Block Copolymer Synthesis for Nanoscale Drug and Gene Delivery

  • Motoi Oishi
  • Yukio Nagasaki
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Block Copolymer Triblock Copolymer Polymeric Micelle Ethyl Methacrylate RNAi Activity 


  1. Allen, C., Yu, Y., Maysinger, D., & Eisenberg, A. (1998). Polycaprolactone-b-poly(ethylene Oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem, 9, 564–572.CrossRefPubMedGoogle Scholar
  2. Bei, J. Z., Li, J. M., Wang, Z. F., Le, J. C., & Wang, S. G. (1997). Polycaprolactone-poly(ethylene-glycol) block copolymer. IV: Biodegradation behavior in vitro and in vivo. Polym Adv Technol, 8, 693–696.CrossRefGoogle Scholar
  3. Bettinger, T., Remy, J. S., Erbacher, P., & Behr, J. P. (1998). Convenient polymer-supported synthetic route to heterobifunctional polyethylene glycols Bioconjug Chem, 9, 842–846.CrossRefPubMedGoogle Scholar
  4. Boussif, O., Lezoualc, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J. P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92, 7297–7301.CrossRefPubMedGoogle Scholar
  5. Braasch, D., Paroo, Z., Constantiescu, A., Ren, G., Öz, O. K., Mason, R. P., & Corey, D. R. (2004). Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett, 14, 1139–1143.CrossRefPubMedGoogle Scholar
  6. Cammas, S., Nagasaki, Y., & Kataoka, K. (1995). Heterobifunctional poly(ethylene oxide): synthesis of alpha-methoxy-omega-amino and alpha-hydroxy-omega-amino PEOs with the same molecular weights. Bioconjug Chem, 6, 226–230.CrossRefPubMedGoogle Scholar
  7. Cherng, J. Y., Wetering, P. van de., Talsma, H., Crommelin, D. J. A., & Hennink, W. E. (1996). Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm Res, 13, 1038–1042.CrossRefPubMedGoogle Scholar
  8. Clague, M. J. (1998). Molecular aspects of the endocytic pathway. Biochem J, 336, 271–282.PubMedGoogle Scholar
  9. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.CrossRefPubMedGoogle Scholar
  10. Fukushima, S., Miyata, K., Nishiyama, N., Kanayama, N., Yamasaki, Y., & Kataoka, K. (2005) PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J Am Chem Soc, 127, 2810–2811.CrossRefPubMedGoogle Scholar
  11. Goh, S. L., Murthy, N., Xu, M., & Fréchet, J. M. J. (2004), Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjug Chem, 15, 467–474.CrossRefPubMedGoogle Scholar
  12. Greene, T. W. (1991). Protecting groups in organic synthesis. Wiley-Interscience.Google Scholar
  13. Gruenberg, J. (2001). The endocytic pathway: A mosaic of domains. Nat Rev Mol Cell Biol, 2, 721–730.CrossRefPubMedGoogle Scholar
  14. Harada, A., Togawa, H., & Kataoka, K. (2001). Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)–poly(-Lysine) block copolymers. Eur J Pharm Sci, 13, 35–42.CrossRefPubMedGoogle Scholar
  15. Harada-Shiba, M., Yamauchi, K., Harada, A., Takamisawa, I., Shimokado, K., & Kataoka, K. (2002). Polyion complex micelles as vectors in gene therapy pharmacokinetics and in vivo gene transfer. Gene Ther, 9, 407–414.CrossRefPubMedGoogle Scholar
  16. Hashida, M., Takemura, S., Nishikawa, M., & Takakura, Y. (1998). Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine) J Control Release, 53, 301–310.CrossRefPubMedGoogle Scholar
  17. Hedfors, C., Ostmark, E., Malmstrom, E., Hult, K., & Martinelle, M. (2005). Thiol end-functionalization of poly(ɛ-caprolactone), catalyzed by Candida antarctica lipase B Macromoloecules, 38, 647–649.CrossRefGoogle Scholar
  18. Iijima, M., Nagasaki, Y., Okada, T., Kato, M., & Kataoka, K. (1999). Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers Macromolecules, 32, 1140–1146.CrossRefGoogle Scholar
  19. Inoue, S., & Aida, T. (1989). Anionic ring opening polymerization: copolymerization. In S. G. Allen & J. C. Bevington (Eds.), Comprehensive polymer science: The synthesis, characterization, reactions and applications of polymers (pp. 553–570). New York: Pergamon Press.Google Scholar
  20. Ishii, T., Otsuka, H., Kataoka, K., & Nagasaki, Y. (2004). Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by α-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir, 20, 561–564.CrossRefPubMedGoogle Scholar
  21. Kaiser, K., Marek, M., Haselgrubler, T., Schindler, H., & Gruber H. J. (1997). Basic studies on heterobifunctional biotin-PEG conjugates with a 3-(4-pyridyldithio)propionyl marker on the second terminus. Bioconjug Chem, 8, 545–551.CrossRefPubMedGoogle Scholar
  22. Kataoka, K., Harada, A., Wakebayashi, D., & Nagasaki, Y. (1999). Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged block copolymer. Macromolecules, 32, 6892–6894.CrossRefGoogle Scholar
  23. Kataoka, K., Togawa, H., Harada, A., Yasugi, K., Matsumoto, T., & Katayose, S. (1996). Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline Macromolecules, 29, 8556–8557.CrossRefGoogle Scholar
  24. Katayose, S., & Kataoka, K. (1997). Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem, 8, 702–707.CrossRefPubMedGoogle Scholar
  25. Kim, Y. J., Nagasaki, Y., Kataoka, K., Kato, M., Yokoyama, M., Okano, T., & Sakurai, Y. (1994). Heterobifunctional poly(ethylene oxide). Polym Bull, 33, 1–6.CrossRefGoogle Scholar
  26. Kimura, Y. (1993). Biocompatible polymer. In T. Tsuruta, T. Hayashi, K. Katoka, K. Ishihara, & Y. Kimura (Eds.), Biomedical applications of polymeric materials (pp. 164–189). Boca Raton, FL: CRC Press.Google Scholar
  27. Kitano, H., Shoda, K., & Kosaka, A. (1995). Galactose-containing amphiphiles prepared with a lipophilic radical initiator. Bioconjug Chem, 6, 131–134.CrossRefPubMedGoogle Scholar
  28. Lloyd, J. B. (2000). Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev, 41, 189–200.CrossRefPubMedGoogle Scholar
  29. Maeda, H., Sawa, T., & Konno, T. (2001). Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release, 74, 47–61.CrossRefPubMedGoogle Scholar
  30. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res, 46, 6387–6392.PubMedGoogle Scholar
  31. Meister, A., & Anderson, M. E. (1983). Glutathione. Annu Rev Biochem, 52, 711–760.CrossRefPubMedGoogle Scholar
  32. Mukherjee, S., Ghosh, R. N., & Maxfield, F. R. (1997). Endocytosis. Physiol Rev, 77, 759–803.PubMedGoogle Scholar
  33. Nagasaki, Y., Honzawa, E., Kato, M., & Kataoka, K. (1994). Novel stimuli-sensitive telechelic oligomers. pH and temperature sensitivities of poly(silamine) oligomers. Macromolecules, 27, 4848–4850.CrossRefGoogle Scholar
  34. Nagasaki, Y., Kutsuna, T., Iijima, M., Kato, M., & Kataoka, K. (1995a). Primary amino-terminal heterobifunctional poly(ethylene oxide). Facile synthesis of poly(ethylene oxide) with a primary amino group at one end and a hydroxyl group at the other end. Bioconjug Chem, 6, 702–704.CrossRefGoogle Scholar
  35. Nagasaki, Y., Kutsuna, T., Iijima, M., Kato, M., Kataoka, K., Kitano, S., & Kadoma. Y. (1995b). Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end. Bioconjug Chem, 6, 231–233.CrossRefGoogle Scholar
  36. Nagasaki, Y., Okada, T, Scholz, C., Iijima, M., Kato, M., & Kataoka, K. (1998). The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules, 31, 1473–1479.CrossRefGoogle Scholar
  37. Nagasaki, Y., Sato, Y., & Kato, M. (1997). A novel synthesis of semitelechelic functional poly(methacrylate)s through an alcoholate initiated polymerization. Synthesis of poly[2-(N,N-diethylaminoethyl) methacrylate] macromonomer. Macromol Rapid Commun, 18, 827–835.CrossRefGoogle Scholar
  38. Oishi, M., Hayama, T., Akiyama, Y., Harada, A., Yamasaki, Y., Nagatsugi, F., Sasaki, S., Nagasaki, Y., & Kataoka, K. (2005). Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polyion complex (PIC) micelles based on poly(ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules, 6, 2449–2454.CrossRefPubMedGoogle Scholar
  39. Oishi, M., Ikeo, S., & Nagasaki, Y. (2007). Lipase-Catalyzed Selective Synthesis and Micellization of Poly(ethylene glycol)-block-Poly(ɛ-caprolactone) Copolymer Possessing a Carboxylic Acid Group at the PEG Chain End. Polym J, 39, 239–244.Google Scholar
  40. Oishi, M., Kataoka, K., & Nagasaki, Y. (2006). pH-Responsive Three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug Chem, 17, 677–688.CrossRefPubMedGoogle Scholar
  41. Oishi, M., Nagasaki, Y., & Kataoka, K. (2005). Functional PEG for drug delivery. In G, S. Kwon (Ed.), Polymeric Drug Delivery Systems (pp. 93–127). New York: Taylor & Francis.Google Scholar
  42. Oishi, M., Nagastugi, F., Sasaki, S., Nagasaki, Y., & Kataoka, K. (2005). Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chem Bio Chem, 6, 718–725.PubMedGoogle Scholar
  43. Oishi, M., Nagasaki, Y., Itaka, K., Nishiyama, N., & Kataoka, K. (2005). Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc, 127, 1624–1625.CrossRefPubMedGoogle Scholar
  44. Oishi, M., Nakaogami, J., Ishii, T., & Nagasaki, Y. (2006). Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett, 35, 1046–1047.CrossRefGoogle Scholar
  45. Oishi, M., Sasaki, S., Nagasaki, Y., & Kataoka, K. (2003). pH-Responsive oligodeoxynucleotide (ODN)-poly(ethylene glycol) conjugate through acid-labile β-thiopropionate linkage: preparation and polyion complex micelle formation. Biomacromolecules, 4, 1426–1432.CrossRefPubMedGoogle Scholar
  46. Otsuka, H., Akiyama, Y., Nagasaki, Y., & Kataoka, K. (2001). Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-lactosyl-ω-mercapto-poly(ethylene glycol) . J Am Chem Soc, 123, 8226–8230.CrossRefPubMedGoogle Scholar
  47. Otsuka, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev, 55, 403–419.CrossRefPubMedGoogle Scholar
  48. Scholz, C., Iijima, M., Nagasaki, Y., & Kataoka, K. (1995). A novel reactive polymeric micelle with aldehyde groups on its surface. Macromolecules, 28, 7295–7297.CrossRefGoogle Scholar
  49. Schwartz, A. L., Fridovich, S. E., Knowles, B. B., & Lodish, H. F. (1981). Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J Bio Chem, 256, 8878–8881.Google Scholar
  50. Stockert, R. J. (1995). The asialoglycoprotein receptor: Relationships between structure, function, and expression. Physiol Rev, 75, 591–609.PubMedGoogle Scholar
  51. Tsukioka, Y., Matsumura, Y., Hamaguchi, T., Koike, H., Moriyasu, F., & Kakizone, T. (2002). Pharmaceutical and biomedical differences between miceller doxorubicin (NK911) and liposomal doxorubicin (Doxil). Japan J Cancer Res, 93, 1145–1153.Google Scholar
  52. Uhlman, E., & Peyman, A. (1990). Antisense oligonucleotides: a new therapeutic principle Chem Rev, 90, 543–584.CrossRefGoogle Scholar
  53. Verma, A., Simard, J. M., Worrall, J. W., & Rotello, V. M. (2004). Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations. J Am Chem Soc, 126, 13987–13991.CrossRefPubMedGoogle Scholar
  54. Wakebayashi, D., Nishiyama, N., Yamasaki, Y., Itaka, K., Kanayama, N., Harada, A., Nagasaki, Y., & Kataoka, K. (2004). Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. J Control Release, 95, 653–664.CrossRefPubMedGoogle Scholar
  55. Yokoyama, M., Okano, T., Sakurai, Y., Kikuchi, A., Ohsako, N., Nagasaki, Y., & Kataoka. K. (1992). Synthesis of poly(ethylene oxide) with heterobifunctional reactive groups at its terminals by an anionic initiator. Bioconjug Chem, 3, 275–276.CrossRefPubMedGoogle Scholar
  56. Zalipsky, S. (1995). Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjug Chem, 6, 150–165.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Motoi Oishi
    • 1
  • Yukio Nagasaki
    • 1
  1. 1.Tsukuba Research Center for Interdisciplinary Materials Science (TIMS) and Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations