Nanotubes, Nanorods, Nanofibers, and Fullerenes for Nanoscale Drug Delivery

  • Jessica B. Melanko
  • Megan E. Pearce
  • Aliasger K. Salem
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


A drug’s delivery vehicle can have a significant impact on its efficacy. Nanoscale manipulation of drug delivery vehicles can substantially improve pharmacokinetics, pharmacodynamics, non-specific toxicity, immunogenicity, and biorecognition properties (Dillon et al. 1999; Kopecek 2003; Couvreur 2006). As a result, applying these technologies to pharmaceutical development has the potential to revolutionize the delivery of biologically active compounds.

The ideal drug delivery system needs to protect drugs from degradation via enzymatic, mechanical, or chemical pathways. It should also have enhanced diffusion through the epithelium, targeted tissue distribution, or increased penetration into its target cell depending on the application (Couvreur 2006). Therefore, drug delivery vehicles need to be rationally designed to overcome many of these physical barriers. Of the inorganic delivery systems currently in development, nanotubes, nanorods, fullerenes, and nanofibers show...


Carbon Nanotubes Gold Nanorods Electrospinning Process Template Synthesis Drug Delivery Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben (1999). “A simple and complete purification of single-walled carbon nanotube.” Materials. 11: 1354–1358.Google Scholar
  2. Ajima, K., M. Yudasaka, et al. (2005). “Carbon nanohorns as anticancer drug carriers.” Molecular Pharmacology 2(6): 475–80.CrossRefGoogle Scholar
  3. Arnaud Magrez, S. K., Vale´rie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsicas, Beat Schwaller, and La´szlo´ Forro (2006). “Cellular Toxicity of Carbon-Based Nanomaterials.” Nano letters 6(6): 1121.Google Scholar
  4. Baierl, T. and A. Seidel (1996). “In vitro effects of fullerene C-60 and fullerene black on immunofunctions of macrophages.” Fullerene Science and Technology 4(5): 1073–1085.Google Scholar
  5. Balasubramanian, K. and M. Burghard (2005). “Chemically functionalized carbon nanotubes.” Small 1(2): 180–192.CrossRefPubMedGoogle Scholar
  6. Bauer, L. A., N. S. Birenbaum, et al. (2004). “Biological applications of high aspect ratio nanoparticles.” Journal of Materials Chemistry 14(4): 517–526.CrossRefGoogle Scholar
  7. Bergen, J. M., et al. (2006). “Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery.” 506–516.Google Scholar
  8. Bethune, D. S., R. D. Johnson, et al. (1993). “Atoms in carbon cages: the structure and properties of endohedral fullerenes.” Nature 366(6451): 123–128.CrossRefGoogle Scholar
  9. Bianco, A., J. Hoebeke, et al. (2005a). “Carbon nanotubes: on the road to deliver.” Current Drug Delivery 2(3): 253–9.CrossRefGoogle Scholar
  10. Bianco, A., K. Kostarelos, et al. (2005b). “Biomedical applications of functionalised carbon nanotubes.” Chemical Communications(5): 571–577.CrossRefGoogle Scholar
  11. Brannon-Peppas, L. and J. O. Blanchette (2004). “Nanoparticle and targeted systems for cancer therapy.” Advanced Drug Delivery Reviews 56(11): 1649–1659.CrossRefPubMedGoogle Scholar
  12. Carrero-Sanchez, J. C., A. L. Elias, et al. (2006). “Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen.” Nano Letters 6(8): 1609–1616.CrossRefPubMedGoogle Scholar
  13. Chen, M., et al. (2003). “Gold-coated iron nanoparticles for biomedical applications.” Journal of Applied Physics 93(10): 7551–7553.CrossRefGoogle Scholar
  14. Cheng, W. F., Hung, C. F., Chai, C. Y., Hsu, K. F., He, L., Ling, M., and Wu, T. C. (2001) “Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen.” Journal of Clinical Invest 108(5): 669–678.Google Scholar
  15. Couvreur, P. a. V., C (2006). “Nanotechnology: Intelligent Design to Treat Complex Disease.” gPharmaceutical Research 23(7): 1417–1450.Google Scholar
  16. Cui, D. X., F. R. Tian, et al. (2005). “Effect of single wall carbon nanotubes on human HEK293 cells.” Toxicology Letters 155(1): 73–85.CrossRefPubMedGoogle Scholar
  17. Diederich Francois and Thilge, C (1996). “Covalent Fullerene Chemistry.” Science 271(5247): 317–323.Google Scholar
  18. Donaldson, K., V. Stone, et al. (2004). Nanotoxicology. 61: 727–728.Google Scholar
  19. Dresselhaus M, D. G., Eklund PC (1996a). Science of Fullerenes and Carbon Nanotubes. San Diego, Academic Press, Inc.Google Scholar
  20. Dresselhaus, M. S., Dresselhaus, G., Eklund, P.C. (1996b). Science of Fullerenes and Carbon Nanotubes. San Diego, CA, Academic Press, Inc.Google Scholar
  21. Dugan LL, T. D., Du C, Lobner D, Wheeler M, Almli CR, Shen CK-F, Luh T-Y Choi DW, and Lin T-S (1997). “Carboxyfullerenes as neuroprotective agents.” Proceedings of the National Academy of Sciences USA 94: 9434–9439.CrossRefGoogle Scholar
  22. Ellen E. Connor, J. M. A. G. Catherine J. M. and Michael D. W. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1: 325–327.Google Scholar
  23. El-Sayed, M. E. H., Hoffman, A. S., and Stayton, P. S. (2005). “Smart polymeric carriers for enhanced intracellular delivery of therapeutic macromolecules.” Expert Opinion on Biological Therapy 5(1): 23–32.CrossRefPubMedGoogle Scholar
  24. Emerich, D. F. and C. G. Thanos (2006). “The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis.” Biomolecular Engineering 23(4): 171–184.CrossRefPubMedGoogle Scholar
  25. Farrer, R. A., F. L. Butterfield, et al. (2005). “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles.” Nano Letters 5: 1139–1142.CrossRefPubMedGoogle Scholar
  26. Fiorito, S., A. Serafino, et al. (2006). “Toxicity and biocompatibility of carbon nanoparticies.” Journal of Nanoscience and Nanotechnology 6(3): 591–599.CrossRefPubMedGoogle Scholar
  27. Foley, S., C. Crowley, et al. (2002). “Cellular localisation of a water-soluble fullerene derivative.” Biochemical and Biophysical Research Communications 294(1): 116–119.CrossRefPubMedGoogle Scholar
  28. Garibaldi, S., C. Brunelli, et al. (2006). “Carbon nanotube biocompatibility with cardiac muscle cells.” Nanotechnology 17(2): 391–397.CrossRefGoogle Scholar
  29. Gaur, U., S. K. Sahoo, et al. (2000). “Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system.” International Journal of Pharmaceutics 202(1–2): 1–10.CrossRefPubMedGoogle Scholar
  30. Glomm, W. R. (2005). “Functionalized gold nanoparticles for applications in bionanotechnology.” Journal of Dispersion Science and Technology 26(3): 389–414.CrossRefGoogle Scholar
  31. Gole, A. and C. J. Murphy (2004). “Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed.” Chemistry of Materials 16(19): 3633–3640.CrossRefGoogle Scholar
  32. Greiner, A., J. H. Wendorff, et al. (2006). “Biohybrid nanosystems with polymer nanofibers and nanotubes.” Applied Microbiology and Biotechnology 71(4): 387–393.CrossRefPubMedGoogle Scholar
  33. Haddon, R. C. (2002). “Carbon Nanotubes.” Acc. Chem. Res. 35(12).Google Scholar
  34. He, C. L., Z. M. Huang, et al. (2006). “Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery.” Journal of Macromolecular Science Part B-Physics 45(4): 515–524.CrossRefGoogle Scholar
  35. Hone, J., B. Batlogg, et al. (2000). Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. 289: 1730–1733.Google Scholar
  36. Huang Z.M., Z. Y. Z., Kotaki M., and Ramakrishna S. (2003). “A review on polymer nanofibers by electrospinning and their applications in nanocomposites.” Composites Science and Technology 63: 2223–53.Google Scholar
  37. Huang, K., et al. (2006). Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes. Chemistry-a European Journal 12(20): 5314–5319.CrossRefGoogle Scholar
  38. Hung, C. F. and Wu T. C. (2003). “Improving DNA vaccine potency via modification of professional antigen presenting cells.” Current Opinion in Molecular Therapeutics 5(1): 20–24.PubMedGoogle Scholar
  39. Iijima, S. (1991). “Helical microtubules of graphitic carbon.” Nature 354(6348): 56–58.CrossRefGoogle Scholar
  40. Iijima, S. and T. Ichihashi (1993). “Single-shell carbon nanotubes of 1-nm diameter.” Nature 363(6430): 603–605.CrossRefGoogle Scholar
  41. J. K. N. Mbindyo, B. R. Reiss, B. R. Martin, C. D. Keating, M. J. Natan, and T. E. Mallouk (2001). “DNA-Directed Assembly of Gold Nanowires on Complementary Surfaces.” Advanced Materials 13: 249–254.CrossRefGoogle Scholar
  42. J.G. Wen, Z. P. H., D.Z. Wang, J.H. Chen, S.X. Yang, and Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, and M.A. Reed (2001). “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films.” Journals of Materials Research 16(11): 8.Google Scholar
  43. Jain, K. K. (2005). “The role of nanobiotechnology in drug discovery.” Drug Discovery Today 10(21–24): 1435–1442.CrossRefPubMedGoogle Scholar
  44. Jana, N. R., Gearheart, L., and Murphy, C. J. (2001). “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods.” Journal of Physical Chemistry B 105(19): 4065–4067.Google Scholar
  45. Jin, H. J., Chen, J.S., Karageorgiou, V., Altman, G.H., and D. L. Kaplan (2004). “Human bone marrow stromal cell responses on electrospun silk fibroin mats.” Biomaterials 25: 1039.CrossRefPubMedGoogle Scholar
  46. Klumpp, C., K. Kostarelos, et al. (2006). “Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics.” Biochimica et Biophysica Acta-Biomembranes 1758(3): 404–412.CrossRefGoogle Scholar
  47. Kopecek, J. (2003). “Smart and genetically engineered biomaterials and drug delivery systems.” European Journal of Pharmaceutical Sciences 20(1): 1–16.CrossRefPubMedGoogle Scholar
  48. Lam, C.-W., J. T. James, et al. (2004). Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. 77: 126–134.Google Scholar
  49. Leary, S. P., C. Y. Liu, et al. (2006). “Toward the emergence of nanoneurosurgeryPart III – Nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery.” Neurosurgery 58(6): 1009–1025.CrossRefPubMedGoogle Scholar
  50. Li, W.-J., et al. (2002). “Electrospun nanofibrous structure: A novel scaffold for tissue engineering.” Journal of Biomedical Materials Research 60(4): 613–621.CrossRefPubMedGoogle Scholar
  51. Lu, J. P. (1997). “Elastic Properties of Carbon Nanotubes and Nanoropes.” Physical Review Letters 79(7): 1297.CrossRefGoogle Scholar
  52. Luu, Y. K., Kim, K., Hsiao, B.S., Chu, B., and Hadjiargyrou, and M. (2003). “Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers.” Journal of Controlled Release 89(341).Google Scholar
  53. Ma, Z. W., M. Kotaki, et al. (2005). “Potential of nanofiber matrix as tissue-engineering scaffolds.” Tissue Engineering 11(1–2): 101–109.CrossRefPubMedGoogle Scholar
  54. Maeda, H., T. Sawa, et al. (2001). “Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS.” Journal of Controlled Release 74(1–3): 47–61.CrossRefPubMedGoogle Scholar
  55. Malik, N., R. Wiwattanapatapee, et al. (2000). “Dendrimers:: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo.” Journal of Controlled Release 65(1–2): 133–148.CrossRefPubMedGoogle Scholar
  56. Martin, C. R. (1994). “Nanomaterials: A Membrane-Based Synthetic Approach.” Science 266(5193): 1961–1966.CrossRefPubMedGoogle Scholar
  57. Martin, B. R., et al. (1999). “Orthogonal self-assembly on colloidal gold-platinum nanorods.” 1021–1025.CrossRefPubMedGoogle Scholar
  58. Min, B. M., Lee, G., Kim, S.H., Nam, Y.S., Lee, T.S., and W. H. Park (2004). “Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro.” Biomaterials 25: 1289.CrossRefPubMedGoogle Scholar
  59. Moghimi, S. M., A. C. Hunter, et al. (2005). “Nanomedicine: current status and future prospects.” Faseb Journal 19(3): 311–330.CrossRefPubMedGoogle Scholar
  60. Moussa, F., P. Chretien, et al. (1995). “The Influence of C-60 Powders on Cultured Human-Leukocytes.” Fullerene Science and Technology 3(3): 333–342.Google Scholar
  61. Nicewarner-Pena, S. R., et al. (2001). “Submicrometer metallic barcodes.” Science 294(5540): 137–141.CrossRefPubMedGoogle Scholar
  62. Nishikawa, M., et al. (1998). “Targeted delivery of plasmid DNA to hepatocytes in vivo: Optimization of the pharmacokinetics of plasmid DNA galactosylated poly(L-lysine) complexes by controlling their physicochemical properties.” Journal of Pharmacology and Experimental Therapeutics 287(1): 408–415.PubMedGoogle Scholar
  63. Oberdörster, E. (2004). “Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass.” Environmental Health Perspectives 112(10): 1058.CrossRefPubMedGoogle Scholar
  64. Panessa-Warren, B. J., J. B. Warren, et al. (2006). “Biological cellular response to carbon nanoparticle toxicity.” Journal of Physics-Condensed Matter 18(33): S2185–S2201.CrossRefGoogle Scholar
  65. Porter AE, M. K., Skepper J, Midgley P, and Welland M. (2006). “Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography.” Acta Biomaterialia 2(4): 409–19.CrossRefPubMedGoogle Scholar
  66. Qin, D. H., et al. (2006). “Surfactant-assisted synthesis of size-controlled trigonal Se/Te alloy nanowires.” Nanotechnology 17(3): 674–679.CrossRefGoogle Scholar
  67. Rajangam, K., Behanna, Heather A., Hui, Michael J., Han, Xiaoqiang, Hulvat, James F., Lomasney, Jon W., and Stupp, Samuel I. (2006). “Heparin Binding Nanostructures to Promote Growth of Blood Vessels.” Nano Letters 6(9): 2086–2090.Google Scholar
  68. Rancan, F., S. Rosan, et al. (2002). “Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells.” Journal of Photochemistry and Photobiology B-Biology 67(3): 157–162.CrossRefGoogle Scholar
  69. Raychaudhuri, S. and Rock, K. L. (1998). “Fully mobilizing host defense: Building better vaccines.” Nature Biotechnology 16(11): 1025–1031.CrossRefPubMedGoogle Scholar
  70. Salem, A. K., C. F. Hung, et al. (2005). “Multi-component nanorods for vaccination applications.” Nanotechnology 16(4): 484–487.CrossRefGoogle Scholar
  71. Salem, A. K., P. C. Searson, et al. (2003). “Multifunctional nanorods for gene delivery.” Nature Materials 2(10): 668–671.CrossRefPubMedGoogle Scholar
  72. Salem, A. K., et al. (2004). “Receptor-mediated self-assembly of multi-component magnetic nanowires.” Advanced Materials 16(3): 268–271.CrossRefGoogle Scholar
  73. Salem, A. K., et al. (2004). “Directed assembly of multisegment Au/Pt/Au nanowires.” Nano Letters 4(6): 1163–1165.CrossRefGoogle Scholar
  74. Salvador-Morales, C., E. Flahaut, et al. (2006). “Complement activation and protein adsorption by carbon nanotubes.” Molecular Immunology 43(3): 193–201.CrossRefPubMedGoogle Scholar
  75. Sayes, C. M., J. D. Fortner, et al. (2004). “The differential cytotoxicity of water-soluble fullerenes.” Nano Letters 4(10): 1881–1887.CrossRefGoogle Scholar
  76. Schmidt, O. G. and K. Eberl (2001). “Nanotechnology: Thin solid films roll up into nanotubes.” Nature 410(6825): 168–168.CrossRefPubMedGoogle Scholar
  77. Service, R. F. (2005). Nanofibers seed blood vessels. Science. 308: 44–45.Google Scholar
  78. Shim, M., N. W. S. Kam, et al. (2002). “Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition.” Nano Letters 2(4): 285–288.CrossRefGoogle Scholar
  79. Shiqian Zhu, E. O. and Mary L. Haasch (2006). “Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow.” Marine Environmental Research 62: S5–S9.Google Scholar
  80. Shvedova, A., V. Castranova, et al. (2003). “Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells.” Journal of Toxicology and Environmental Health Part A 66(20): 1909–1926.CrossRefPubMedGoogle Scholar
  81. Silva, G. A. (2006). “Neuroscience nanotechnology: Progress, opportunities and challenges.” Nature Reviews Neuroscience 7(1): 65–74.CrossRefPubMedGoogle Scholar
  82. Sinha, R., G. J. Kim, et al. (2006). Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics 5: 1909–1917.CrossRefPubMedGoogle Scholar
  83. Sinnott, S. B. and R. Andrews (2001). “Carbon Nanotubes: Synthesis, Properties, and Applications.” Critical Reviews in Solid State and Material Sciences 26(3): 145–249.CrossRefGoogle Scholar
  84. Steinhart, M., J. H. Wendorff, R. B. Wehrspohn (2003). Nanotubes à la Carte: Wetting of Porous Templates. ChemPhysChem 4: 1171–1176.CrossRefPubMedGoogle Scholar
  85. Steinle, E. D., D. T. Mitchell, et al. (2002). Ion Channel Mimetic Micropore and Nanotube Membrane Sensors. Analytical Chemistry 74: 2416–2422.CrossRefPubMedGoogle Scholar
  86. Sun, Y. P., K. Fu, et al. (2002). Functionalized Carbon Nanotubes: Properties and Applications. Accounts of Chemical Research 35: 1096–1104.CrossRefPubMedGoogle Scholar
  87. Takakura, Y., et al. (2002). “Influence of physicochemical properties on pharmacokinetics of non-viral vectors for gene delivery.” Journal of Drug Targeting 10(2): 99–104.CrossRefPubMedGoogle Scholar
  88. Tegos, G. P., T. N. Demidova, et al. (2005). “Cationic Fullerenes Are Effective and Selective Antimicrobial Photosensitizers.” Chemistry & Biology 12(10): 1127–1135.CrossRefGoogle Scholar
  89. Thandavamoorthy, S., N. Gopinath, et al. (2006). “Self-assembled honeycomb polyurethane nanofibers.” Journal of Applied Polymer Science 101(5): 3121–3124.CrossRefGoogle Scholar
  90. Tropin, T. V., M. V. Avdeev, et al. (2006). “Nonmonotonic behavior of the concentration in the kinetics of dissolution of fullerenes.” Jetp Letters 83(9): 399–404.CrossRefGoogle Scholar
  91. Vasir, J. K., M. K. Reddy, et al. (2005). “Nanosystems in drug targeting: Opportunities and challenges.” Current Nanoscience 1(1): 47–64.CrossRefGoogle Scholar
  92. Venugopal, J. and S. Ramakrishna (2005). “Applications of polymer nanofibers in biomedicine and biotechnology.” Applied Biochemistry and Biotechnology 125(3): 147–157.CrossRefPubMedGoogle Scholar
  93. Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Dijck, and M. A.V., J., Noppe M., and Brewster, M.E. (2003). “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer ” Journal of Controlled Release 92: 349.Google Scholar
  94. Vogelson, C. T. (2001). Advances in drug delivery systems. Modern Drug Discovery. 4: 49–52.Google Scholar
  95. Wang, X. Y., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J., and L. A. and Samuelson (2002). “Electrospun nanofibrous membranes for highly sensitive optical sensors.” Nano Letters 2: 1273.CrossRefGoogle Scholar
  96. Warheit, D. B. (2006). “What is currently known about the health risks related to carbon nanotube exposures?” Carbon 44(6): 1064–1069.CrossRefGoogle Scholar
  97. Whitesides, G. M., J. P. Mathias, et al. (1991). Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254: 1312–1319.CrossRefPubMedGoogle Scholar
  98. Whitney, T. M., J. S. Jiang, et al. (1993). “Fabrication and Magnetic Properties of Arrays of Metallic Nanowires.” Science 261(5126): 1316–1319.CrossRefPubMedGoogle Scholar
  99. Yamago, S., H. Tokuyama, et al. (1995). “In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity.” Chemistry & Biology 2(6): 385–389.CrossRefGoogle Scholar
  100. Yao, N., V. Lordi, et al. (1998). “Structure and Oxidation Patterns of Carbon Nanotubes.” Journal of Materials Research 13.Google Scholar
  101. Yu, M.-F., B. S. Files, et al. (2000). “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties.” Physical Review Letters 84(24): 5552.CrossRefPubMedGoogle Scholar
  102. Zhao X, S. A., Cummings PT. (2005). “C60 binds to and deforms nucleotides.” Biophys J. 89(6): 3856–62.CrossRefPubMedGoogle Scholar
  103. Zhu, H. W., C. L. Xu, et al. (2002). Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. 296: 884–886.Google Scholar
  104. Zhu Z, S. D. andTuckerman ME (2003).“Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.” Biochemistry 42: 1326–1333.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Jessica B. Melanko
    • 1
  • Megan E. Pearce
    • 1
  • Aliasger K. Salem
    • 1
  1. 1.Department of Chemical and Biochemical Engineering, Division of Pharmaceutics, College of PharmacyUniversity of IowaIowa CityUSA

Personalised recommendations