Skip to main content

Nanotechnology in Drug Development and Life Cycle Management

  • Chapter

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    National NanoTechnology Initiative, http://www.nano.gov/, September 2006

  2. 2.

    ICH Harmonized Tripartite Guideline, Impurities: Guideline for Residual Solvents Q3C (R3)

  3. 3.

    FDA Guideline of General Principles of Process Validation, May 1987

References

  • Agostiano, A., Catalano, M., Curri, M.L. Della, Monica, M., Manna L., Vasanelli, L. (2000) Synthesis and structural characterization of CDs nanoparticles prepared in four-components “water-in-oil”. microemulsion. Micron. 31, 253–258

    Article  CAS  Google Scholar 

  • Allènmann, E., Gurny, R., Doelker, E. (1993) Drug-loaded nanoparticles-preparation methods and drug targeting issues. Eur. J. Biopharm. 39, 173–191.

    Google Scholar 

  • Attwood, D. (1994) Microemulsions. In: J Kreuter (eds) Colloidal drug delivery. New York Marcel Dekker

    Google Scholar 

  • Breen, P.V. (2006) Small-tech big potential. Drug Deliv, November 2006, 30–31

    Google Scholar 

  • Brigger, I., Dubernet, C., Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651

    Article  CAS  Google Scholar 

  • Dearn, A.R. (1995) Atovaquone pharmaceutical compositions. European patent EU 0/075711, August 5

    Google Scholar 

  • Delie, F., Blanco-Prieto, M.J. (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10, 65–80.

    Article  CAS  PubMed  Google Scholar 

  • Desai, M.P., Labhasetwar, V., Walter, E., Levy, R.J., Amidon, G.L. (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14, 1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., Stokes, K.L., Wiemann, J., Zhou, W. (2000) Nanocrystalline bismuth synthesized via an in situ polymerization microemulsion process. Mater. Lett. 42, 113–120

    Article  CAS  Google Scholar 

  • Fahmy, T. M. Fong, P.M. Goyal, A., Saltzman, W.M. (2005) Targeted for drug delivery. Nanotoday, August, 18–26

    Google Scholar 

  • Fendler, J.H. (1994) Membrane-mimetic approach to advanced materials. In Advances in Polymer Science 113, Springer Berlin

    Google Scholar 

  • Feng, S. (2004) Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med Devices 1, 115–125

    Article  CAS  PubMed  Google Scholar 

  • Freitas, C., Muller, R.H. (1998) Spray-drying of solid lipid nanoparticles. Eur. J. Pharm and Biopharm. 46, 145–151

    Article  CAS  Google Scholar 

  • Gasco, M.R. (1997) Solid lipid nanospheres from warm microemulsions. Pharm. Tech. Eur. 9, 52–58

    CAS  Google Scholar 

  • Huettenrauch, R. (1984) Molecular pharmaceutics. Part 86. Stability of activated states in solid drug forms. Pharmazie 39, 272

    CAS  Google Scholar 

  • Hu, J., Johnston, K.P., Williams, R.O. (2004) Nanoparticle engineering process for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind. Pharm. 30, 233–245

    Article  PubMed  Google Scholar 

  • Jung, T., Kamm, W., Bretenbach, A., Kaiserling, E., Xiao, J.X., Kissel, T. (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharma. Biopharm. 50, 147–160

    Article  CAS  Google Scholar 

  • Kayser, O., Lemke, A., Hernandez-Trejo, N. (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotech. 6, 3–5

    CAS  Google Scholar 

  • Kim, G., Nie, S. (2005) Targeted cancer nanotherapy. Nanotoday 28–33

    Google Scholar 

  • Kipp, J.E. (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122

    Article  CAS  PubMed  Google Scholar 

  • Knight, P. (2006) Transforming potential for difficult drugs. Drug Delivery, November 2006, 6–8

    Google Scholar 

  • Landfester, K. (2001) Polyreactions in miniemulsions Macromol. Rapid Commun. 22, 896–936

    Article  Google Scholar 

  • Langevin, D. (1991) Microemulsions-interfacial aspects Adv Colloid Interface Sci. 34: 583

    Article  CAS  Google Scholar 

  • Liversidge, G.G., Cundy, K.C. (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. Int. J. Pharm. 125, 91–97

    Article  CAS  Google Scholar 

  • Lockman, P.R., Mumper, R.J., Khan, M.A., Allen, D.D. (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 28.

    Google Scholar 

  • Mehnert, W., Mader, K. (2001) Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Del. Rev 47, 165–196

    Article  CAS  Google Scholar 

  • Muller, R.H. Jacobs, C., Kayser, O. (2001) Nanosuspension as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 47, 3–19

    Article  CAS  Google Scholar 

  • Mumper, R.J. Cui, Z., Oyewumi, M.O. (2003) Nanotemplate engineering of cell-specific nanoparticles. J. Disp. Sci. Tech. 24, 569–588

    Article  CAS  Google Scholar 

  • Moghimi, S.M., Hunter, A.C. (2001) Capture of stealth nanoparticles by body defences. Crit. Rev. Ther. Drug Carrier Sys. 6, 527–550

    Google Scholar 

  • Oyewumi, M.O., Mumper, R.J. (2002) Gadolinium loaded nanoparticles engineered from microemulsion templates. Drug Dev. Ind. Pharm. 28, 317–328

    Article  CAS  PubMed  Google Scholar 

  • Panchapakesan, B. (2005) Nanotechnology: Part 2 Tiny Technology-tremendous therapeutic potential. Oncology Issues Nov/Dec 2005

    Google Scholar 

  • Pikal, M.J. Shah, S., Roy, M.L., Putman, R. (1990) The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int. J. Pharm. 60, 203–217

    Article  CAS  Google Scholar 

  • Rabinow, B.E. (2004) Nanosuspensions in drug delivery. Nat. Rev Drug Discov. 3, 785–796.

    Article  CAS  Google Scholar 

  • Schmidt, C., Bodmeier, R. (1999) Incorporation of polymeric nanoparticles into solid dosage forms. J. Control. Rel. 57, 115–125

    Article  CAS  Google Scholar 

  • Setler, 1995, P. (1999) Identifying new oral technologies to meet your drug delivery needs for the delivery of peptides and proteins and poorly soluble molecules. IIR Limited Drug Delivery Systems, London, March 1999

    Google Scholar 

  • Sham, J.O., Zhang, Y., Finlay, W.H., Roa, W.H., Lobenberg, R. (2004) Formulation and characterization for aerosol delivery to the lung. Int. J. Pharm. 269, 457–567

    Article  CAS  PubMed  Google Scholar 

  • Ward, G.H., Schultz, R.K. (1995) Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm. Res. Pharm. Res. 12, 773–779

    Article  CAS  PubMed  Google Scholar 

  • Wissing, S.A., Muller, R.H. (2003) Cosmetic applications for solid lipids nanoparticles (SLN). Int. J. Pharm. 254, 65–68

    Article  CAS  PubMed  Google Scholar 

  • Wu, N.Z. Da, D., Rudoll, T.L., Needham, D. Whorton, A.R. Dewhirst, M.W. (1993) Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue. Cancer Res. 53, 3765–3770

    CAS  PubMed  Google Scholar 

  • Yi, Y.M., Yang, T.Y., Pan W.M. (1999) Preparation and distribution of 5-fluorouracil I-125 sodium alginate-bovine serum albumin nanoparticles. World J. Gastroenterol. 5, 57–60

    PubMed  Google Scholar 

  • Yoo, H.S. Lee, K.H. Oh, J.E., Park, T.G. (2000) In vitro and in vivo antitumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Rel. 68, 419–431

    Article  CAS  Google Scholar 

  • Zuidam, N.J., Lee, S.S.L., Crommelin, D.J.A. (1992) Sterilization of liposomes by heat treatment. Pharm. Res. 10, 1591–1596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Majuru, S., Oyewumi, M.O. (2009). Nanotechnology in Drug Development and Life Cycle Management. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_20

Download citation

Publish with us

Policies and ethics