Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems

  • Anja Judefeind
  • Melgardt M. de Villiers
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Drug Release Dissolution Rate Drug Loading Entrapment Efficiency Polymeric Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aliabadi, H.M., & Lavasanifar, A. (2006). Polymeric micelles for drug delivery. Expert Opin. Drug Deliv., 3, 139–162.PubMedGoogle Scholar
  2. Aliabadi, H.M., Elhasi, S., Mahmud, A., Gulamhusein, R., Mahdipoor, P., & Lavasanifar, A. (2007). Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int. J. Pharm., 329, 158–165.PubMedGoogle Scholar
  3. Allemann, E., Gurny, R., & Doelker, E. (1993). Drug-loaded nanoparticles. Preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 39, 173–191.Google Scholar
  4. Amir, R.J., & Shabat, D. (2006). Domino dendrimers. Adv. Polym. Sci., 192, 59–94.Google Scholar
  5. Anderberg, E.K., Bisrat, M., & Nyström, C. (1988). Physicochemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of felodipine, a sparingly soluble drug. Int. J. Pharm., 47, 67–77.Google Scholar
  6. Asthana, A., Chauhan, A.S., Diwan, P.V., & Jain, N.K. (2005). Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 6, Article 67, E536–542.PubMedGoogle Scholar
  7. Bala, I., Hariharan, S., & Kumar, M.N.V.R. (2004). PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carr. Syst., 21, 387–422.Google Scholar
  8. Bapat, N., & Boroujerdi, M. (1992). Uptake capacity and adsorption isotherms of doxorubicin on polymeric nanoparticles: effect of methods of preparation. Drug Dev. Ind. Pharm., 18, 65–77.Google Scholar
  9. Beckstein, O., & Sansom, M.S.P. (2004a). The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol., 1, 42–52.Google Scholar
  10. Beckstein, O., Tai, K., & Sansom, M.S.P. (2004b). Not ions alone: barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc., 126, 14694–14695.Google Scholar
  11. Bhadra, D., Bhadra, S., & Jain, N.K. (2006). PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res., 23, 623–633.PubMedGoogle Scholar
  12. Bhattarai, N., Ramay, H.R., Chou, S.H., & Zhang, M. (2006). Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int. J. Nanomed., 1, 181–187.Google Scholar
  13. Bilati, U., Allémann, E., & Doelker, E. (2005). Protein drugs entrapped within micro- & nanoparticles: an overview of therapeutic challenges & scientific issues. Drug Deliver. Technol., 5, 40–47.Google Scholar
  14. Bisrat, M., & Nyström, C. (1988). Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int. J. Pharm., 47, 223–231.Google Scholar
  15. Bisrat, M., Anderberg, E.K., Barnett, M.I., & Nyström, C. (1992). Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int. J. Pharm., 80, 191–201.Google Scholar
  16. Boonsongrit, Y., Mitrevej, A., & Müller, B.W. (2006). Chitosan drug binding by ionic interaction. Eur. J. Pharm. Biopharm., 62, 267–274.PubMedGoogle Scholar
  17. Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., & Wood, S. (2006). Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci., 90, 23–32.PubMedGoogle Scholar
  18. Calvo, P., Vila-Jato, J.L., & Alonso, M.J. (1996). Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J. Pharm. Sci., 85, 530–536.PubMedGoogle Scholar
  19. Chandrasekar, D., Sistla, R., Ahmad, F.J., Khar, R.K., & Diwan, P.V. (2007). The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials, 28, 504–512.PubMedGoogle Scholar
  20. Charalampopoulos, N., Avgoustakis, K., & Kontoyannis, C.G. (2003). Differential pulse polarography: a suitable technique for monitoring drug release from polymeric nanoparticle dispersions. Anal. Chim. Acta, 491, 57–62.Google Scholar
  21. Chen, V.J., & Ma, P.X. (2006). The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams. Biomaterials, 27, 3708–3715.PubMedGoogle Scholar
  22. Chorny, M., Fishbein, I., Danenberg, H.D., & Golomb, G. (2002). Study of the drug release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods. J. Control. Release, 83, 401–414.PubMedGoogle Scholar
  23. Couvreur, P., Barratt, G., Fattal, E., Legrand, P., & Vauthier, C. (2002). Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carr. Syst., 19, 99–134.Google Scholar
  24. Crisp, M.T., Tucker, C.J., Rogers, T.L., Williams, R.O., & Johnston, K.P. (2007). Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J. Control. Release, 117, 351–359.PubMedGoogle Scholar
  25. Cruz, L., Soares, L.U., Costa, T.D., Mezzalira, G., da Silveira, N.P., Guterres, S.S., & Pohlmann, A.R. (2006). Diffusion and mathematical modeling of release profiles from nanocarriers. Int. J. Pharm., 313, 198–205.PubMedGoogle Scholar
  26. De Geest, B.G., Sanders, N.N., Sukhorukov, G.B., Demeester, J., & De Smedt, S.C. (2007). Release mechanisms for polyelectrolyte capsules. Chem. Soc. Rev., 36, 636–649.PubMedGoogle Scholar
  27. D’Emanuele, A., & Attwood, D. (2005). Dendrimer-drug interactions. Adv. Drug Deliver. Rev., 57, 2147–2162.Google Scholar
  28. Dhanikula, R.S., & Hildgen, P. (2006). Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconjugate Chem., 17, 29–41.Google Scholar
  29. D’Souza, S.S., & DeLuca, P.P. (2006). Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res., 23, 460–474.PubMedGoogle Scholar
  30. Dutta, T., Agashe, H.B., Garg, M., Balasubramanium, P., Kabra, M., & Jain, N.K. (2007). Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target., 15, 89–98.PubMedGoogle Scholar
  31. Fontana, G., Pitarresi, G., Tomarchio, V., Carlisi, B., & San Biagio, P.L. (1998). Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials, 19, 1009–1017.PubMedGoogle Scholar
  32. Gaber, N.N., Darwis, Y., Peh, K.-K., & Tan, Y.T.-F. (2006). Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J. Nanosci. Nanotechnol., 6, 3095–3101.PubMedGoogle Scholar
  33. Galli, C. (2006). Experimental determination of the diffusion boundary layer width of micron and submicron particles. Int. J. Pharm., 313, 114–122.PubMedGoogle Scholar
  34. Gaspar, M.M., Blanco, D., Cruz, M.E.M., & Alonso, M.J. (1998). Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release, 52, 53–62.Google Scholar
  35. Govender, T., Stolnik, S., Garnett, M.C., Illum, L., & Davis, S.S. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release, 57, 171–185.PubMedGoogle Scholar
  36. Govender, T., Riley, T., Ehtezazi, T., Garnett, M.C., Stolnik, S., Illum, L., & Davis, S.S. (2000). Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm., 199, 95–110.PubMedGoogle Scholar
  37. Gref, R., Quellec, P., Sanchez, A., Calvo, P., Dellacherie, E., & Alonso, M.J. (2001). Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol) PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm., 51, 111–118.PubMedGoogle Scholar
  38. Gupta, U., Agashe, H.B., Asthana, A., & Jain, N.K. (2006). Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules, 7, 649–658.PubMedGoogle Scholar
  39. Guy, R.H., Hadgraft, J., Kellaway, I.W., & Taylor, M.J. (1982). Calculations of drug release rates from spherical particles. Int. J. Pharm., 11, 199–207.Google Scholar
  40. Heiati, H., Tawashi, R., Shivers, R.R., & Phillips, N.C. (1997). Solid lipid nanoparticles as drug carriers I. Incorporation and retention of the lipophilic prodrug 3’-azido-3’-deoxythymidine palmitate. Int. J. Pharm., 146, 123–131.Google Scholar
  41. Heywood, H. (1954). Particle shape coefficients. J. Imp. Coll. Chem. Eng. Soc., 8, 25–33.Google Scholar
  42. Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 52, 1145–1149.PubMedGoogle Scholar
  43. Hixson, A.W., & Crowell, J.H. (1931). Dependence of reaction velocity upon surface and agitation. I. Theoretical considerations. J. Ind. Eng. Chem., 23, 923–931.Google Scholar
  44. Hu, F.-Q., Jiang, S.-P., Du, Y.-Z., Yuan, H., Ye, Y.-Q., & Zeng, S. (2006). Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm., 314, 83–89.PubMedGoogle Scholar
  45. Huo, Q., Liu, J., Wang, L.-Q., Jiang, Y., Lambert, T.N., & Fang, E. (2006). A new class of silica cross-linked micellar core-shell nanoparticles. J. Am. Chem. Soc., 128, 6447–6453.PubMedGoogle Scholar
  46. Illum, L., Khan, M.A., Mak, E., & Davis, S.S. (1986). Evaluation of carrier capacity and release characteristics for poly(butyl 2-cyanoacrylate) nanoparticles. Int. J. Pharm., 30, 17–28.Google Scholar
  47. Jenning, V., Thünemann, A.F., & Gohla, S.H. (2000). Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 199, 167–177.PubMedGoogle Scholar
  48. Jette, K.K., Law, D., Schmitt, E.A., & Kwon, G.S. (2004). Preparation and drug loading of poly(ethylene glycol)-block-poly(ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm. Res., 21, 1184–1191.PubMedGoogle Scholar
  49. Jiang, B., Hu, L., Gao, C., & Shen, J. (2005). Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int. J. Pharm., 304, 220–230.PubMedGoogle Scholar
  50. Jo, Y.S., Kim, M.-C., Kim, D.K, Kim, C.-J., Jeong, Y.-K., Kim, K.-J., & Muhammed, M. (2004). Mathematical modelling on the controlled-release of indomethacin-encapsulated poly(lactic acid-co-ethylene oxide) nanospheres. Nanotechnology, 15, 1186–1194.Google Scholar
  51. Johnston, A.P.R., Cortez, C., Angelatos, A.S., & Caruso, F. (2006). Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci., 11, 203–209.Google Scholar
  52. Knapp, L.F. (1922). The solubility of small particles and the stability of colloids. Trans. Faraday Soc., 17, 457–465.Google Scholar
  53. Kojima, C., Kono, K., Maruyama, K., & Takagishi, T. (2000). Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem., 11, 910–917.Google Scholar
  54. Kolhe, P., Misra, E., Kannan, R.M., Kannan, S., & Lieh-Lai, M. (2003). Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm., 259, 143–160.PubMedGoogle Scholar
  55. Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh-Lai, M., Kannan, R.M. (2006). Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 27, 660–669.PubMedGoogle Scholar
  56. Kostanski, J.W., & DeLuca, P.P. (2000). A novel in vitro release technique for peptide-containing biodegradable microspheres. AAPS PharmSciTech, 1, http://www.pharmscitech.com.
  57. Kumar, P.V., Asthana, A., Dutta, T., & Jain, N.K. (2006). Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target., 14, 546–556.PubMedGoogle Scholar
  58. Landry, F.B., Bazile, D.V., Spenlehauer, G., Veillard, M., & Kreuter, J. (1997). Release of the fluorescent marker Prodan from poly(D,L-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII). J. Control. Release, 44, 227–236.Google Scholar
  59. Lecaroz, C., Gamazo, C., Renedo, M.J., & Blanco-Prieto, M.J. (2006). Biodegradable micro- and nanoparticles as long-term delivery vehicles for gentamicin. J. Microencapsul., 23, 782–792.PubMedGoogle Scholar
  60. Lee, E.S., Na, K., & Bae, Y.H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release, 91, 103–113.PubMedGoogle Scholar
  61. Lee, J., Cho, E.C., & Cho, K. (2004). Incorporation and release behavior of hydrophobic drug in funtionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J. Control. Release, 94, 323–335.PubMedGoogle Scholar
  62. Lee, M.-K., Lim, S.-J., & Kim, C.-K. (2007). Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 28, 2137–2146.PubMedGoogle Scholar
  63. Leo, E., Scatturin, A., Vighi, E., & Dalpiaz, A. (2006). Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight. J. Nanosci. Nanotechnol., 6, 3070–3079.PubMedGoogle Scholar
  64. Lin, W.-J., Juang, L.-W., & Lin, C.-C. (2003). Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res., 20, 668–673.PubMedGoogle Scholar
  65. Liu, J., Lee, H., & Allen, C. (2006a). Formulation of drugs in block copolymer micelles: drug loading and release. Curr. Pharm. Design, 12, 4685–4701.Google Scholar
  66. Liu, H., Zhai, J., & Jiang, L. (2006b). Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2, 811–821.Google Scholar
  67. Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., & Yang, X. (2007). Isotretinoin-loaded solid lipid nanparticles with skin targeting for topical delivery. Int. J. Pharm., 328, 191–195.PubMedGoogle Scholar
  68. Lo, C.-L., Lin, K.-M., & Hsiue, G.-H. (2005). Preparation and characterization of intelligent core-shell nanoparticles based on poly(D,L-lactide)-g-poly (N-isopropylacrylamide-co-methacrylic acid). J. Control. Release, 104, 477–488.PubMedGoogle Scholar
  69. Lopes, E., Pohlmann, A.R., Bassani, V., & Guterres, S.S. (2000). Polymeric colloidal systems containing ethionamide: preparation and physico-chemical characterization. Pharmazie, 55, 527–530.PubMedGoogle Scholar
  70. Losa, C., Marchal-Heussler, L., Orallo, F., Vila Jato, J.L., & Alonso, M.J. (1993). Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm. Res., 10, 80–87.PubMedGoogle Scholar
  71. Maestrelli, F., Mura, P., & Alonso, M.J. (2004). Formulation and characterization of triclosan sub-micron emulsions and nanocapsules. J. Microencapsul., 21, 857–864.PubMedGoogle Scholar
  72. Manjunath, K., & Venkateswarlu, V. (2006). Pharmacokinetics, tissue distribution, and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Drug Target., 14, 632–645.PubMedGoogle Scholar
  73. Mayer, C. (2005). Nanocapsules as drug delivery systems. Int. J. Artif. Organs, 28, 1163–1171.PubMedGoogle Scholar
  74. Mihranyan, A., & Strømme, M. (2007). Solubility of fractal nanoparticles. Surf. Sci., 601, 315–319.Google Scholar
  75. Montana, G., Bondi, M.L., Carrotta, R., Picone, P., Craparo, E.F., San Biagio, P.L., Giammona, G., & Di Carlo, M. (2007). Employment of cationic solid-lipid nanoparticles as RNA carriers. Bioconjugate Chem., 18, 302–308.Google Scholar
  76. Mosharraf, M., & Nyström, C. (1995). The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int. J. Pharm., 122, 35–47.Google Scholar
  77. Müller, R.H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161–177.PubMedGoogle Scholar
  78. Müller, R.H., Radtke, M., & Wissing, S.A. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 242, 121–128.PubMedGoogle Scholar
  79. Noyes, A.A., & Whitney, W.R. (1897). The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc., 19, 930–934.Google Scholar
  80. Opanasopit, P., Ngawhirunpat, T., Chaidedgumjorn, A., Rojanarata, T., Apirakaramwong, A., Phongying, S., Choochottiros, C., & Chirachanchai, S. (2006). Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system. Eur. J. Pharm. Biopharm., 64, 269–276.PubMedGoogle Scholar
  81. Pandey, R., Ahmad, Z., Sharma, S., & Khuller, G.K. (2005). Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int. J. Pharm., 301, 268–276.PubMedGoogle Scholar
  82. Panyam, J., Dali, M.M., Sahoo, S.K., Ma, W., Chakravarthi, S.S., Amidon, G.L., Levy, R.J., & Labhasetwar, V. (2003). Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano-and microparticles. J. Control. Release, 92, 173–187.PubMedGoogle Scholar
  83. Patri, A.K., Kukowska-Latallo, J.F., & Baker, J.R., Jr. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliver. Rev., 57, 2203–2214.Google Scholar
  84. Peppas, N.A., & Robinson, D.N. (2007). Nanospheres of intelligent networks for biomedical and drug delivery applications. In N.A. Peppas, J.Z. Hilt, & J.B. Thomas (Eds.), Nanotechnology in Therapeutics (pp. 361–379). Wymondham: Horizon Bioscience.Google Scholar
  85. Pfeifer, B.A., Burdick, J.A., Little, S.R., & Langer, R. (2005). Poly(ester-anhydride):poly(β-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm., 304, 210–219.PubMedGoogle Scholar
  86. Pohlmann, A.R., Soares, L.U., Cruz, L., Da Silveira, N.P., & Guterres, S.S. (2004). Alkaline hydrolysis as a tool to determine the association form of indomethacin in nanocapsules prepared with poly(ε-caprolactone). Curr. Drug Deliv., 1, 103–110.PubMedGoogle Scholar
  87. Polakovič, M., Görner, T., Gref, R., & Dellacherie, E. (1999). Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J. Control. Release, 60, 169–177.PubMedGoogle Scholar
  88. Powell, C., Fenwick, N., Bresme, F., & Quirke, N. (2002). Wetting of nanoparticles and nanoparticle arrays. Colloid Surface A, 206, 241–251.Google Scholar
  89. Qiu, X., Leporatti, S., Donath, E., & Möhwald, H. (2001). Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir, 17, 5375–5380.Google Scholar
  90. Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M.I., Ammendola, M., Nese, G., Maglio, G., Palumbo, R., & Vauthier, C. (2006). Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. Int. J. Pharm., 324, 56–66.PubMedGoogle Scholar
  91. Redhead, H.M., Davis, S.S., & Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with Poloxamer 407 and Poloxamine 908: in vitro characterization and in vivo evaluation. J. Control. Release, 70, 353–363.PubMedGoogle Scholar
  92. Reis, C.P., Neufeld, R.J., Ribeiro, A.J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2, 8–21.Google Scholar
  93. Ritger, P.L., & Peppas, N.A. (1987a). A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5, 23–36.Google Scholar
  94. Ritger, P.L., & Peppas, N.A. (1987b). A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Control. Release, 5, 37–42.Google Scholar
  95. Ruckmani, K., Sivakumar, M., & Ganeshkumar, P.A. (2006). Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 6, 2991–2995.PubMedGoogle Scholar
  96. Sdobnyakov, N.Y., & Samsonov, V.M. (2005). On the size dependence of surface tension in the temperature range from melting point to critical point. Cent. Eur. J. Phys., 3, 247–257.Google Scholar
  97. Seijo, B., Fattal, E., Roblot-Treupel, L., & Couvreur, P. (1990). Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int. J. Pharm., 62, 1–7.Google Scholar
  98. Shekunov, B.Y., Chattopadhyay, P., Seitzinger, J., & Huff, R. (2006). Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res., 23, 196–204.PubMedGoogle Scholar
  99. Siepmann, J., & Göpferich, A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Del. Rev., 48, 229–247.Google Scholar
  100. Siepmann, J., Faisant, N., & Benoit, J.-P. (2002). A new mathematical model quantifying drug release from bioerodible micrcoparticles using monte carlo simulations. Pharm. Res., 19, 1885–1893.PubMedGoogle Scholar
  101. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M.J. (2005). Nano-emulsions. Curr. Opin. Colloid Interface Sci., 10, 102–110.Google Scholar
  102. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., & Rudzinski, W.E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 70, 1–20.PubMedGoogle Scholar
  103. Sukhorukov, G.B., Fery, A., Brumen, M., & Möhwald, H. (2004). Physical chemistry of encapsulation and release. Phys. Chem. Chem. Phys., 6, 4078–4089.Google Scholar
  104. Tang, R., Wang, L., Orme, C.A., Bonstein, T., Bush, P.J., & Nancollas, G.H. (2004). Dissolution at the nanoscale: self-preservation of biominerals. Angew. Chem. Int. Ed., 43, 2697–2701.Google Scholar
  105. Tang, S., June, S.M., Howell, B.A., & Chai, M. (2006a). Synthesis of salicylate dendritic prodrugs. Tetrahedron Lett., 47, 7671–7675.Google Scholar
  106. Tang, S., Martinez, L.J., Sharma, A., & Chai, M. (2006b). Synthesis and characterization of water-soluble and photostable L-Dopa dendrimers. Org. Lett., 8, 4421–4424.Google Scholar
  107. Thote, A.J., & Gupta, R.B. (2005). Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine, 1, 85–90.PubMedGoogle Scholar
  108. Tinke, A.P., Vanhoutte, K., De Maesschalck, R., Verheyen, S., & De Winter, H. (2005). A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution. J. Pharm. Biomed. Anal., 39, 900–907.PubMedGoogle Scholar
  109. Tripathi, P.K., Khopade, A.J., Nagaich, S., Shrivastava, S., Jain, S., & Jain, N.K. (2002). Dendrimer grafts for delivery of 5-fluorouracil. Pharmazie, 57, 261–264.PubMedGoogle Scholar
  110. Üner, M. (2006). Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie, 61, 375–386.PubMedGoogle Scholar
  111. Von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23, 4221–4231.Google Scholar
  112. Wang, J.-X., Sun, X., & Zhang, Z.-R. (2002). Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 54, 285–290.PubMedGoogle Scholar
  113. Washington, C. (1990a). Drug release from microdisperse systems: a critical review. Int. J. Pharm., 58, 1–12.Google Scholar
  114. Washington, C., & Koosha, F. (1990b). Drug release from microparticulates; deconvolution of measurement errors. Int. J. Pharm., 59, 79–82.Google Scholar
  115. Wiwattanapatapee, R., Lomlim, L., & Saramunee, K. (2003). Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J. Control. Release, 88, 1–9.PubMedGoogle Scholar
  116. Yang, H., & Kao, W.J. (2006) Dendrimers for pharmaceutical and biomedical applications. J. Biomater. Sci., Polym. Ed., 17, 3–19.Google Scholar
  117. Zhang, H., Gilbert, B., Huang, F., & Banfield, J.F. (2003). Water-driven structure transformation in nanoparticles at room temperature. Nature, 424, 1025–1029.PubMedGoogle Scholar
  118. Zhang, J.X., Li, X.J., Qiu, L.Y., Li, X.H., Yan, M.Q., Jin, Y., & Zhu, K.J. (2006a). Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: preparation, in vitro and in vivo evaluation. J. Control. Release, 116, 322–329.Google Scholar
  119. Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., & Han, X. (2006b). Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 327, 153–159.Google Scholar
  120. Zhu, H., & McShane, M.J. (2005). Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. J. Am. Chem. Soc., 127, 13448–13449.PubMedGoogle Scholar
  121. Zur Mühlen, A., & Mehnert, W. (1998a). Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie, 53, 552–555.Google Scholar
  122. Zur Mühlen, A., Schwarz, C., & Mehnert, W. (1998b). Solid lipid nanoparticles (SLN) for controlled drug delivery. Drug release and release mechanism. Eur. J. Pharm. Biopharm., 45, 149–155.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Anja Judefeind
    • 1
  • Melgardt M. de Villiers
    • 2
  1. 1.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.University of WisconsinMadisonUSA

Personalised recommendations