Nanotechnology-Based Biosensors in Drug Delivery

  • Guigen Zhang
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Traditional drug delivery vehicles are passive devices functioning mainly through a diffusion process in which the release of drugs is controlled either by the rate of diffusion through the pores of the drug carriers or by the rate of degradation of the carrier matrices. This passive process lacks the mechanism for a constant and on-demand means to administer drug delivery as needed. This has led to inability to deliver therapeutic moieties that can selectively reach the desired targets with marginal or no collateral damage to the normal organs and tissues (Ferrari, 2005).

Over the years, progresses have been made to improve the situation, specifically in ways to guide the accumulation of the drug delivery vehicles to desired sites and control the release mechanism (Barratt et al., 2002). For example, as a first generation of drug delivery systems, micro-capsules are often used for controlled release of proteins, peptides, or drugs within the body. Although they are...


Current Response Surface Acoustic Wave Sensitive Element Evanescent Wave Potentiometric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks to my students Y.L. Rao, V. Anandan, X. Yang, R. Cai, X. Tang and postdoctoral fellow S.J. Lee for their contributions to the work discussed here. The financial supports from the National Science Foundation, the University of Georgia Research Foundation, the Faculty of Engineering and the College of Agricultural and Environmental Science at The University of Georgia are acknowledged.


  1. Aboubakar, M., Couvreur, P., Pinto-Alphandary, H. & Couritin, B. (2000). Drug Dev Res, 49, 109–117.CrossRefGoogle Scholar
  2. Alivisatos P. (2004). The use of nanocrystals in biological detection, Nature Technology, 22, 1, 47–52.CrossRefGoogle Scholar
  3. Anandan, A., Rao, Y. L. & Zhang, G. (2005). Nanopillar arrays with superior mechanical strength and optimal spacing for high sensitivity biosensors. Proceedings of Nanotech, 217–220.Google Scholar
  4. Anandan, V., Rao, Y. L. & Zhang, G. (2006). Nanopillar Array Structures for Enhancing Biosensing Performance, Int J Nanomedicine 1(1), 73–79.CrossRefGoogle Scholar
  5. Anandan, V., Yang, X., Kim, E., Rao, Y.L. & Zhang, G. (2007). Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes, Journal of Biological Engineering, 1–5.Google Scholar
  6. Aoki, K. (1990). Approximate Models of Interdigitated Array Electrodes for Evaluating Steady-State Currents. J Electroanal Chem, 284, 35–42.CrossRefGoogle Scholar
  7. Arrigan, D. W. M. (2004). Nanoelectrodes, nanoelectrode arrays and their applications, Analyst, 129, 1157–1165.CrossRefPubMedGoogle Scholar
  8. Bard, A. & Faulkner, L. (2001). Electrochemical Methods: Fundamentals and Applications, 2nd Edition, New York: John Wiley and Sons.Google Scholar
  9. Barratt, G., Courraze, G., Couvreur, P. & Dubernet, C. (2002). Polymeric Materials, (Dumitriu, S., Ed). Dekker, New York, 753–782.Google Scholar
  10. Bashir, R. (2004). BioMEMS: state-of-the-art in detection, opportunities and prospects, Adv Drug Deliv Rev 56, 1–22.CrossRefGoogle Scholar
  11. Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E. & Guntherodt, H. J. (1997). Surface stress in the self-assembly of alkanethiols on gold, Science 276, 2021–2023.CrossRefGoogle Scholar
  12. Besteman, K., Lee, J. L., Wiertz, F. G. M., Heering, H. A. & Dekker, C. (2003). Nano Lett 3, 727.CrossRefGoogle Scholar
  13. Bharathi, S. & Nogami, M. (2001). A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst 126, 1919–1922.CrossRefPubMedGoogle Scholar
  14. Borkholder, D. A., Bao, J., Maluf, N. I., Perl., E. R. & Kovacs, G. T. A. (1997). Microelectrode arrays for stimulation of neural slice preparations, J Neurosci Methods 77(1), 61–66.CrossRefPubMedGoogle Scholar
  15. Bousse, L. (1996). Whole cell biosensors, Sensors and Actuators, B Chem B34, 1–3, 270–275.Google Scholar
  16. Cai, H.L., Lee, H., Hsing, T. M., & Ming, I. (2006). Label-free protein recognition using an aptamer-based impedance measurement assay, Sens. Actuators, B, Chem 114, 433–437.CrossRefGoogle Scholar
  17. Calvo, E. J & Wolosiuk, A. (2004). Supramolecular Architectures of Electrostatic Self-Assembled Glucose Oxidase Enzyme Electrodes, Chem Phys Chem 5, 235–239.PubMedGoogle Scholar
  18. Carrion-Vazquez, M., Oberhauser, A. F., Fowler, S. B., Marszalek, P. E., Broedel, S. E., Clarke, J. & Fernandez, M. J. (1999). Mechanical and chemical unfolding of a single protein: A comparison, Biophysics 96, 3694–3699.Google Scholar
  19. Chen, R. J., Bangsaruntip, S. & Dai, H. (2003). Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, PANS 100, 4984–4989.CrossRefGoogle Scholar
  20. Chen, R. J., Choi, H. C. & Dai, H. (2004) An investigation of the mechanism of electronic sensing of protein adsorption on carbon nanotube devices, JACS 126, 1563–1568.CrossRefGoogle Scholar
  21. Chen, S. & Kucernak, A. (2002). The Voltammetric Response of Nanometer-Sized Carbon Electrodes, J Phys Chem B 106, 9396–9404.CrossRefGoogle Scholar
  22. Cherian, S., Gupta, R. K., Mullin, B. C. & Thundat, T. (2003). Detection of heavy metal ions using protein-functionalized microcantilever sensors, Biosens Bioelectron 19, 41–46.CrossRefGoogle Scholar
  23. Cia, X., Klauke, N., Glidle, A.,Cobbold, P., Smith, G. L. & Cooper J. M. (2002). Ultra-low-volume, real-time measurements of lactate from the single heart cell using Microsystems technology, Anal Chem 74(4), 908–914.CrossRefGoogle Scholar
  24. Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292.CrossRefPubMedGoogle Scholar
  25. Damage, C., Vonderscher, J., Marbach, P. & Pinget, M. (1997). Pharm Res 18, 949–954.Google Scholar
  26. Davis, Z. J., Abadal, G., Kuhn, O., Hansen, O., Grey, F. & Boisen, A. (2002). Fabrication and characterization of nanoresonating devices for mass detection, J Vac Sci Technol B 18(2), 612–616.CrossRefGoogle Scholar
  27. Drummond, T. G., Hill, M. G. & Barton, J. K. (2003). Nature Biotechnology 21, 1192–1199.CrossRefPubMedGoogle Scholar
  28. D’Souza, S. F. (2001). Biosens Bioelectron 16, 337–353.CrossRefPubMedGoogle Scholar
  29. Emery, S. R., Haskins, W. E. & Nie, S. (1998). J Am Chem Soc 120, 8009.CrossRefGoogle Scholar
  30. Fan, J. G., Dyer, D., Zhang, G. & Zhao, Y. P. (2004). Nanocarpet effect: pattern formation during wetting of vertically aligned nanorod arrays. Nanoletters 4, 2133–2138.Google Scholar
  31. Fernandez-Urrusuno, R., Calvo, P, Remunan-Lopez, C. & Vila-Jato, J. L. (1999). Pharm Res 16, 1576–1581.CrossRefPubMedGoogle Scholar
  32. Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges, Nat Rev 5, 161–171.Google Scholar
  33. Fritz, J., Cooper, E. B., Gaudet, S., Sorger, P. K., & Manalis, S. R. (2002). Electronic detection of DNA by its intrinsic molecular charge, PNAS 99, 14142–14146.CrossRefPubMedGoogle Scholar
  34. Gasparac, R., Taft, B.J., Lapierre-Devlin, M.A., Lazareck, A.D., Xu, J.M. & Kelley S.O. (2004). Ultrasensitive electrocatalytic DNA detection at two and three dimensional nanoelectrodes. J Am Chem Soc 126, 12270–12271.CrossRefPubMedGoogle Scholar
  35. He, R., Chen, S., Yang, F., & Wu, B. (2006). Dynamic Diffuse Double-Layer Model for the Electrochemistry of Nanometer-Sized Electrodes. J Phys Chem B 110, 3262–3270.CrossRefPubMedGoogle Scholar
  36. Headrick, J. J., Sepaniak, M. J., Lavrik, N. V. & Datskos, P. G. (2003). Enhancing chemi-mechanical transduction in microcantilever chemical sensing by surface modification, Ultramicroscopy 97, 417–424.CrossRefPubMedGoogle Scholar
  37. Hintsche, R., Moller, B., Dransfeld, I., Wollenberger, U., Scheller, F. & Hoffmann, B. (1991). Chip biosensors on thin-film metal electrodes, Sens Actuators, B Chem B4 (3–4), 287–291.CrossRefGoogle Scholar
  38. Hintsche, R., Kruse, Ch., Uhlig, A., Paeschke, M., Lisec, T., Schnakenberg, U. & Wager, B. (1995). Chemical microsensor systems for medical applications in catheters, Sens Actuators, B Chem B27 (1–3), 471–473.Google Scholar
  39. Jeng, P., Yamaguchi, F., Oi, F. & Matsuo, F. (2001). Glucose Sensing Based Interdigitated Array Microelectrode. Anal Sci 17, 841–846.CrossRefGoogle Scholar
  40. Knight, C. G. (1981). Liposomes from physical structure to therapeutic applications, Elsevier, Amsterdam.Google Scholar
  41. Koehne, J., Li, J., Cassel, A. M., Chen, H., Ye, Q., Ng, H. T., Han, J. & Meyyappan, M. (2004). The Fabrication and Electrochemical Characterization of Carbon nanotube Nanoelectrode Arrays. J Mater Chem 14, 676–684.CrossRefGoogle Scholar
  42. Kralchevsky, P. A. & Nagayama, K. (2000). Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv colloid interface sci 85, 145–192.CrossRefPubMedGoogle Scholar
  43. Krug, J. T., Wang, G. D., Emory, S. R. & Nie, S. (1999), J Am Chem Soc 121, 9208.CrossRefGoogle Scholar
  44. Kubik, T., Bogunia-Kubik, K. & Sugisaka, M. (2005). Nanotechnology on duty in medical applications, Curr Pharm Biotechnol 6, 17–33.PubMedGoogle Scholar
  45. Lau, K. K. S., Bico, J. & Teo, K. B. K. (2003). Superhydrophobic carbon nanotube forests. Nanoletters 3, 1701–1705.Google Scholar
  46. Laureyn, W., Nelis, D., Gerwen, P., Baert, K., Hermans, L., Magnée, R., Pireaux, J., & Maes, G. (2000). Nanoscaled interdigitated titanium electrodes for impedimetric biosensing, Sens. Actuator, B, chem 68, 360–370.CrossRefGoogle Scholar
  47. Lee, S. J., Anandan, V. & Zhang, G. (2008). Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system, Biosensors and Bioelectronics, 1117–1124.Google Scholar
  48. Liu, X. & Tan, W. (1999). A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons, Anal Chem 71, 5054–5059.CrossRefPubMedGoogle Scholar
  49. Ma, K., Zhou, H., & Zoval, Z. (2006). DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy, Sens. Actuators, B, Chem 114, 58–64.Google Scholar
  50. Marrazza, G., Chianella, I. & Mascini, M. (1999). Biosens Bioelectron 14, 43–51.CrossRefGoogle Scholar
  51. Martynov, G. A. & Salem, R. R. (1983). Electrical double layer at a metal-dilute electrolyte solution interface, New York: Springer-Verlag Berlin Heidelberg.Google Scholar
  52. Mertens, J., Finota, E., Thundat, T., Fabrea, A., Nadal, M. H., Eyraud, V. & Bourillota, E. (2003). Effects of temperature and pressure on microcantilever resonance response, Ultramicro 97, 119–126.CrossRefGoogle Scholar
  53. Mirkin, R. B., Fan, F. R. F. & Bard, A. J. (1990). Evaluation of the Tip Shapes of Nanometer Size Microelectrodes, J Electroanal Chem 328, 47–62.CrossRefGoogle Scholar
  54. Moerner, W. E. & Orrit, M. (1999). Illuminating single molecules in condensed matter, Science 283, 1670–1676.CrossRefPubMedGoogle Scholar
  55. Morris, R. B., Franta, D. J. & White, H. S. (1987). Electrochemistry at Pt Electrodes of Width Approaching Molecular Dimensions. Breakdown of Transport Equations at Very Small Electrodes, J Phys Chem 91, 3559–3564.CrossRefGoogle Scholar
  56. Moskovits, M. (2005). Surface-enhanced raman spectroscopy: a brief retrospective, J Raman Spectroscopy 36, 485–496.CrossRefGoogle Scholar
  57. Nie, S. & Zare, R. N. (1997). Optical detection of single molecules, Ann Rev Biophys Biomol Struct 26, 567–596.CrossRefGoogle Scholar
  58. Niwa, O., Morita, M. & Tabei, H. (1990). Electrochemical Behavior of Reversible Redox Species at Interdigitated Array Electrodes With Different Geometries Consideration of Redox Cycling and Collection Efficiency. Anal Chem 62 (5): 447–452.CrossRefGoogle Scholar
  59. Paeschke, M., Wollenberger, U., Kiihler, C., Lisec, T., Schnakenberg, U. & Hintsche, R. (1995). Properties of Interdigital Electrode Arrays With Different Geometries. Analytica Chimica Acta 305, 126–136.CrossRefGoogle Scholar
  60. Pancrazio, J. J., Bey, P. P., Cuttino, D. S., Kusel, J. K., Borkholder, D. A., Shaffer, K. M., Kovacs, G. T. A. & Stenger, D. A. (1998). Portable cell-based biosensor system for toxin detection, Sens Actuators, B. Chem 53(3), 179–185.CrossRefGoogle Scholar
  61. Phillips, C. & Stone, H. (1997). Theoretical Calculation of Collection Efficiencies for Collector-Generator Microelectrode Systems. J Electroanal Chem 437, 157–165.CrossRefGoogle Scholar
  62. Popovich, N. D. & Thorp, H. H. (2002). New Strategies for Electrochemical Nucleic Acid Detection, Interface 11(4), 30–34.Google Scholar
  63. Porter, T. L., Eastman, M. P., Macomber, C., Delinger, W. G., & Zhine, R. (2003). An embedded polymer piezoresistive microcantilever sensor, Ultramicroscopy 97, 365–369.CrossRefPubMedGoogle Scholar
  64. Powers, M. J., Domansky, K. & Griffith, L. G. (2002). A microfabricated array bioreactor for perfused 3D liver culture, Biotechnol Bioeng 78, 3, 257–269.CrossRefPubMedGoogle Scholar
  65. Rao, L. R., Anandan, V. & Zhang, G. (2005). FFT Analysis of Pore Pattern in Anodized Alumina Formed at Various Conditions, Journal of Nanoscience and Nanotechnology, Vol. 2, No. 12, 2070–2075.CrossRefGoogle Scholar
  66. Rao, L. R. & Zhang, G. (2006). Enhancing the Sensitivity of SAW Sensors with Nanostructures, Current Nanoscience 2(4), 311–318.CrossRefGoogle Scholar
  67. Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. (2004). Biomaterials Science, 2nd Edition, Academic Press.Google Scholar
  68. Reining-Mack, A., Thielecke, H. & Robitzki, A. A. (2002). Trends Biotechol 20, 56–61.CrossRefGoogle Scholar
  69. Rider, T. H., Petrovick, M. S. & Hollis, M. A. (2003). A B-cell based sensor for rapid identification of pathogens, Science 301, 213–215.CrossRefPubMedGoogle Scholar
  70. Sawant, R. M., Hurly, J. P., Salmaso, S. & Torchilin, V. P. (2006). “Smart” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers, Bioconjugate Chem 17, 943–949.CrossRefGoogle Scholar
  71. Seibold, J. D., Scott, E. R. & White, H. S. (1989). Diffusion Transport to Nanoscopic Band Electrodes, J Electroanal Chem 264, 281–289.CrossRefGoogle Scholar
  72. Sepaniak, M., Datskos, P., Lavrik, N. & Tipple, C. (2002). Microcantilever Transducers: A New Approach in Sensor Technology, Anal Chem 1, 568A–575A.Google Scholar
  73. Sosnowski, R. G., Tu, E., Butler, W. F., O’Connell, J. P. & Heller, M. J. (1997). Rapid Determination of Single Base Mismatch in DNA Hybrids by Direct Electrical Field Control. PNAS 94, 1119–1123.CrossRefPubMedGoogle Scholar
  74. Stenger, D. A., Gross, G. W., Keefer, E. W., Shaffer, K. M., Andreadis, J. D., Ma, W. & Pancrazio, J. J. (2001). Detection of physiologically active compounds using cell-based biosensors, Trends Biotech 19(8), 304–309.CrossRefGoogle Scholar
  75. Stoney, G. G. (1909). Proc R Soc London, serial A, 82, 172–277.Google Scholar
  76. Strutwolf, J. & Willams, D. (2005). Electrochemical Sensor Design Using Coplanar and Elevated Interdigitated Array Electrodes. A computational Study. Electroanalysis 17 (2): 169–177.CrossRefGoogle Scholar
  77. Sun, E. Y., Josephson, L., Kelly, K. A. & Weissleder, R. (2006). Development of nanoparticle libraries for biosensing, Bioconjugate Chem 17, 109–113.CrossRefGoogle Scholar
  78. Tang, X. J, Zhang, G. & Zhao, Y. P. (2006). Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition, Nanotechnology 17, 4439–4444.CrossRefGoogle Scholar
  79. Thielecke, H., Mack, A. & Robizki, A. (2001). Anal Bioanal Chem 369, 23–29.Google Scholar
  80. Thundat, T., Wachter, E. A., Sharp, S.L. & Warmack, R. J. (1995). Appl Phys Let 66, 1695–1697.CrossRefGoogle Scholar
  81. Umek, R., Lin, M., Vielmetter, S. W. & Chen, D. H. (2001). Chem Mol Diagn 3, 74–84.Google Scholar
  82. Vo-Dinh, T. & Cullum, B. (2000). Biosensors and biochips: advances in biological and medical diagnostics, J Anal Chem 366, 540–551.Google Scholar
  83. Wang, J. & Mustafa, M. (2004). Carbon nanotube screen-printed electrochemical sensors. Analyst 129, 1–2.CrossRefPubMedGoogle Scholar
  84. Winkler, K. (1995). The kinetics of electron transfer in Fe (CN)6 4–/3– redox system on platinum standard-size and ultramicroelectrodes, J Electroanal Chem 388, 151–159.CrossRefGoogle Scholar
  85. Wickline, S. A. & Lanza, G. M. (2003). Nanotechnology for molecular imaging and target therapy, Circulation 107,1092–1095.CrossRefPubMedGoogle Scholar
  86. Wu, G. H., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J. & Majumdar, A. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat Biotechnol 19, 856–860.CrossRefPubMedGoogle Scholar
  87. Yang, L., Li, Y., & Erf, G. F. (2004). Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7, Anal. Chem 76, 1107–1113.CrossRefPubMedGoogle Scholar
  88. Yang, X. & Zhang, G. (2005). Diffusion-Controlled Diffusion-Controlled Redox Cycling at Nanoscale Interdigitated Electrodes, Proceedings of the COMSOL Multiphysics Conference, 285–290.Google Scholar
  89. Yang, X. & Zhang, G. (2006) Effect of Electron Transfer Rate on the Electrochemical Process of Interdigitated Electrodes, Proceedings of the COMSOL Conference, 233–238.Google Scholar
  90. Yang, X. & Zhang, G. (2007) The Voltammetric Performance of Interdigitated Electrodes with Different Electron-Transfer-Rate Constants, Sens. Actuators, B 126, 624–631.Google Scholar
  91. Yemini, M., Reches, M. & Rishpon, J. (2005). Novel electrochemical biosensing platform using self assembled peptide nanotube. Nanoletters 5, 183–186.Google Scholar
  92. Zhang, G. & Gilbert, J. L, (2004). A New Method for Real-Time and In-Situ Characterization of the Mechanical and Material Properties of Biological Tissue Constructs, Tissue Engineered Medical Products (TEMPs), ASTM STP 1452, Picciolo and Schutte Eds., 120–133.Google Scholar
  93. Zhang, G. (2005). Evaluating the Viscoelastic Properties of Biological Tissues in a New Way. Journal of Musculoskelet Neuronal Interact 5(1), 85–90.Google Scholar
  94. Zhu, H. & Snyder, M. (2003). Curr Opin Chem Biol 7, 55–63.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Guigen Zhang
    • 1
  1. 1.Faculty of EngineeringThe University of GeorgiaAthensUSA

Personalised recommendations