.

    Article  CAS  PubMed  Google Scholar 

  • Johansson, C.B., Hansson, H.A., & Albrektsson, T. (1990). Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium. Biomaterials, 11, 277–80.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda, Y. (2000). Virosomes: evolution of the liposome as a targeted drug delivery system. Advanced Drug Delivery Reviews, 43, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Kim, C., & Byun, Y. (2001). Preparation of a dipalmitoylphosphatidylcholine/cholesterol Langmuir–Blodgett monolayer that suppresses protein adsorption. Langmuir, 17, 5066–70.

    Article  CAS  Google Scholar 

  • Kim, T.-I., Seo, H.J., Choi, J.S., Jang, H.-S., Baek, J.-U., Kim, K., & Park J.-S. (2004). PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules, 5, 2487–92.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Hiraga, A., Ishimori, T., Konishi, J., Togashi, K., & Brechbiel, M.W. (2001). Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnetic Resonance in Medicine, 46, 781–8.

    Article  CAS  PubMed  Google Scholar 

  • Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J.M., & Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23, 2737–50.

    Article  CAS  PubMed  Google Scholar 

  • Kros, A., Gerritsen, M., Sprakel, V.S.I., Sommerdijk, N.A.J.M., Jansen, J.A., & Nolte, R.J.M. (2001). Silica-based hybrid materials as biocompatible coatings for glucose sensors. Sensors and Actuators B-Chemical, 81, 68–75.

    Article  Google Scholar 

  • Kubo, K., Tsukasa, N., Uehara, M., Izumi, Y., Ogino, M., Kitano, M., & Sueda, T. (1997). Calcium and silicon from bioactive glass concerned with formation of nodules in periodontal ligament fibroblasts in vitro. Journal of Oral Rehabilitation, 24, 70–5.

    Article  CAS  PubMed  Google Scholar 

  • Kue, R., Sohrabi, A., Nagle, D., Frondoza, C. & Hungerford, D. (1999). Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials, 20, 1195–201.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, J.S., Jan, M.S., & Chiu, H.W. (2005). Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells. Journal of Pharmacy and Pharmacology, 47, 489–95.

    Article  Google Scholar 

  • Lan, S., Veiseh, M., & Zhang, M. (2005). Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosensors and Bioelectronics, 20, 1697–708.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.K., Bhushan, B., & Hansford, D. (2005). Nanotribological characterization of fluorpolymer thin films for biomedical micro/nanoelectromechanical system applications. Journal of Vacuum Science & Technology: A, 23, 804–10.

    Article  CAS  Google Scholar 

  • Lian, T. & Ho, R.J.Y. (2001). Trends and developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90, 667–80.

    Article  CAS  PubMed  Google Scholar 

  • Lin, G., Pister, K.S.J., & Roos, K.P. (2000). Surface micromachined polysilicon heart cell force transducer. Journal of Microelectromechanical Systems, 9, 9–17.

    Article  CAS  Google Scholar 

  • Madou, M. (1997). Fundamentals of microfabrication (p. 471). Boca Raton, FL: CRC Press LLC.

    Google Scholar 

  • Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., & Duncan, R. (2000). Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release, 65, 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Margerum, L.D., Campion, B.K., Koo, M., Shargill, N., Lai, J.-J., Marumoto, A., & Sontum, P.C. (1997). Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers – effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. Journal of Alloys and Compounds, 249, 185–90.

    Article  CAS  Google Scholar 

  • Matsumura, Y. & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer- chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Research, 46, 6387–92.

    CAS  PubMed  Google Scholar 

  • Meyer, J.U. (2002). Retina implant – a bioMEMS challenge. Sensors and Actuators A – Physical, 97–98, 1–9.

    Article  Google Scholar 

  • Moussy, F., Harrison, D.J., & Rajotte, R.V. (1994). A miniaturized Nafion-based glucose sensor – in vitro and in vivo evaluation in dogs. International Journal of Artificial Organs, 17, 88–94.

    CAS  PubMed  Google Scholar 

  • Nagayasu, A., Uchiyama, K., & Kiwada, H. (1999). The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Advanced Drug Delivery Reviews, 40, 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Naji, A. & Harmand, M.F. (1991). Cytocompatibility of two coating materials, amorphous alumina and silicon carbide, using human differentiated cell cultures. Biomaterials, 12, 690–4.

    Article  CAS  PubMed  Google Scholar 

  • Neerman, M.F., Zhang, W., Parrish, A.R., & Simanek, E.E. (2004). In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. International Journal of Pharmaceutics, 281, 129–32.

    Article  CAS  PubMed  Google Scholar 

  • Nordsletten, L., Hogasen, A.K.M., Konttinen, Y.T., Santavirta, S., Aspenberg, P., & Aasen, A.O. (1996). Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. Biomaterials, 17, 1521–7.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, P., Bermejo, J.F., Chonco, L., de Jesus, E., de la Mata, F.J., Fernandez, G., Flores, J.C., Gomez, R., Serramia, M.J., & Munoz-Fernandez, M.A. (2006). Novel water-soluble carbosilane dendrimers: synthesis and biocompatibility. European Journal of Inorganic Chemistry, 7, 1388–96.

    Article  Google Scholar 

  • Papra, A., Bernard, A., Juncker, D., Larsen, N.B., Michel, B., & Delamarche, E. (2001). Microfluidic networks made of poly(dimethylsiloxane), Si, and Au coated with polyethylene glycol for patterning proteins onto surfaces. Langmuir, 17, 4090–5.

    Article  CAS  Google Scholar 

  • Patri, A.K., Kukowska-Latallo, J.F., & Baker Jr., J.R. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews, 57, 2203–14.

    Article  CAS  PubMed  Google Scholar 

  • Plank, C., Mechtler, K., Szoka, F.C., & Wagner, E. (1996). Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Human Gene Therapy, 7, 1437–46.

    Article  CAS  PubMed  Google Scholar 

  • Richards Grayson, A.C., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y., Cima, M.J., & Langer, R. (2004). A bioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the Institute of Electrical and Electronics Engineers, 92, 6–21.

    Google Scholar 

  • Roberts, J.C., Bhalgat, M.K., & Zera, R.T. (1996). Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. Journal of Biomedical Materials Research, 30, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Schatzlein, A.G., Zinselmeyer, B.H., Elouzi, A., Dufes, C., Chim, Y.T.A., Roberts, C.J., Davies, M.C., Munro, A., Gray, A.I., & Uchegbu, I.F. (2005). Preferential liver gene expression with polypropyleneimine dendrimers. Journal of Controlled Release, 101, 247–58.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Popat, K.C., & Desai, T.A. (2002). Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly(ethylene glycol) films. Langmuir, 18, 8728–31.

    Article  CAS  Google Scholar 

  • Sohrabi, A., Holland, C., Kue, R., Nagle, D., Hungerford, D.S., & Frondoza, C.G. (2000). Proinflammatory cytokine expression of IL-1β and TNF-α by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro. Journal of Biomedical Materials Research, 50, 43–9.

    Article  CAS  PubMed  Google Scholar 

  • Stoldt, C.R. & Bright, V.M. (2006). Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems. Journal of Applied Physics D: Applied Physics, 39, R163–70.

    Article  CAS  Google Scholar 

  • Tokachichu, D.R. & Bhushan, B. (2006). Bioadhesion of polymers for bioMEMS. Institute of Electrical and Electronics Engineers Transactions on Nanotechnology, 5, 228–31.

    Google Scholar 

  • Tomalia, D.A., Naylor, A.M., & Goddard, W.A. (1990). Starburst dendrimers – molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition-England, 29, 138–175.

    Article  Google Scholar 

  • United States Food and Drug Administration. (1995). Required Biocompatibility Training and Toxicology Profiles for Evaluation of Medical Device. Retrieved October 20, 2006, from http://www.fda.gov/cdrh/g951.html.

  • Voskerician, G., Shive, M.S., Shawgo, R.S., von Recum, H., Anderson, J.M., Cima, M.J., & Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 24, 1959–67.

    Google Scholar 

  • Wan, H., Williams, R.L., Doherty, P.J., & Williams, D.F. (1994). Cytotoxicity evaluation of Kevlar and silicon carbide by MTT assay. Journal of Materials Science-Materials in Medicine, 5, 441–5.

    Article  CAS  Google Scholar 

  • Wan, G.J., Yang, P., Shi, X.J., Wong, M., Zhou, H.F., Huang, N., & Chu, P.K. (2005). In vitro investigation of hemocompatibility of hydrophilic SiNx:H films fabricated by plasma-enhanced chemical vapor deposition. Surface & Coatings Technology, 200, 1945–9.

    Article  CAS  Google Scholar 

  • Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., & Bizios, R. (2000). Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Materials Research, 51, 475–83.

    Article  CAS  PubMed  Google Scholar 

  • Weisenberg, B.A. & Mooradian, D.L. (2002). Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. Journal of Biomedical Materials Research, 60, 283–91.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, N. & Reichert, M. (2000). Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B-Biointerfaces, 18, 197–219.

    Article  CAS  Google Scholar 

  • Woodle, M.C. & Scaria, P. (2001). Cationic liposomes and nucleic acids. Current Opinion in Colloid & Interface Science, 6, 78–84.

    Article  CAS  Google Scholar 

  • Yang, H. & Kao, W.J. (2006). Dendrimers for pharmaceutical and biomedical applications. Journal of Biomedical Materials Research-Polymer Edition, 17, 3–19.

    CAS  Google Scholar 

  • Yoo, H. & Juliano, R.L. (2000). Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Research, 28, 4225–31.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Jiang, J., Qin, C., Perez, L.M., Parrish, A.R., Safe, S.H., & Simanek, E.E. (2003). Triazine dendrimers for drug delivery: evaluation of solubilization properties, activity in cell culture, and in vivo toxicity of a candidate vehicle. Supramolecular Chemistry, 15, 607–16.

    Article  Google Scholar 

  • Zhu, Z., Zhang, J., & Zhu J. (2005). An overview of Si-based biosensors. Sensor Letters, 3, 71–88.

    Article  CAS  Google Scholar 

  • Ziaie, B., Baldi, A., Lei, M., Gu, Y., & Siegel, R.A. (2004). Hard and soft micromachining for bioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews, 56, 145–72.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman, S., Fienbork, D., Flounders, A.W., & Liepmann, D. (2004). In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sensors and Actuators B-Chemical, 99, 163–73.

    Article  Google Scholar 

  • Zinselmeyer, B.H., Mackay, S.P., Schatzlein, A.G., & Uchegbu, I.F. (2002). The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharmaceutical Research, 19, 960–7.

    Article  CAS  PubMed  Google Scholar 

  • Zuruzi, A.S., Butler, B.C., MacDonald, N.C., & Safinya, C.R. (2006). Nanostructured TiO2 thin films as porous cellular interfaces. Nanotechnology, 17, 531–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Zuckerman, S.T., Kao, W.J. (2009). Nanomaterials and Biocompatibility: BioMEMS and Dendrimers. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_7

Download citation

Publish with us

Policies and ethics