Advertisement

Nanopharmaceuticals: Challenges and Regulatory Perspective

  • Rakhi B. Shah
  • Mansoor A. Khan
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)

1

Introduction

Products in nanometer size range offer “uniqueness” because of their altered properties as compared to their macro-counterparts. Improved solubility, permeability, or targetability of nanoparticles seems to be beneficial in the drug delivery area. As an example, “nano” paclitaxel molecules may reach a tumor cell line sooner than the “bulk” paclitaxel. Similarly, if a nanodrug is unable to reach a particular receptor, specialized nanoparticles have been proven to have the ability to reach that receptor (Dubey, 2006). Therefore, there is a lot of interest in using a nanotechnology platform to deliver drugs, and it explains the spurt in funding for nanotechnology research.

The research and development funding for nanotechnology from government and industry is estimated at nearly US$10 billion globally for 2005 (Lux research, 2006). By 2014, it is estimated that the global value of nanotechnology products will exceed US$2.5 trillion (Lux research, 2004). After formation of...

Keywords

National Nanotechnology Initiative Nanotechnology Product Supercritical Fluid Technology Biological License Application Micrometer Size Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms

ADME

Absorption, distribution, metabolism, and elimination

AFM

Atomic force microscopy

ANDA

Abbreviated New Drug Application

ANF

Asia Nano Forum

ASTM

American Standards for Testing and Materials

API

Active pharmaceutical ingredient

BCS

Biopharmaceutical Classification System

BLA

Biological Licensing Application

CBER

Center for Biological Evaluations and Research

CDER

Center for Drug Evaluation and Research

CDRH

Center for Device and Radiological Health

CFR

Code of Federal Registrar

CMC

Chemistry, manufacturing, and control

CRN

Center for Responsible Nanotechnology

CST

Council for Science and Technology (United Kingdom)

CTA

Center for Technology Assessment

CVM

Center for Veterinary Medicine

DNA

Deoxyribonucleic acid

EPA

Environmental Protection Agency

FDA

Food and Drug Administration

FD&C act

Food, Drug and Cosmetic Act

FoE

Friends of Earth

GRAS

Generally regarded as safe

ICH

International Conference on Harmonization

ICON

International Council on Nanotechnology

ICTA

International Center for Technology Assessment

IIG

Inactive Ingredient Guide

IV

Intravenous

MHRA

Medicines and Healthcare Products Regulatory Agency (United Kingdom)

MRI

Magnetic resonance imaging

NCL

National Characterization Laboratory

NCI

National Cancer Institute

NDA

New Drug Application

NIST

National Institute of Standards and Technology

NNI

National Nanotechnology Initiative

NSCT

National Strategy for Combating Terrorism

ORA

Office of Regulatory Affairs

OSHC

Office of Science and Health Coordination

PD

Pharmacodynamics

PK

Pharmacokinetics

PAT

Process analytical technology

PSD

Particle size distributionh

QbD

Quality by Design

R&D

Research and Development

SC

Subcutaneous

SEDDS

Self-emulsifying drug delivery systems

SNEDDS

Self-nano-emulsifying drug delivery systems

USC

United States Code

UV

Ultraviolet

References

  1. 21 CFR, 5. FDA organization. Code of Federal Registrar.Google Scholar
  2. 21CFR 211.65. Equipment construction. Code of Federal Registrar.Google Scholar
  3. 21CFR 310.305. Records and reports concerning adverse drug experiences on marketed prescription drugs for human use without approved new drug applications. Code of Federal Registrar.Google Scholar
  4. 21CFR 312.32. IND safety reports. Code of Federal Registrar.Google Scholar
  5. 21CFR 314.80. Post marketing reporting of adverse drug experiences. Code of Federal Registrar.Google Scholar
  6. 21 USC, § 371. Federal Food, Drug and Cosmetics Act.Google Scholar
  7. Abraxis (2007). Abraxis BioScience to initiate two phase I/II clinical trials with nab-docetaxel in hormone refractory prostate and metastatic breast cancer. Business wire; http://www.abraxisbio.com.
  8. Advanced Magnetic Inc Website (2007). http://www.advancedmagnetics.com.
  9. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N., & Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences, 99, 12617–12621.CrossRefGoogle Scholar
  10. Altair Nanotechnologies Website (2007). www.altairnano.com.
  11. ANF. (2004). Asia Nano Forum; http://www.asia-nano.org.
  12. Arshady, R. (1988). Preparation of polymer nano- and microspheres by vinyl polymerization techniques. Journal of Microencapsulation, 5, 101–114.CrossRefPubMedGoogle Scholar
  13. ASTM. (2006). Terminology for nanotechnology. American Standards for Testing and Materials, E2456-06.Google Scholar
  14. Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., & Baba, Y. (2004). Quantum dots as photosensitizers? Nature Biotechnology, 22, 1360–1362.CrossRefPubMedGoogle Scholar
  15. Beaver, E. R. (2004). Implications of nanomaterials manufacture and use. USEPA Nanotechnology STAR Review; http://es.epa.gov/ncer/publications/workshop/8–18–04/ppt/beaver–2.ppt
  16. Biosante Pharmaceuticals Website. www.biosantepharma.com
  17. Borm, P. J. A., & Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles- potential implications for drug delivery. Journal of Nanoscience & Nanotechnology, 4, 521–531.CrossRefGoogle Scholar
  18. Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.CrossRefPubMedGoogle Scholar
  19. Cell Therapeutics Inc. (2007). CTI files for special protocol assessment (SPA) for XYOTAX(TM) PGT307 lung cancer trial in women. PR Newswire-FirstCall, March 20; www.celltherapeutics.com
  20. Chandrasekaran, T. (1993). Effect of microstructure and hardness on the grinding abrasive wear-resistance of a ball-bearing steel. Wear, 161, 105–109.CrossRefGoogle Scholar
  21. Chattopadhyay, P., & Gupta, R. B. (2001a). Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. International Journal of Pharmaceutics, 228, 9–31.CrossRefGoogle Scholar
  22. Chattopadhyay, P., & Gupta, R. B. (2001b). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Industrial Engineering & Chemical Research, 40, 3530–3539.CrossRefGoogle Scholar
  23. Constancis, A., Meyrueix, R., Bryson, N., Huille, S., Grosselin, J. M., Gulik-Krzywicki, T., & Soula, G. (1999). Macromolecular colloids of diblock poly(amino acids) that bind insulin. Journal of Colloid and Interface Science, 217, 357–368CrossRefPubMedGoogle Scholar
  24. CRN. (2007). What is nanotechnology. Center for Responsible Nanotechnology; http://www.crnano.org/whatis.htm
  25. Crommelin, D. J. A. (1994). Liposomes. In J. Kreuter (Ed.) Colloidal Drug Delivery Systems, (pp. 219–342) New York: Marcel Dekker.Google Scholar
  26. Davidson, R. N., Croft, S. L., Scott, A., Maini, M., Moody, A. H., & Bryceson, A. D. (1991). Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet, 337, 1061–1062.CrossRefPubMedGoogle Scholar
  27. Davies, J. C. (2006). Managing the effects of nanotechnology. Woodrow Wilson International Center for Scholar: Project on emerging nanotechnology, Washington D. C.; http://nanotechproject.org/index.php?s=reports
  28. De Keyser, J., De Cock, C., Poupaert, J. H., & Dumont, P. (1989). Synthesis of 14C labeled acrylic derivatives: diethyl [3-14C] methylidenemalonate and isobutyl [3-14C] cyanoacrylate. Journal of labeled compounds & radiopharmaceuticals, 27, 909–916.CrossRefGoogle Scholar
  29. De Keyser, J., Poupaert, J. H., & Dumont, P. (1991). Poly (diethyl methylidenemalonate) nanoparticles as a potential drug carrier: preparation, distribution and elimination after intravenous and peroral administration to mice. Journal of Pharmaceutical Sciences, 80, 67–70.CrossRefPubMedGoogle Scholar
  30. Dendrimer resource page. Starpharma Holdings Ltd; http://www.starpharma.com/dendrimers.asp
  31. Donaldson, K., Brown, M. D., Cloucer, A., Duffin, R., MacNee, W., Renwick, I., & Stone, V. (2002). The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine, 15, 213–220.CrossRefPubMedGoogle Scholar
  32. Dubey, R. (2006). Pure drug nanosuspension: Impact of nanosuspension technology on drug discovery and development. Drug Delivery Technology, 6, 65–71.Google Scholar
  33. Duncan, R. (2003). The growing era of polymer therapeutics, Nature Reviews, 2, 347–360.CrossRefPubMedGoogle Scholar
  34. Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., & Oberdorster, G. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives, 114, 1172–1178.CrossRefPubMedGoogle Scholar
  35. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 277, 1078–1081.CrossRefPubMedGoogle Scholar
  36. EPA Science Policy Council – Nanotechnology Workgroup. (2007). U.S. Environmental Protection Agency Nanotechnology: White Paper, February. US Environmental Protection Agency; http://es.epa.gov/ncer/nano/publications/whitepaper12022005.pdf
  37. FDA. Food and Drug Administration; http://www.fda.gov.
  38. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976.CrossRefPubMedGoogle Scholar
  39. Garner, R. C., Garner, J. V., Gregory, S., Whattam, M., Calam, A., & Leong, D. (2002). Comparison of the absorption of micronized (Daflon 500 mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. Journal of Pharmaceutical Sciences, 91, 32–40.CrossRefPubMedGoogle Scholar
  40. Granum, B., & Lovik, M. (2002). The effect of particles on allergic immune response. Toxicological Sciences, 65, 7–17.CrossRefPubMedGoogle Scholar
  41. Gupta, R. B., & Chattopadhyay, P. (2000). Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound. US Provisional Patent, 60/206,644.Google Scholar
  42. Haskell, R. (2006). Physical characterization of nanoparticles. In R. Gupta, & U. Kompella (Eds.) Nanoparticle Technology for Drug Delivery (pp103–138) NY: Taylor & Francis.Google Scholar
  43. He, Q., Mitchell, A. R., Johnson, S. L., Wagner-Bartak, C., Morcol, T., & Bell, S. (2000). Calcium phosphate nanoparticle adjuvant. Clinical and Diagnostic Laboratory Immunology, 7, 899–903.PubMedGoogle Scholar
  44. Hett, A. (2004). Nanotechnology: small matter, many unknowns. Zurich, Switzerland, Swiss Re.Google Scholar
  45. Hollister, K. R., Ladd, D., McIntire, G., Na, G., Rajagopalan, N., & Yuan, B. (1994). Use of purified surface modifiers to prevent particle aggregation during sterilization, US Patent number: 5352459, 1994 Google Scholar
  46. How big is nanotechnology for Europe? The Commission launches an open consultation, Brussels, 30 (July 2004); http://ec.europa.eu/research/press/2004/pr3007en.cfm
  47. Huang, F., Gilbert, B., Zhang, H., & Banfield, J. F. (2004). Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Physical Review Letters, 92, 155501.CrossRefPubMedGoogle Scholar
  48. ICHQ3C (R3). (1988). Impurities: Residual solvents. International Conference on Harmonization.Google Scholar
  49. ICHQ8. (2004). Pharmaceutical Development. International Conference on Harmonization. Google Scholar
  50. ICHQ9. (2005). Quality risk management. International Conference on Harmonization. Google Scholar
  51. ICH S6. (1997). Preclinical safety evaluation of biotechnology derived pharmaceuticals. ICH harmonized tripartite guideline, International Conference on Harmonization. Google Scholar
  52. ICON. (2004). International Conference on Nanotechnology. In Nanotechnology, Small size, large impact? Swiss Re. Risk dialogue series, Center for global dialogue, December.Google Scholar
  53. ICTA. (2006). CTA and Friends of the Earth Challenge FDA to Regulate Nanoparticles at FDA Hearing, International Center for Technology Assessment; http://www.icta.org/press/release.cfm?news_id=21
  54. Isabelle, P., Jean-Philippe, B., Jacques, P., & Alain, F. (2003). Surface charge, effective charge and dispersion/ aggregation properties of nanoparticles. Polymer International, 52, 619–624.CrossRefGoogle Scholar
  55. Jacobs, C., Kayser, O., & Muller, R. H. (2000). Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. International Journal of Pharmaceutics, 196, 161–164.CrossRefPubMedGoogle Scholar
  56. Jacobs, C., Kayser, O., & Muller, R. H. (2001). Production and characterization of mucoadhesive nanosuspensions for the formulation of bupravaquone. International Journal of Pharmaceutics, 214, 3–7.CrossRefPubMedGoogle Scholar
  57. Jensen, A. W., Maru, B. S., Zhang, X., Mohanty, D. K., Fahlman, B. D., Swanson, D. R., & Tomalia, D. A. (2005). Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Letters, 5, 1171–1173.CrossRefPubMedGoogle Scholar
  58. Jillavenkatesa, A., & Kelly, J. F. (2002). Nanopowder Characterization: Challenges and Future Directions. Journal of Nanoparticle Research, 4, 463–468.CrossRefGoogle Scholar
  59. Joost, B., & Schwedes, J. (1996). Wear of grinding component on size reduction in stirred ball mills. Chemical Engineering & Technology, 68, 713–717.Google Scholar
  60. Kerr, M. C., & Reed, J. S. (1992). Comparative grinding kinetics and grinding energy during ball milling and attrition milling. American Ceramic Society Bulletin, 71, 1809–1816.Google Scholar
  61. Kimbrell, G. A. (2006). CTA Files Legal Action to Force FDA to Regulate Health Threats from Nanomaterials, International center for technology assessment. International Center for Technology Assessment news; http://www.icta.org/press/release.cfm?news_id=19
  62. Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics, 284, 109–122.CrossRefPubMedGoogle Scholar
  63. Kramer, S., Xie, H., Gaff, J., Williamson, J. R., Tkachenko, A. G., Nouri, N., Feldheim, D. A., & Feldheim, D. L. (2004). Preparation of protein gradients through the controlled deposition of protein-nanoparticle conjugates onto functionalized surfaces. Journal of American Chemical Society, 126, 5388–5395.CrossRefGoogle Scholar
  64. Krause, K. P., Kayser, O., Mader, K., Gust, R. & Muller, R. H. (2000). Heavy metal contamination of nanosuspensions produced by high-pressure homogenization. International Journal of Pharmaceutics, 196, 169–173.CrossRefPubMedGoogle Scholar
  65. Kreuter, J. (1994). Nanoparticles. In J. Kreuter (Ed.) Colloidal Drug Delivery Systems, (pp. 219–342) New York: Marcel Dekker.Google Scholar
  66. Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G., & Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health Part A, 65, 1513–30.CrossRefPubMedGoogle Scholar
  67. Lamprecht, A., Ubrich, N., Hombreiro, P. M., Lehr, C., Hoffman, M., & Maincent, P. (2000). Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International Journal of Pharmaceutics, 196, 177–182.CrossRefPubMedGoogle Scholar
  68. Lebovitz, R. (2006). Regulatory approaches to novel nanomaterials: Unique benefits versus unique risks. http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4241s2_9.ppt
  69. Lee, J. (2003). Drug nano- and microparticles processed into solid dosage forms: Physical properties. Journal of Pharmaceutical Sciences, 92, 2057–2068.CrossRefPubMedGoogle Scholar
  70. Lherm, C., Muller, R. H., Puiseux, F., & Couvreur, P. (1992). Alkylcynoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. International Journal of Pharmaceutics, 84, 13–22.CrossRefGoogle Scholar
  71. Lichetnberg, D., & Barenholz, Y. (1988). Liposomes: Preparation, characterization, and preservation. In D. Glick (Eds.), Methods of Biological Analysis (pp. 337–461) New York: John Wiley.CrossRefGoogle Scholar
  72. Liversidge, G. G. (1996). Drug nanocrystals for improved drug delivery. In: Proceedings of the CRS Workshop on Particulate Drug Delivery Systems, Kyoto, Japan.Google Scholar
  73. Liversidge, G. G., & Cundy, K. C. (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International Journal of Pharmaceutics, 125, 91–97.CrossRefGoogle Scholar
  74. Liversidge, G. G., Cundy, K. C., Bishop, J., & Czekai, D. (1991). Surface modified drug nanoparticles. US Patent No, 5145684.Google Scholar
  75. Lockman, P. R., Mumper, R. J., Khan, M. A., & Allen, D. D. (2002). Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Development Industrial Pharmacy, 28, 1–13.CrossRefGoogle Scholar
  76. Loo, C., Lin, A., Hirsch L., Lee, M., Barton, J., Halas, N., West, J., & Drezek, R. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research and Treatment, 3, 33–40.PubMedGoogle Scholar
  77. Loo, C., Lowery, A., Halas, N., West, J., & Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 5, 709–711.CrossRefPubMedGoogle Scholar
  78. Lux Research. (2004). Sizing nanotechnology’s value chain. New York: Lux Research Inc.Google Scholar
  79. Lux Research. (2006). The nanotech report. 4th edn. New York: Lux Research Inc.Google Scholar
  80. Mabela, T. K. M., Poupaert, J. H., Dumont, P., & Haemers, A. (1993). Development of poly(dialkyl methylidenemalonate) nanoparticles as drug carriers. International Journal of Pharmaceutics, 92, 71–79.CrossRefGoogle Scholar
  81. Martin, A., Swarbrick, J., & Cammarata, A. (1983). Diffusion and Dissolution. In A. Martin, A., J. Swarbrick & A. Cammarata (Eds.) Physical Pharmacy (pp 399–444). 3rd edition, Philadelphia: Lea & Febiger publishers.Google Scholar
  82. Mawson, S., Johnston, K. P., Combes, J. R., & DeSimone, J. M. (1994). Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules, 28, 3182–3191.CrossRefGoogle Scholar
  83. Maynard, A. D. (2006a). Nanotechnology: The next big thing, or much ado about nothing? Annals of Occupational Hygiene, 10, 1–12.CrossRefGoogle Scholar
  84. Maynard, A .D. (2006b). Nanotechnology: Managing the risks. Nano Today, 1, 22–33.CrossRefGoogle Scholar
  85. Maynard A. D., & Baron P. A. (2004). Aerosols in the industrial environment: Aerosols handbook. In L. S. Ruzer, & N. H. Harley, (Eds.) Measurement, Dosimetry and Health Effects (pp. 225–64) Boca Raton: CRC Press.Google Scholar
  86. Miller, G., Archer, L., Pica, E., Bell, D., Senjen, R., & Kimbrell, G. (2006). Nanomaterials, sunscreens and cosmetics: Small ingredients, big risk. Friends of Earth Report, May 2006.Google Scholar
  87. Mishima, K., Matsuyama, K., Tanabe, D., &Yamauchi, S. (2000). Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. American Institute of Chemical Engineering Journal, 46, 857–865.Google Scholar
  88. Morcol, T., Nagappan, P., Nerenbaum, L., Mitchell, A., & Bell, S. J. (2004). Calcium phosphate-PEG-insulin- casein (CAPIC) particles as oral delivery systems of insulin. International Journal of Pharmaceutics, 277, 91–97.CrossRefPubMedGoogle Scholar
  89. Muller, R. H., Becker, R., Kruss, B., & Peters, K. (1998). Pharmaceutical nanosuspensions for medicament administration as system of increased saturation solubility and rate of solution, US Patent No, 5858410.Google Scholar
  90. Muller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3–19.CrossRefPubMedGoogle Scholar
  91. Muller, R. H., Mader, K., & Krause, K. (2002). Pharmasol GMbH dispersion for formulation of slightly or poorly soluble active ingredients. US Patent No, CA002388550A1.Google Scholar
  92. Muller, R. H., Peters, K., Becker, R. & Kruss, B. (1996). Nanosuspensions for the i.v. administration of poorly soluble drugs-stability during sterilization and long-term storage. Proceedings of International Symposium on Controlled Release of Bioactive Material, 22, 574–575. Google Scholar
  93. Nakada, Y., Fattal, E., Foulquier, M., & Couvreur, P. (1996). Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharmaceutical Research, 13, 38–43.CrossRefPubMedGoogle Scholar
  94. Nazzal, S., Nutan, M., Palamakula, A., Shah, R., Zaghloul, A. A., & Khan, M., A. (2002). Optimization of a self-nanoemulsified tablet dosage form of Ubiquinone using response surface methodology: effect of formulation ingredients. International Journal of Pharmaceutics, 240, 103–114.CrossRefPubMedGoogle Scholar
  95. NCL (National Characterization Laboratory). Moving nanotechnology concepts to the clinic. NCL news, 1, 2-6; http://ncl.cancer.gov/newsletter_vol_001.asp.
  96. Nei, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at nanolevel. Science, 311, 622–627.CrossRefGoogle Scholar
  97. NNI, National Nanotechnology Initiative (2004). Nanotechnology resources page; http://www.nano.gov/html/facts/whatIsNano.html
  98. NSCT (2000). NSTC definition of nanotechnology. National strategy for combating terrorism, June 12; http://www.becon.nih.gov/nstc_def_nano.htm
  99. Oberdoster, G. (2001). Pulmonary effects of ultrafine particles. Archives of Occupational & Environmental Health, 74, 1–8.CrossRefGoogle Scholar
  100. Oberdorster, G., Ferin, J., & Lehnert, B. E. (1994). Correlation between particle-size, in-vivo particle persistence, and lung injury. Environmental Health Perspectives, 102, 173–179.CrossRefPubMedGoogle Scholar
  101. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox., C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437–45.CrossRefPubMedGoogle Scholar
  102. Olivier, J. (2005). Drug Transport to brain with targeted nanoparticles. NeuroRx, 2, 108–119.CrossRefPubMedGoogle Scholar
  103. Otuska, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55, 403–419.CrossRefGoogle Scholar
  104. Paciotti, G., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R., & Tamarkin, L. (2004). Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11, 169–183.CrossRefPubMedGoogle Scholar
  105. Palamakula, A., Nutan, M., & Khan, M. A. (2004). Response Surface Methodology for Optimization and Characterization of Limonene-based Coenzyme Q10 Self-Nanoemulsified Capsule Dosage Form. AAPS Pharmaceutical Science and Technology, 5: article 66.Google Scholar
  106. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55, 329–347.CrossRefPubMedGoogle Scholar
  107. Patri, A. K., Majoros, J. I., & Baker, J. R., Jr. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology, 6, 466–471.CrossRefPubMedGoogle Scholar
  108. Randolph, T. W., Randolph, A. D., Mebes, M., & Yeung, S. (1993). Sub-micron-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnology Progress, 9, 429–435.CrossRefPubMedGoogle Scholar
  109. Redzisqewski, P. (1997). Predictive model for ball mill wear, Canadian Metallurgical Quarterly, 36, 87–93.CrossRefGoogle Scholar
  110. Reverchon, E. (1999). Supercritical antisolvent precipitation of micro- and nano- particles. Journal of Supercritical Fluids, 15, 1–21.CrossRefGoogle Scholar
  111. Reverchon, E., DellaPorta, G., Trolio, A. D., & Pace, S. (1998). Supercritical antisolvent precipitation of nanoparticles of superconductor precursors. Industrial Engineering & Chemical Research, 37, 952–958.CrossRefGoogle Scholar
  112. Roco, M. C. (2003). Government nanotechnology funding: An international outlook. National Science Foundation, June 30.Google Scholar
  113. Roney, C., Kulkarni, P., Arora, V., Antich, P., Bonte, F., Wu, A., Mallikarjuana N. N., Manohar, S., Liang, H. F., Kulkarni, A. R., Sung, H. W., Sairam, M., & Aminabhavi, T. M. (2005). Targeted nanoparticles for drug delivery through the blood-brain-barrier for Alzheimer’s disease. Journal of Controlled Release, 108, 193–214.CrossRefPubMedGoogle Scholar
  114. Roy, I., Mitra, S., Maitra, A., & Mozumdar, S. (2003). Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. International Journal of Pharmaceutics, 250, 25–33.CrossRefPubMedGoogle Scholar
  115. Ryman-Rasmussen, J. P., Riviere, J. E., & Monteiro-Riviere, N. A., (2006). Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological sciences, 91, 159–165.CrossRefPubMedGoogle Scholar
  116. Saxton, J. (2007). Nanotechnology: The future is coming sooner than you think. United States Congress Joint Economic Committee, March, 1–20.Google Scholar
  117. Science Policy Section. (2004). Nanosciences and nanotechnologies: Opportunities and uncertainties. Royal Society and Royal Academy of Engineering. July. www.nanotec.org.uk/finalReport.htm
  118. Seymour, L. W., Ferry, D. R., Anderson, D., Hesselwood, S., Julyan, P., Poyner, R., Doran, J., Young, A., Burtles, S., & Kerr, D. (2002). Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. Journal of Clinical Oncology, 20, 1668–1676.CrossRefPubMedGoogle Scholar
  119. Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A., Johnson, V., Potapovich, A., Tyurina, Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A., Antonini, J., Evans, D., Ku, B., Ramsey, D., Maynard, A., Kagan, V., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology -Lung Cellular and Molecular Physiology, 289, 698–708.CrossRefGoogle Scholar
  120. Soppimath, K. S., Aminabhavi, T. M., Kulkarni A. R., & Rudzinskib, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20.CrossRefPubMedGoogle Scholar
  121. Svenson, S., & Tomalia, D. A. (2005). Dendrimers in biomedical applications-reflections on the field. Advanced Drug Delivery Reviews, 57, 2106–2129.CrossRefPubMedGoogle Scholar
  122. Sweeney, S., Woehrle, G., & Hutchison, J. (2006). Rapid purification and size Separation of gold nanoparticles via diafiltration. Journal of the American Chemical Society, 128(10), 3190–3197.CrossRefPubMedGoogle Scholar
  123. Swiss Re. (2004). Nanotechnology, Small size, large impact? Risk dialogue series, Center for global dialogue, December.Google Scholar
  124. Taylor, M. (2006). Regulating the products of nanotechnology, does FDA have the tools it needs? PEN 5, October.Google Scholar
  125. Thanos, C. G., Liu, Z., Reineke, J., Edwards, E., & Mathiowitz, E. (2003). Improving relative bioavailability of dicumarol by reducing particle size and adding the adhesive poly(fumaric-co-sebacic) anhydride. Pharmaceutical Research, 20, 1093–1100.CrossRefPubMedGoogle Scholar
  126. Thomas, M., & Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100, 9138–9143.CrossRefGoogle Scholar
  127. Tinkle, S. S., Antonini, J. M., Rich, B. A., Rich, B., Roberts, J., Salmen, R., DePree, K., & Adkins, E. (2003). Skin as a route of exposure and sensitization in chronic beryllium disease. Environmental Health Perspectives, 111, 1202–1208.CrossRefPubMedGoogle Scholar
  128. Tom, J. W., & Debenedetti, P. G. (1991a). Particle formation with supercritical fluids - a review. Journal of Aerosol Science, 22, 555–584.CrossRefGoogle Scholar
  129. Tom, J. W., & Debenedetti, P. G. (1991b). Formation of bioerodable polymeric microspheres and microparticles by rapid expansion of supercritical solution. Biotechnology Progress, 7, 403–411.CrossRefGoogle Scholar
  130. Tom, J. W., Debenedetti, P. G., & Jerome, R. (1994). Preparation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene by rapid expansion of supercritical solution. Journal of Supercritical Fluids, 7, 9–29.CrossRefGoogle Scholar
  131. Tomalia, D. A., Reyna, L. A., & Svenson, S. (2007). Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Society Transaction, 35, 61–67.CrossRefGoogle Scholar
  132. Tronc, E., Ezzirb, A., Cherkaouib, R., Chanéaca, C, Noguèsb, M., Kachkachib, H., Fioranid, D., Testa, A. M., Grenèchec, J. M., & Joliveta, J. P. (2000). Surface-related properties of γ-Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 221, 63–79.CrossRefGoogle Scholar
  133. UK Council for Science and Technology report (2007). Nanoscience and nanotechnologies: A review of Government’s progress on its policy commitments. UK Council for Science and Technology, March, 1–45.Google Scholar
  134. UK Royal Society and the Royal Academy of Engineering report. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. Royal Society and the Royal Academy of Engineering, July, pp. 5.Google Scholar
  135. Umbreit, T. H., Weaver, J. L., Miller, T. J., Zhang, J., Shah, R. B., Khan, M.A., Stratmeyer, M. E., & Tomazic-Jezic V. J. (2007). Toxicology of titanium dioxide (TiO2) nanoparticles: 1. Characterization and tissue distribution in subcutaneously and intravenously injected mice. Society of Toxicology Annual Meeting, Charlotte, NC.Google Scholar
  136. Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A., Murray, L., Hilditch, T., Murray, T., Burtles, S., Fraier, D., Frigerio, E., Cassidy J., & on behalf of the Cancer Research Campaign Phase I/II Committee. (1999). Phase I clinical and pharmacokinetic study of PK of [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]. Clinical Cancer Research, 5, 83–94.PubMedGoogle Scholar
  137. Vinee, W., Guo, K., Zegelman, J., & Helsel, S. (2006). Nanotechnology: Nanodrugs, fact, fiction and fantasy, Drug Delivery Technology, 6, 34–39.Google Scholar
  138. Wakefield, G., Green, M., Lipscomb, S., & Flutter, B. (2004). Modified titania nanomaterials for sunscreen applications—reducing free radical generation and DNA damage. Materials Science and Technology, 20, 985–988.CrossRefGoogle Scholar
  139. Waterhouse, D. N., Madden T. D., Cullis P. R., Bally, M. B., Mayer, L. D., & Webb, M. S. (2005). Preparation, characterization, and biological analysis of liposomal formulations of vincristine. Methods in Enzymology, 391, 40–57.CrossRefPubMedGoogle Scholar
  140. Waterman, K. C., & Sutton, S. C. (2003). A computational model for particle size influence on drug absorption during controlled-release colonic delivery. Journal of Controlled Release, 86, 293–304.CrossRefPubMedGoogle Scholar
  141. Wechsler, J. (2006). Regulatory beat: Nanotechnology presents opportunities and challenges for FDA and manufacturers. Biopharmaceutics International, Jul 1.Google Scholar
  142. Wong, C., West, P. E., Olson, K. S., Mecartney, M. L., & Starostina, N. (2007). Tip dilation and AFM capabilities in the characterization of nanoparticles. Journal of Metals, 59, 12–16.Google Scholar
  143. Xu, P., Van Kirk, E. A., Li, S., Murdoch, W. J., Ren, J., Hussain, M. D., Radosz, M., & Shen, Y. (2006). Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids and Surfaces B, 48, 50–57.CrossRefGoogle Scholar
  144. Zidan, A. S., Sammour, O. A., Hammad, M. A., Megrab, N. A., Habib, M. J., & Khan, M. A. (2007). Quality by design: understanding the formulation variables of a self-nanoemulsified drug delivery systems of cyclosporine A by Box-Behnken design and desirability function. International Journal of Pharmaceutics, 332, 55–63.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Rakhi B. Shah
    • 1
  • Mansoor A. Khan
    • 2
  1. 1.Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Sciences, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver springUSA
  2. 2.Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Sciences, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver springUSA

Personalised recommendations