Skip to main content

Nanopharmaceuticals: Challenges and Regulatory Perspective

  • Chapter
Book cover Nanotechnology in Drug Delivery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Disclaimer: The opinions expressed in this chapter are only of authors and do not necessarily reflect the policy and statements of the FDA.

References

  • 21 CFR, 5. FDA organization. Code of Federal Registrar.

    Google Scholar 

  • 21CFR 211.65. Equipment construction. Code of Federal Registrar.

    Google Scholar 

  • 21CFR 310.305. Records and reports concerning adverse drug experiences on marketed prescription drugs for human use without approved new drug applications. Code of Federal Registrar.

    Google Scholar 

  • 21CFR 312.32. IND safety reports. Code of Federal Registrar.

    Google Scholar 

  • 21CFR 314.80. Post marketing reporting of adverse drug experiences. Code of Federal Registrar.

    Google Scholar 

  • 21 USC, § 371. Federal Food, Drug and Cosmetics Act.

    Google Scholar 

  • Abraxis (2007). Abraxis BioScience to initiate two phase I/II clinical trials with nab-docetaxel in hormone refractory prostate and metastatic breast cancer. Business wire; http://www.abraxisbio.com.

  • Advanced Magnetic Inc Website (2007). http://www.advancedmagnetics.com.

  • Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N., & Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences, 99, 12617–12621.

    Article  CAS  Google Scholar 

  • Altair Nanotechnologies Website (2007). www.altairnano.com.

  • ANF. (2004). Asia Nano Forum; http://www.asia-nano.org.

  • Arshady, R. (1988). Preparation of polymer nano- and microspheres by vinyl polymerization techniques. Journal of Microencapsulation, 5, 101–114.

    Article  CAS  PubMed  Google Scholar 

  • ASTM. (2006). Terminology for nanotechnology. American Standards for Testing and Materials, E2456-06.

    Google Scholar 

  • Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., & Baba, Y. (2004). Quantum dots as photosensitizers? Nature Biotechnology, 22, 1360–1362.

    Article  CAS  PubMed  Google Scholar 

  • Beaver, E. R. (2004). Implications of nanomaterials manufacture and use. USEPA Nanotechnology STAR Review; http://es.epa.gov/ncer/publications/workshop/8–18–04/ppt/beaver–2.ppt

  • Biodelivery sciences. http://www.biosantepharma.com/Products.php

  • Biosante Pharmaceuticals Website. www.biosantepharma.com

  • Borm, P. J. A., & Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles- potential implications for drug delivery. Journal of Nanoscience & Nanotechnology, 4, 521–531.

    Article  CAS  Google Scholar 

  • Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.

    Article  CAS  PubMed  Google Scholar 

  • Cell Therapeutics Inc. (2007). CTI files for special protocol assessment (SPA) for XYOTAX(TM) PGT307 lung cancer trial in women. PR Newswire-FirstCall, March 20; www.celltherapeutics.com

  • Chandrasekaran, T. (1993). Effect of microstructure and hardness on the grinding abrasive wear-resistance of a ball-bearing steel. Wear, 161, 105–109.

    Article  CAS  Google Scholar 

  • Chattopadhyay, P., & Gupta, R. B. (2001a). Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. International Journal of Pharmaceutics, 228, 9–31.

    Article  Google Scholar 

  • Chattopadhyay, P., & Gupta, R. B. (2001b). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Industrial Engineering & Chemical Research, 40, 3530–3539.

    Article  CAS  Google Scholar 

  • Constancis, A., Meyrueix, R., Bryson, N., Huille, S., Grosselin, J. M., Gulik-Krzywicki, T., & Soula, G. (1999). Macromolecular colloids of diblock poly(amino acids) that bind insulin. Journal of Colloid and Interface Science, 217, 357–368

    Article  CAS  PubMed  Google Scholar 

  • Crititech. http://www.crititech.com/currentRD.html

  • CRN. (2007). What is nanotechnology. Center for Responsible Nanotechnology; http://www.crnano.org/whatis.htm

  • Crommelin, D. J. A. (1994). Liposomes. In J. Kreuter (Ed.) Colloidal Drug Delivery Systems, (pp. 219–342) New York: Marcel Dekker.

    Google Scholar 

  • CytImmune Sciences, Inc. http://www.cytimmune.com/go.cfm?do=Page.View&pid=14

  • Davidson, R. N., Croft, S. L., Scott, A., Maini, M., Moody, A. H., & Bryceson, A. D. (1991). Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet, 337, 1061–1062.

    Article  CAS  PubMed  Google Scholar 

  • Davies, J. C. (2006). Managing the effects of nanotechnology. Woodrow Wilson International Center for Scholar: Project on emerging nanotechnology, Washington D. C.; http://nanotechproject.org/index.php?s=reports

  • De Keyser, J., De Cock, C., Poupaert, J. H., & Dumont, P. (1989). Synthesis of 14C labeled acrylic derivatives: diethyl [3-14C] methylidenemalonate and isobutyl [3-14C] cyanoacrylate. Journal of labeled compounds & radiopharmaceuticals, 27, 909–916.

    Article  Google Scholar 

  • De Keyser, J., Poupaert, J. H., & Dumont, P. (1991). Poly (diethyl methylidenemalonate) nanoparticles as a potential drug carrier: preparation, distribution and elimination after intravenous and peroral administration to mice. Journal of Pharmaceutical Sciences, 80, 67–70.

    Article  PubMed  Google Scholar 

  • Dendrimer resource page. Starpharma Holdings Ltd; http://www.starpharma.com/dendrimers.asp

  • Donaldson, K., Brown, M. D., Cloucer, A., Duffin, R., MacNee, W., Renwick, I., & Stone, V. (2002). The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine, 15, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Dubey, R. (2006). Pure drug nanosuspension: Impact of nanosuspension technology on drug discovery and development. Drug Delivery Technology, 6, 65–71.

    CAS  Google Scholar 

  • Duncan, R. (2003). The growing era of polymer therapeutics, Nature Reviews, 2, 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Elan Drug Technologies. http://www.elan.com/edt/drug_optimization/nanocrystal_technology.asp

  • Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., & Oberdorster, G. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives, 114, 1172–1178.

    Article  CAS  PubMed  Google Scholar 

  • Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 277, 1078–1081.

    Article  CAS  PubMed  Google Scholar 

  • EPA Science Policy Council – Nanotechnology Workgroup. (2007). U.S. Environmental Protection Agency Nanotechnology: White Paper, February. US Environmental Protection Agency; http://es.epa.gov/ncer/nano/publications/whitepaper12022005.pdf

  • FDA. Food and Drug Administration; http://www.fda.gov.

  • Flamel Technologies. http://www.flamel.com/techAndProd/index.shtml

  • Fivestar tech. http://www.fivestartech.com/technology/

  • Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Garner, R. C., Garner, J. V., Gregory, S., Whattam, M., Calam, A., & Leong, D. (2002). Comparison of the absorption of micronized (Daflon 500 mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. Journal of Pharmaceutical Sciences, 91, 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Granum, B., & Lovik, M. (2002). The effect of particles on allergic immune response. Toxicological Sciences, 65, 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R. B., & Chattopadhyay, P. (2000). Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound. US Provisional Patent, 60/206,644.

    Google Scholar 

  • Haskell, R. (2006). Physical characterization of nanoparticles. In R. Gupta, & U. Kompella (Eds.) Nanoparticle Technology for Drug Delivery (pp103–138) NY: Taylor & Francis.

    Google Scholar 

  • He, Q., Mitchell, A. R., Johnson, S. L., Wagner-Bartak, C., Morcol, T., & Bell, S. (2000). Calcium phosphate nanoparticle adjuvant. Clinical and Diagnostic Laboratory Immunology, 7, 899–903.

    CAS  PubMed  Google Scholar 

  • Hett, A. (2004). Nanotechnology: small matter, many unknowns. Zurich, Switzerland, Swiss Re.

    Google Scholar 

  • Hollister, K. R., Ladd, D., McIntire, G., Na, G., Rajagopalan, N., & Yuan, B. (1994). Use of purified surface modifiers to prevent particle aggregation during sterilization, US Patent number: 5352459, 1994

    Google Scholar 

  • How big is nanotechnology for Europe? The Commission launches an open consultation, Brussels, 30 (July 2004); http://ec.europa.eu/research/press/2004/pr3007en.cfm

  • Huang, F., Gilbert, B., Zhang, H., & Banfield, J. F. (2004). Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Physical Review Letters, 92, 155501.

    Article  PubMed  Google Scholar 

  • ICHQ3C (R3). (1988). Impurities: Residual solvents. International Conference on Harmonization.

    Google Scholar 

  • ICHQ8. (2004). Pharmaceutical Development. International Conference on Harmonization.

    Google Scholar 

  • ICHQ9. (2005). Quality risk management. International Conference on Harmonization.

    Google Scholar 

  • ICH S6. (1997). Preclinical safety evaluation of biotechnology derived pharmaceuticals. ICH harmonized tripartite guideline, International Conference on Harmonization.

    Google Scholar 

  • ICON. (2004). International Conference on Nanotechnology. In Nanotechnology, Small size, large impact? Swiss Re. Risk dialogue series, Center for global dialogue, December.

    Google Scholar 

  • ICTA. (2006). CTA and Friends of the Earth Challenge FDA to Regulate Nanoparticles at FDA Hearing, International Center for Technology Assessment; http://www.icta.org/press/release.cfm?news_id=21

  • Isabelle, P., Jean-Philippe, B., Jacques, P., & Alain, F. (2003). Surface charge, effective charge and dispersion/ aggregation properties of nanoparticles. Polymer International, 52, 619–624.

    Article  Google Scholar 

  • Jacobs, C., Kayser, O., & Muller, R. H. (2000). Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. International Journal of Pharmaceutics, 196, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, C., Kayser, O., & Muller, R. H. (2001). Production and characterization of mucoadhesive nanosuspensions for the formulation of bupravaquone. International Journal of Pharmaceutics, 214, 3–7.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, A. W., Maru, B. S., Zhang, X., Mohanty, D. K., Fahlman, B. D., Swanson, D. R., & Tomalia, D. A. (2005). Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Letters, 5, 1171–1173.

    Article  CAS  PubMed  Google Scholar 

  • Jillavenkatesa, A., & Kelly, J. F. (2002). Nanopowder Characterization: Challenges and Future Directions. Journal of Nanoparticle Research, 4, 463–468.

    Article  CAS  Google Scholar 

  • Joost, B., & Schwedes, J. (1996). Wear of grinding component on size reduction in stirred ball mills. Chemical Engineering & Technology, 68, 713–717.

    CAS  Google Scholar 

  • Kerr, M. C., & Reed, J. S. (1992). Comparative grinding kinetics and grinding energy during ball milling and attrition milling. American Ceramic Society Bulletin, 71, 1809–1816.

    CAS  Google Scholar 

  • Kimbrell, G. A. (2006). CTA Files Legal Action to Force FDA to Regulate Health Threats from Nanomaterials, International center for technology assessment. International Center for Technology Assessment news; http://www.icta.org/press/release.cfm?news_id=19

  • Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics, 284, 109–122.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, S., Xie, H., Gaff, J., Williamson, J. R., Tkachenko, A. G., Nouri, N., Feldheim, D. A., & Feldheim, D. L. (2004). Preparation of protein gradients through the controlled deposition of protein-nanoparticle conjugates onto functionalized surfaces. Journal of American Chemical Society, 126, 5388–5395.

    Article  Google Scholar 

  • Krause, K. P., Kayser, O., Mader, K., Gust, R. & Muller, R. H. (2000). Heavy metal contamination of nanosuspensions produced by high-pressure homogenization. International Journal of Pharmaceutics, 196, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter, J. (1994). Nanoparticles. In J. Kreuter (Ed.) Colloidal Drug Delivery Systems, (pp. 219–342) New York: Marcel Dekker.

    Google Scholar 

  • Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G., & Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health Part A, 65, 1513–30.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht, A., Ubrich, N., Hombreiro, P. M., Lehr, C., Hoffman, M., & Maincent, P. (2000). Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International Journal of Pharmaceutics, 196, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz, R. (2006). Regulatory approaches to novel nanomaterials: Unique benefits versus unique risks. http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4241s2_9.ppt

  • Lee, J. (2003). Drug nano- and microparticles processed into solid dosage forms: Physical properties. Journal of Pharmaceutical Sciences, 92, 2057–2068.

    Article  CAS  PubMed  Google Scholar 

  • Lherm, C., Muller, R. H., Puiseux, F., & Couvreur, P. (1992). Alkylcynoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. International Journal of Pharmaceutics, 84, 13–22.

    Article  CAS  Google Scholar 

  • Lichetnberg, D., & Barenholz, Y. (1988). Liposomes: Preparation, characterization, and preservation. In D. Glick (Eds.), Methods of Biological Analysis (pp. 337–461) New York: John Wiley.

    Chapter  Google Scholar 

  • Liversidge, G. G. (1996). Drug nanocrystals for improved drug delivery. In: Proceedings of the CRS Workshop on Particulate Drug Delivery Systems, Kyoto, Japan.

    Google Scholar 

  • Liversidge, G. G., & Cundy, K. C. (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International Journal of Pharmaceutics, 125, 91–97.

    Article  CAS  Google Scholar 

  • Liversidge, G. G., Cundy, K. C., Bishop, J., & Czekai, D. (1991). Surface modified drug nanoparticles. US Patent No, 5145684.

    Google Scholar 

  • Lockman, P. R., Mumper, R. J., Khan, M. A., & Allen, D. D. (2002). Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Development Industrial Pharmacy, 28, 1–13.

    Article  CAS  Google Scholar 

  • Loo, C., Lin, A., Hirsch L., Lee, M., Barton, J., Halas, N., West, J., & Drezek, R. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research and Treatment, 3, 33–40.

    CAS  PubMed  Google Scholar 

  • Loo, C., Lowery, A., Halas, N., West, J., & Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 5, 709–711.

    Article  CAS  PubMed  Google Scholar 

  • Lux Research. (2004). Sizing nanotechnology’s value chain. New York: Lux Research Inc.

    Google Scholar 

  • Lux Research. (2006). The nanotech report. 4th edn. New York: Lux Research Inc.

    Google Scholar 

  • Mabela, T. K. M., Poupaert, J. H., Dumont, P., & Haemers, A. (1993). Development of poly(dialkyl methylidenemalonate) nanoparticles as drug carriers. International Journal of Pharmaceutics, 92, 71–79.

    Article  Google Scholar 

  • Martin, A., Swarbrick, J., & Cammarata, A. (1983). Diffusion and Dissolution. In A. Martin, A., J. Swarbrick & A. Cammarata (Eds.) Physical Pharmacy (pp 399–444). 3rd edition, Philadelphia: Lea & Febiger publishers.

    Google Scholar 

  • Mawson, S., Johnston, K. P., Combes, J. R., & DeSimone, J. M. (1994). Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules, 28, 3182–3191.

    Article  Google Scholar 

  • Maynard, A. D. (2006a). Nanotechnology: The next big thing, or much ado about nothing? Annals of Occupational Hygiene, 10, 1–12.

    Article  Google Scholar 

  • Maynard, A .D. (2006b). Nanotechnology: Managing the risks. Nano Today, 1, 22–33.

    Article  Google Scholar 

  • Maynard A. D., & Baron P. A. (2004). Aerosols in the industrial environment: Aerosols handbook. In L. S. Ruzer, & N. H. Harley, (Eds.) Measurement, Dosimetry and Health Effects (pp. 225–64) Boca Raton: CRC Press.

    Google Scholar 

  • Miller, G., Archer, L., Pica, E., Bell, D., Senjen, R., & Kimbrell, G. (2006). Nanomaterials, sunscreens and cosmetics: Small ingredients, big risk. Friends of Earth Report, May 2006.

    Google Scholar 

  • Mishima, K., Matsuyama, K., Tanabe, D., &Yamauchi, S. (2000). Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. American Institute of Chemical Engineering Journal, 46, 857–865.

    CAS  Google Scholar 

  • Morcol, T., Nagappan, P., Nerenbaum, L., Mitchell, A., & Bell, S. J. (2004). Calcium phosphate-PEG-insulin- casein (CAPIC) particles as oral delivery systems of insulin. International Journal of Pharmaceutics, 277, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Muller, R. H., Becker, R., Kruss, B., & Peters, K. (1998). Pharmaceutical nanosuspensions for medicament administration as system of increased saturation solubility and rate of solution, US Patent No, 5858410.

    Google Scholar 

  • Muller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3–19.

    Article  CAS  PubMed  Google Scholar 

  • Muller, R. H., Mader, K., & Krause, K. (2002). Pharmasol GMbH dispersion for formulation of slightly or poorly soluble active ingredients. US Patent No, CA002388550A1.

    Google Scholar 

  • Muller, R. H., Peters, K., Becker, R. & Kruss, B. (1996). Nanosuspensions for the i.v. administration of poorly soluble drugs-stability during sterilization and long-term storage. Proceedings of International Symposium on Controlled Release of Bioactive Material, 22, 574–575.

    Google Scholar 

  • Nakada, Y., Fattal, E., Foulquier, M., & Couvreur, P. (1996). Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharmaceutical Research, 13, 38–43.

    Article  CAS  PubMed  Google Scholar 

  • NanoBio Corporations. http://www.nanobio.com/Platform-Technology/NanoStat-Platform.html

  • Nazzal, S., Nutan, M., Palamakula, A., Shah, R., Zaghloul, A. A., & Khan, M., A. (2002). Optimization of a self-nanoemulsified tablet dosage form of Ubiquinone using response surface methodology: effect of formulation ingredients. International Journal of Pharmaceutics, 240, 103–114.

    Article  CAS  PubMed  Google Scholar 

  • NCL (National Characterization Laboratory). Moving nanotechnology concepts to the clinic. NCL news, 1, 2-6; http://ncl.cancer.gov/newsletter_vol_001.asp.

  • Nei, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at nanolevel. Science, 311, 622–627.

    Article  Google Scholar 

  • NNI, National Nanotechnology Initiative (2004). Nanotechnology resources page; http://www.nano.gov/html/facts/whatIsNano.html

  • NSCT (2000). NSTC definition of nanotechnology. National strategy for combating terrorism, June 12; http://www.becon.nih.gov/nstc_def_nano.htm

  • Nucryst. http://www.nucryst.com/nanotech.htm

  • Oberdoster, G. (2001). Pulmonary effects of ultrafine particles. Archives of Occupational & Environmental Health, 74, 1–8.

    Article  Google Scholar 

  • Oberdorster, G., Ferin, J., & Lehnert, B. E. (1994). Correlation between particle-size, in-vivo particle persistence, and lung injury. Environmental Health Perspectives, 102, 173–179.

    Article  PubMed  Google Scholar 

  • Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox., C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437–45.

    Article  CAS  PubMed  Google Scholar 

  • Olivier, J. (2005). Drug Transport to brain with targeted nanoparticles. NeuroRx, 2, 108–119.

    Article  PubMed  Google Scholar 

  • Otuska, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55, 403–419.

    Article  Google Scholar 

  • Paciotti, G., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R., & Tamarkin, L. (2004). Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11, 169–183.

    Article  CAS  PubMed  Google Scholar 

  • Palamakula, A., Nutan, M., & Khan, M. A. (2004). Response Surface Methodology for Optimization and Characterization of Limonene-based Coenzyme Q10 Self-Nanoemulsified Capsule Dosage Form. AAPS Pharmaceutical Science and Technology, 5: article 66.

    Google Scholar 

  • Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55, 329–347.

    Article  CAS  PubMed  Google Scholar 

  • Patri, A. K., Majoros, J. I., & Baker, J. R., Jr. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology, 6, 466–471.

    Article  CAS  PubMed  Google Scholar 

  • Randolph, T. W., Randolph, A. D., Mebes, M., & Yeung, S. (1993). Sub-micron-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnology Progress, 9, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Redzisqewski, P. (1997). Predictive model for ball mill wear, Canadian Metallurgical Quarterly, 36, 87–93.

    Article  Google Scholar 

  • Reverchon, E. (1999). Supercritical antisolvent precipitation of micro- and nano- particles. Journal of Supercritical Fluids, 15, 1–21.

    Article  CAS  Google Scholar 

  • Reverchon, E., DellaPorta, G., Trolio, A. D., & Pace, S. (1998). Supercritical antisolvent precipitation of nanoparticles of superconductor precursors. Industrial Engineering & Chemical Research, 37, 952–958.

    Article  CAS  Google Scholar 

  • Roco, M. C. (2003). Government nanotechnology funding: An international outlook. National Science Foundation, June 30.

    Google Scholar 

  • Roney, C., Kulkarni, P., Arora, V., Antich, P., Bonte, F., Wu, A., Mallikarjuana N. N., Manohar, S., Liang, H. F., Kulkarni, A. R., Sung, H. W., Sairam, M., & Aminabhavi, T. M. (2005). Targeted nanoparticles for drug delivery through the blood-brain-barrier for Alzheimer’s disease. Journal of Controlled Release, 108, 193–214.

    Article  CAS  PubMed  Google Scholar 

  • Roy, I., Mitra, S., Maitra, A., & Mozumdar, S. (2003). Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. International Journal of Pharmaceutics, 250, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Ryman-Rasmussen, J. P., Riviere, J. E., & Monteiro-Riviere, N. A., (2006). Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological sciences, 91, 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Saxton, J. (2007). Nanotechnology: The future is coming sooner than you think. United States Congress Joint Economic Committee, March, 1–20.

    Google Scholar 

  • Science Policy Section. (2004). Nanosciences and nanotechnologies: Opportunities and uncertainties. Royal Society and Royal Academy of Engineering. July. www.nanotec.org.uk/finalReport.htm

  • Seymour, L. W., Ferry, D. R., Anderson, D., Hesselwood, S., Julyan, P., Poyner, R., Doran, J., Young, A., Burtles, S., & Kerr, D. (2002). Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. Journal of Clinical Oncology, 20, 1668–1676.

    Article  CAS  PubMed  Google Scholar 

  • Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A., Johnson, V., Potapovich, A., Tyurina, Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A., Antonini, J., Evans, D., Ku, B., Ramsey, D., Maynard, A., Kagan, V., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology -Lung Cellular and Molecular Physiology, 289, 698–708.

    Article  Google Scholar 

  • Soppimath, K. S., Aminabhavi, T. M., Kulkarni A. R., & Rudzinskib, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Soliqs. http://www.soliqs.com/NanoMorph-R.20.0.html

  • Svenson, S., & Tomalia, D. A. (2005). Dendrimers in biomedical applications-reflections on the field. Advanced Drug Delivery Reviews, 57, 2106–2129.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney, S., Woehrle, G., & Hutchison, J. (2006). Rapid purification and size Separation of gold nanoparticles via diafiltration. Journal of the American Chemical Society, 128(10), 3190–3197.

    Article  CAS  PubMed  Google Scholar 

  • Swiss Re. (2004). Nanotechnology, Small size, large impact? Risk dialogue series, Center for global dialogue, December.

    Google Scholar 

  • Taylor, M. (2006). Regulating the products of nanotechnology, does FDA have the tools it needs? PEN 5, October.

    Google Scholar 

  • Thanos, C. G., Liu, Z., Reineke, J., Edwards, E., & Mathiowitz, E. (2003). Improving relative bioavailability of dicumarol by reducing particle size and adding the adhesive poly(fumaric-co-sebacic) anhydride. Pharmaceutical Research, 20, 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M., & Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100, 9138–9143.

    Article  CAS  Google Scholar 

  • Tinkle, S. S., Antonini, J. M., Rich, B. A., Rich, B., Roberts, J., Salmen, R., DePree, K., & Adkins, E. (2003). Skin as a route of exposure and sensitization in chronic beryllium disease. Environmental Health Perspectives, 111, 1202–1208.

    Article  CAS  PubMed  Google Scholar 

  • Tom, J. W., & Debenedetti, P. G. (1991a). Particle formation with supercritical fluids - a review. Journal of Aerosol Science, 22, 555–584.

    Article  CAS  Google Scholar 

  • Tom, J. W., & Debenedetti, P. G. (1991b). Formation of bioerodable polymeric microspheres and microparticles by rapid expansion of supercritical solution. Biotechnology Progress, 7, 403–411.

    Article  CAS  Google Scholar 

  • Tom, J. W., Debenedetti, P. G., & Jerome, R. (1994). Preparation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene by rapid expansion of supercritical solution. Journal of Supercritical Fluids, 7, 9–29.

    Article  CAS  Google Scholar 

  • Tomalia, D. A., Reyna, L. A., & Svenson, S. (2007). Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Society Transaction, 35, 61–67.

    Article  CAS  Google Scholar 

  • Tronc, E., Ezzirb, A., Cherkaouib, R., Chanéaca, C, Noguèsb, M., Kachkachib, H., Fioranid, D., Testa, A. M., Grenèchec, J. M., & Joliveta, J. P. (2000). Surface-related properties of γ-Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 221, 63–79.

    Article  CAS  Google Scholar 

  • UK Council for Science and Technology report (2007). Nanoscience and nanotechnologies: A review of Government’s progress on its policy commitments. UK Council for Science and Technology, March, 1–45.

    Google Scholar 

  • UK Royal Society and the Royal Academy of Engineering report. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. Royal Society and the Royal Academy of Engineering, July, pp. 5.

    Google Scholar 

  • Umbreit, T. H., Weaver, J. L., Miller, T. J., Zhang, J., Shah, R. B., Khan, M.A., Stratmeyer, M. E., & Tomazic-Jezic V. J. (2007). Toxicology of titanium dioxide (TiO2) nanoparticles: 1. Characterization and tissue distribution in subcutaneously and intravenously injected mice. Society of Toxicology Annual Meeting, Charlotte, NC.

    Google Scholar 

  • Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A., Murray, L., Hilditch, T., Murray, T., Burtles, S., Fraier, D., Frigerio, E., Cassidy J., & on behalf of the Cancer Research Campaign Phase I/II Committee. (1999). Phase I clinical and pharmacokinetic study of PK of [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]. Clinical Cancer Research, 5, 83–94.

    CAS  PubMed  Google Scholar 

  • Vinee, W., Guo, K., Zegelman, J., & Helsel, S. (2006). Nanotechnology: Nanodrugs, fact, fiction and fantasy, Drug Delivery Technology, 6, 34–39.

    Google Scholar 

  • Wakefield, G., Green, M., Lipscomb, S., & Flutter, B. (2004). Modified titania nanomaterials for sunscreen applications—reducing free radical generation and DNA damage. Materials Science and Technology, 20, 985–988.

    Article  CAS  Google Scholar 

  • Waterhouse, D. N., Madden T. D., Cullis P. R., Bally, M. B., Mayer, L. D., & Webb, M. S. (2005). Preparation, characterization, and biological analysis of liposomal formulations of vincristine. Methods in Enzymology, 391, 40–57.

    Article  CAS  PubMed  Google Scholar 

  • Waterman, K. C., & Sutton, S. C. (2003). A computational model for particle size influence on drug absorption during controlled-release colonic delivery. Journal of Controlled Release, 86, 293–304.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, J. (2006). Regulatory beat: Nanotechnology presents opportunities and challenges for FDA and manufacturers. Biopharmaceutics International, Jul 1.

    Google Scholar 

  • Wong, C., West, P. E., Olson, K. S., Mecartney, M. L., & Starostina, N. (2007). Tip dilation and AFM capabilities in the characterization of nanoparticles. Journal of Metals, 59, 12–16.

    Google Scholar 

  • Xu, P., Van Kirk, E. A., Li, S., Murdoch, W. J., Ren, J., Hussain, M. D., Radosz, M., & Shen, Y. (2006). Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids and Surfaces B, 48, 50–57.

    Article  CAS  Google Scholar 

  • Zidan, A. S., Sammour, O. A., Hammad, M. A., Megrab, N. A., Habib, M. J., & Khan, M. A. (2007). Quality by design: understanding the formulation variables of a self-nanoemulsified drug delivery systems of cyclosporine A by Box-Behnken design and desirability function. International Journal of Pharmaceutics, 332, 55–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Acronyms

ADME

Absorption, distribution, metabolism, and elimination

AFM

Atomic force microscopy

ANDA

Abbreviated New Drug Application

ANF

Asia Nano Forum

ASTM

American Standards for Testing and Materials

API

Active pharmaceutical ingredient

BCS

Biopharmaceutical Classification System

BLA

Biological Licensing Application

CBER

Center for Biological Evaluations and Research

CDER

Center for Drug Evaluation and Research

CDRH

Center for Device and Radiological Health

CFR

Code of Federal Registrar

CMC

Chemistry, manufacturing, and control

CRN

Center for Responsible Nanotechnology

CST

Council for Science and Technology (United Kingdom)

CTA

Center for Technology Assessment

CVM

Center for Veterinary Medicine

DNA

Deoxyribonucleic acid

EPA

Environmental Protection Agency

FDA

Food and Drug Administration

FD&C act

Food, Drug and Cosmetic Act

FoE

Friends of Earth

GRAS

Generally regarded as safe

ICH

International Conference on Harmonization

ICON

International Council on Nanotechnology

ICTA

International Center for Technology Assessment

IIG

Inactive Ingredient Guide

IV

Intravenous

MHRA

Medicines and Healthcare Products Regulatory Agency (United Kingdom)

MRI

Magnetic resonance imaging

NCL

National Characterization Laboratory

NCI

National Cancer Institute

NDA

New Drug Application

NIST

National Institute of Standards and Technology

NNI

National Nanotechnology Initiative

NSCT

National Strategy for Combating Terrorism

ORA

Office of Regulatory Affairs

OSHC

Office of Science and Health Coordination

PD

Pharmacodynamics

PK

Pharmacokinetics

PAT

Process analytical technology

PSD

Particle size distributionh

QbD

Quality by Design

R&D

Research and Development

SC

Subcutaneous

SEDDS

Self-emulsifying drug delivery systems

SNEDDS

Self-nano-emulsifying drug delivery systems

USC

United States Code

UV

Ultraviolet

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Shah, R.B., Khan, M.A. (2009). Nanopharmaceuticals: Challenges and Regulatory Perspective. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_21

Download citation

Publish with us

Policies and ethics