Skip to main content

Nanotechnology in Drug Delivery: Past, Present, and Future

  • Chapter
Nanotechnology in Drug Delivery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, G., & Park, K. (2006). Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev., 58, 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Alpert, S. (1995). Required biocompatibility training and toxicology profiles for evaluation of medical devices. CDRH, U.S. Food and Drug Administration.

    Google Scholar 

  • Baldi, A., Gu, Y., Loftness, P., Siegel, R. A., & Ziaie, B. (2003). A hydrogel-actuated environmentally-sensitive microvalve for active flow control. J. Microelectromechanical Syst., 12, 613–621.

    Article  Google Scholar 

  • Cho, Y. W., Lee, J., Lee, S. C., Huh, K. M., & Park, K. (2004). Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Release, 97, 249–57.

    Article  CAS  PubMed  Google Scholar 

  • Chu, L. Y., Liang, Y. J., Chen, W. M., Ju, X. J., & Wang, H. D. (2004). Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloids Surf. B: Biointerfaces, 37, 9–14.

    Article  CAS  Google Scholar 

  • Chytil, P., Etrych, T., Konak, C., Sirova, M., Mrkvan, T., Rihova, B., & Ulbrich, K. (2006). Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J. Control. Release, 115, 26–36.

    Article  CAS  PubMed  Google Scholar 

  • Corot, C., Robert, P., Idee, J. M., & Port, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev., 58, 1471–504.

    Article  CAS  PubMed  Google Scholar 

  • Craighead, H. (2006). Future lab-on-a-chip technologies for interrogating individual molecules. Nature, 442, 387–93.

    Article  CAS  PubMed  Google Scholar 

  • Davis, F. F. (2002). The origin of pegnology. Adv. Drug Deliv. Rev., 54, 457–8.

    Article  CAS  PubMed  Google Scholar 

  • De Geest, B. G., Dejugnat, C., Verhoeven, E., Sukhorukov, G. B., Jonas, A. M., Plain, J., Demeester, J., & De Smedt, S. C. (2006). Layer-by-layer coating of degradable microgels for pulsed drug delivery. J. Control. Release, 116, 159–69.

    Article  PubMed  Google Scholar 

  • Demello, A. J. (2006). Control and detection of chemical reactions in microfluidic systems. Nature, 442, 394–402.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 6, 688–701.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, R., Lloyd, J. B., & Kopecek, J. (1980). Degradation of side chains of N-(2-hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem. Biophys. Res. Commun., 94, 284–90.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, R., Vicent, M. J., Greco, F., & Nicholson, R. I. (2005). Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr. Relat. Cancer, 12 Suppl 1, S189–99.

    Article  CAS  PubMed  Google Scholar 

  • El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442, 403–11.

    Article  CAS  PubMed  Google Scholar 

  • FDA. (Mar 2005). “Challenge and Opportunity on the Critical Path to New Medical Products.”

    Google Scholar 

  • Franks, A. (1987). Nanotechnology. J. Phys. E: Sci. Instrum., 20, 1442–1451.

    Article  Google Scholar 

  • Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release, 102, 313–32.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S. Q., Lu, Z. R., Petri, B., Kopeckova, P., & Kopecek, J. (2006). Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Release, 110, 323–31.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D., Nassar, T., Lambert, G., Kadouche, J., & Benita, S. (2005). The design and evaluation of a novel targeted drug delivery system using cationic emulsion-antibody conjugates. J. Control. Release, 108, 418–32.

    Article  CAS  PubMed  Google Scholar 

  • Greco, F., Vicent, M. J., Gee, S., Jones, A. T., Gee, J., Nicholson, R. I., & Duncan, R. (2007). Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J. Control. Release, 117, 28–39.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, L. R., Gobin, A. M., Lowery, A. R., Tam, F., Drezek, R. A., Halas, N. J., & West, J. L. (2006). Metal nanoshells. Ann. Biomed. Eng., 34, 15–22.

    Article  PubMed  Google Scholar 

  • Ho, D. H., Brown, N. S., Yen, A., Holmes, R., Keating, M., Abuchowski, A., Newman, R. A., & Krakoff, I. H. (1986). Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab. Dispos., 14, 349–52.

    CAS  PubMed  Google Scholar 

  • Ho, Y. P., Chen, H. H., Leong, K. W., & Wang, T. H. (2006). Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J. Control. Release, 116, 83–9.

    Article  CAS  PubMed  Google Scholar 

  • Hruby, M., Konak, C., & Ulbrich, K. (2005). Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release, 103, 137–48.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. Y., & Yang, M. C. (2006). Hemocompatibility of layer-by-layer hyaluronic acid/heparin nanostructure coating on stainless steel for cardiovascular stents and its use for drug delivery. J. Nanosci. Nanotechnol., 6, 3163–70.

    Article  CAS  PubMed  Google Scholar 

  • Huh, K. M., Lee, S. C., Cho, Y. W., Lee, J., Jeong, J. H., & Park, K. (2005). Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Release, 101, 59–68.

    Article  CAS  PubMed  Google Scholar 

  • International Risk Governance Council, Switzerland. (2006, April). “Survey on nanotechnology governance.” Survey on nanotechnology governance.

    Google Scholar 

  • International Organization for Standardization, Switzerland. (2007). “Biological evaluation of medical devices.” ISO 10993 Standard Series.

    Google Scholar 

  • Janasek, D., Franzke, J., & Manz, A. (2006). Scaling and the design of miniaturized chemical-analysis systems. Nature, 442, 374–80.

    Article  CAS  PubMed  Google Scholar 

  • Jotterand, F. (2006). The politicization of science and technology: its implications for nanotechnology. J. Law Med. Ethics, 34, 658–66.

    Article  PubMed  Google Scholar 

  • Kim, J. J., & Park, K. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. J. Control. Release, 77, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, I. K., Jeong, S. H., Kang, E., & Park, K. (2006). Chapter 13: Nanoparticulate drug delivery systems for cancer therapy. New York, American Scientific Publishers.

    Google Scholar 

  • Lanza, G. M., Yu, X., Winter, P. M., Abendschein, D. R., Karukstis, K. K., Scott, M. J., Chinen, L. K., Fuhrhop, R. W., Scherrer, D. E., & Wickline, S. A. (2002). Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation, 106, 2842–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E. S., Na, K., & Bae, Y. H. (2005a). Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release, 103, 405–18.

    Article  CAS  Google Scholar 

  • Lee, E. S., Na, K., & Bae, Y. H. (2005b). Super pH-sensitive multifunctional polymeric micelle. Nano. Lett., 5, 325–9.

    Article  CAS  Google Scholar 

  • Lee, E. S., Shin, H. J., Na, K., & Bae, Y. H. (2003). Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release, 90, 363–74.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Lee, S. C., Acharya, G., Chang, C. J., & Park, K. (2003). Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm. Res., 20, 1022–30.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Youn, Y. S., Lee, S. H., Byun, Y., & Lee, K. C. (2006). PEGylated glucagon-like peptide-1 displays preserved effects on insulin release in isolated pancreatic islets and improved biological activity in db/db mice. Diabetologia, 49, 1608–11.

    Article  CAS  PubMed  Google Scholar 

  • Levin, A. D., Jonas, M., Hwang, C. W., & Edelman, E. R. (2005). Local and systemic drug competition in drug-eluting stent tissue deposition properties. J. Control. Release, 109, 236–43.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Ho Duc, H. L., Tyler, B., Williams, T., Tupper, M., Langer, R., Brem, H., & Cima, M. J. (2005). In vivo delivery of BCNU from a MEMS device to a tumor model. J. Control. Release, 106, 138–45.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Shawgo, R. S., Tyler, B., Henderson, P. T., Vogel, J. S., Rosenberg, A., Storm, P. B., Langer, R., Brem, H., & Cima, M. J. (2004). In vivo release from a drug delivery MEMS device. J. Control. Release, 100, 211–9.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Zhang, Y., Tan, Y. Z., Hu, K. L., Jiang, X. G., & Fu, S. K. (2005). Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J. Control. Release, 107, 428–48.

    Article  CAS  PubMed  Google Scholar 

  • Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R., & Torchilin, V. P. (2004). Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control. Release, 100, 135–44.

    Article  CAS  PubMed  Google Scholar 

  • Maloney, J. M., Uhland, S. A., Polito, B. F., Sheppard, N. F., Jr., Pelta, C. M., & Santini, J. T., Jr. (2005). Electrothermally activated microchips for implantable drug delivery and biosensing. J. Control. Release, 109, 244–55.

    Article  CAS  PubMed  Google Scholar 

  • Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–44.

    Article  CAS  PubMed  Google Scholar 

  • Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H., & Kataoka, K. (2004). Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc., 126, 2355–61.

    Article  CAS  PubMed  Google Scholar 

  • Mnyusiwalla, A., S., D. A., & Singer, P. A. (2003). 'Mind the gap': science and ethics in nanotechnology. Nanotechnology, 14, R9–R13.

    Google Scholar 

  • National Science Foundation, USA. (February 2000). “Nanotechnology definition.” from http://www.nsf.gov/crssprgm/nano/reports/omb_nifty50.jsp.

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–7.

    Article  CAS  PubMed  Google Scholar 

  • Niidome, T., Yamagata, M., Okamoto, Y., Akiyama, Y., Takahashi, H., Kawano, T., Katayama, Y., & Niidome, Y. (2006). PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release, 114, 343–7.

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 113, 823–39.

    Article  CAS  PubMed  Google Scholar 

  • Orive, G., Hernandez, R. M., Rodriguez Gascon, A., Dominguez-Gil, A., & Pedraz, J. L. (2003). Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol., 14, 659–64.

    Article  CAS  PubMed  Google Scholar 

  • Psaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381–6.

    Article  CAS  PubMed  Google Scholar 

  • Ratner, B. D., Hoffman, A., Schoen, F., & Lemons, J. (2004). Biomaterials Science: An Introduction to Materials in Medicine. New York, Academic Press.

    Google Scholar 

  • Reddy, G. R., Bhojani, M. S., Mcconville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Koo, Y. E., Woolliscroft, M. J., Sugai, J. V., Johnson, T. D., Philbert, M. A., Kopelman, R., Rehemtulla, A., & Ross, B. D. (2006). Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer. Res., 12, 6677–86.

    Article  CAS  PubMed  Google Scholar 

  • Richards Grayson, A. C., Scheidt Shawgo, R., Li, Y., & Cima, M. J. (2004). Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev., 56, 173–84.

    Article  CAS  PubMed  Google Scholar 

  • Ringsdorf, H. (1975). Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Sympo., 51, 135–153.

    Article  CAS  Google Scholar 

  • Roco, M. C. (2003). Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol., 14, 337–46.

    Article  CAS  PubMed  Google Scholar 

  • Ryman-Rasmussen, J. P., Riviere, J. E., & Monteiro-Riviere, N. A. (2006). Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci., 91, 159–65.

    Article  CAS  PubMed  Google Scholar 

  • Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Med., 2, e97.

    Article  PubMed  Google Scholar 

  • Sandler, R., & Kay, W. D. (2006). The national nanotechnology initiative and the social good. J. Law Med. Ethics, 34, 675–81.

    Article  PubMed  Google Scholar 

  • Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., & Torchilin, V. P. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem., 17, 943–9.

    Article  CAS  PubMed  Google Scholar 

  • Service, R. F. (2004). Nanotoxicology. Nanotechnology grows up. Science, 304, 1732–4.

    Article  CAS  PubMed  Google Scholar 

  • Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., & Stayton, P. S. (2003). Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjug. Chem., 14, 517–25.

    Article  CAS  PubMed  Google Scholar 

  • Shimoboji, T., Larenas, E., Fowler, T., Kulkarni, S., Hoffman, A. S., & Stayton, P. S. (2002). Photoresponsive polymer-enzyme switches. Proc. Natl. Acad. Sci. U S A, 99, 16592–6.

    Article  CAS  PubMed  Google Scholar 

  • Shuai, X., Merdan, T., Schaper, A. K., Xi, F., & Kissel, T. (2004). Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug. Chem., 15, 441–8.

    Article  CAS  PubMed  Google Scholar 

  • The National Nanotechnology Initiative, USA. (July 2006). “Supplement to the President's 2007 budget.”

    Google Scholar 

  • Tao, S. L., & Desai, T. A. (2005). Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability. J. Control. Release, 109, 127–38.

    Article  CAS  PubMed  Google Scholar 

  • Thierry, B., Winnik, F. M., Merhi, Y., Silver, J., & Tabrizian, M. (2003). Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules, 4, 1564–71.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2006). Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 58, 1532–55.

    Article  CAS  PubMed  Google Scholar 

  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442, 368–73.

    Article  CAS  PubMed  Google Scholar 

  • Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R., & Weigl, B. H. (2006). Microfluidic diagnostic technologies for global public health. Nature, 442, 412–8.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S., Wang, C., Liu, X., & Tong, Z. (2005). Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. J. Control. Release, 106, 319–28.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, Y., & Park, K. (2004). A new microencapsulation method using an ultrasonic atomizer based on interfacial solvent exchange. J. Control. Release, 100, 379–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Kim, S., Kwon, K., Kwon, I.C., Park, K. (2009). Nanotechnology in Drug Delivery: Past, Present, and Future. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_19

Download citation

Publish with us

Policies and ethics