Nanotechnology in Drug Delivery: Past, Present, and Future

  • Sungwon Kim
  • Keun KwonII
  • Ick Chan Kwon
  • Kinam Park
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


The word “nanotechnology” began as a technical term, but recently it became a popular term representing the current state-of-the-art technology. On the website of US National Science Foundation (NSF), nanotechnology is defined as research and technology development at the atomic, molecular, or macromolecular level, in the length scale of approximately 1–100 nm range, to provide a fundamental understanding of phenomena and materials at the nanoscale and to create and use structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size (N.S.F., February 2000). The earliest definition concerned only the size of materials (1–100 nm) (Franks, 1987). The current term nanotechnology, however, covers almost all fields of science and engineering (Salamanca-Buentello, Persad, Court, Martin, Daar, & Singer, 2005), and the size of materials of interest can be much larger than 100 nm. The biomedical and pharmaceutical fields...


Drug Delivery System Loaded Drug Polymeric Micelle International Standard Organization Drug Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acharya, G., & Park, K. (2006). Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev., 58, 387–401.CrossRefPubMedGoogle Scholar
  2. Alpert, S. (1995). Required biocompatibility training and toxicology profiles for evaluation of medical devices. CDRH, U.S. Food and Drug Administration.Google Scholar
  3. Baldi, A., Gu, Y., Loftness, P., Siegel, R. A., & Ziaie, B. (2003). A hydrogel-actuated environmentally-sensitive microvalve for active flow control. J. Microelectromechanical Syst., 12, 613–621.CrossRefGoogle Scholar
  4. Cho, Y. W., Lee, J., Lee, S. C., Huh, K. M., & Park, K. (2004). Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Release, 97, 249–57.CrossRefPubMedGoogle Scholar
  5. Chu, L. Y., Liang, Y. J., Chen, W. M., Ju, X. J., & Wang, H. D. (2004). Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloids Surf. B: Biointerfaces, 37, 9–14.CrossRefGoogle Scholar
  6. Chytil, P., Etrych, T., Konak, C., Sirova, M., Mrkvan, T., Rihova, B., & Ulbrich, K. (2006). Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J. Control. Release, 115, 26–36.CrossRefPubMedGoogle Scholar
  7. Corot, C., Robert, P., Idee, J. M., & Port, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev., 58, 1471–504.CrossRefPubMedGoogle Scholar
  8. Craighead, H. (2006). Future lab-on-a-chip technologies for interrogating individual molecules. Nature, 442, 387–93.CrossRefPubMedGoogle Scholar
  9. Davis, F. F. (2002). The origin of pegnology. Adv. Drug Deliv. Rev., 54, 457–8.CrossRefPubMedGoogle Scholar
  10. De Geest, B. G., Dejugnat, C., Verhoeven, E., Sukhorukov, G. B., Jonas, A. M., Plain, J., Demeester, J., & De Smedt, S. C. (2006). Layer-by-layer coating of degradable microgels for pulsed drug delivery. J. Control. Release, 116, 159–69.CrossRefPubMedGoogle Scholar
  11. Demello, A. J. (2006). Control and detection of chemical reactions in microfluidic systems. Nature, 442, 394–402.CrossRefPubMedGoogle Scholar
  12. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 6, 688–701.CrossRefPubMedGoogle Scholar
  13. Duncan, R., Lloyd, J. B., & Kopecek, J. (1980). Degradation of side chains of N-(2-hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem. Biophys. Res. Commun., 94, 284–90.CrossRefPubMedGoogle Scholar
  14. Duncan, R., Vicent, M. J., Greco, F., & Nicholson, R. I. (2005). Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr. Relat. Cancer, 12 Suppl 1, S189–99.CrossRefPubMedGoogle Scholar
  15. El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442, 403–11.CrossRefPubMedGoogle Scholar
  16. FDA. (Mar 2005). “Challenge and Opportunity on the Critical Path to New Medical Products.”Google Scholar
  17. Franks, A. (1987). Nanotechnology. J. Phys. E: Sci. Instrum., 20, 1442–1451.CrossRefGoogle Scholar
  18. Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release, 102, 313–32.CrossRefPubMedGoogle Scholar
  19. Gao, S. Q., Lu, Z. R., Petri, B., Kopeckova, P., & Kopecek, J. (2006). Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Release, 110, 323–31.CrossRefPubMedGoogle Scholar
  20. Goldstein, D., Nassar, T., Lambert, G., Kadouche, J., & Benita, S. (2005). The design and evaluation of a novel targeted drug delivery system using cationic emulsion-antibody conjugates. J. Control. Release, 108, 418–32.CrossRefPubMedGoogle Scholar
  21. Greco, F., Vicent, M. J., Gee, S., Jones, A. T., Gee, J., Nicholson, R. I., & Duncan, R. (2007). Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J. Control. Release, 117, 28–39.CrossRefPubMedGoogle Scholar
  22. Hirsch, L. R., Gobin, A. M., Lowery, A. R., Tam, F., Drezek, R. A., Halas, N. J., & West, J. L. (2006). Metal nanoshells. Ann. Biomed. Eng., 34, 15–22.CrossRefPubMedGoogle Scholar
  23. Ho, D. H., Brown, N. S., Yen, A., Holmes, R., Keating, M., Abuchowski, A., Newman, R. A., & Krakoff, I. H. (1986). Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab. Dispos., 14, 349–52.PubMedGoogle Scholar
  24. Ho, Y. P., Chen, H. H., Leong, K. W., & Wang, T. H. (2006). Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J. Control. Release, 116, 83–9.CrossRefPubMedGoogle Scholar
  25. Hruby, M., Konak, C., & Ulbrich, K. (2005). Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release, 103, 137–48.CrossRefPubMedGoogle Scholar
  26. Huang, L. Y., & Yang, M. C. (2006). Hemocompatibility of layer-by-layer hyaluronic acid/heparin nanostructure coating on stainless steel for cardiovascular stents and its use for drug delivery. J. Nanosci. Nanotechnol., 6, 3163–70.CrossRefPubMedGoogle Scholar
  27. Huh, K. M., Lee, S. C., Cho, Y. W., Lee, J., Jeong, J. H., & Park, K. (2005). Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Release, 101, 59–68.CrossRefPubMedGoogle Scholar
  28. International Risk Governance Council, Switzerland. (2006, April). “Survey on nanotechnology governance.” Survey on nanotechnology governance.Google Scholar
  29. International Organization for Standardization, Switzerland. (2007). “Biological evaluation of medical devices.” ISO 10993 Standard Series.Google Scholar
  30. Janasek, D., Franzke, J., & Manz, A. (2006). Scaling and the design of miniaturized chemical-analysis systems. Nature, 442, 374–80.CrossRefPubMedGoogle Scholar
  31. Jotterand, F. (2006). The politicization of science and technology: its implications for nanotechnology. J. Law Med. Ethics, 34, 658–66.CrossRefPubMedGoogle Scholar
  32. Kim, J. J., & Park, K. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. J. Control. Release, 77, 39–47.CrossRefPubMedGoogle Scholar
  33. Kwon, I. K., Jeong, S. H., Kang, E., & Park, K. (2006). Chapter 13: Nanoparticulate drug delivery systems for cancer therapy. New York, American Scientific Publishers.Google Scholar
  34. Lanza, G. M., Yu, X., Winter, P. M., Abendschein, D. R., Karukstis, K. K., Scott, M. J., Chinen, L. K., Fuhrhop, R. W., Scherrer, D. E., & Wickline, S. A. (2002). Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation, 106, 2842–7.CrossRefPubMedGoogle Scholar
  35. Lee, E. S., Na, K., & Bae, Y. H. (2005a). Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release, 103, 405–18.CrossRefGoogle Scholar
  36. Lee, E. S., Na, K., & Bae, Y. H. (2005b). Super pH-sensitive multifunctional polymeric micelle. Nano. Lett., 5, 325–9.CrossRefGoogle Scholar
  37. Lee, E. S., Shin, H. J., Na, K., & Bae, Y. H. (2003). Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release, 90, 363–74.CrossRefPubMedGoogle Scholar
  38. Lee, J., Lee, S. C., Acharya, G., Chang, C. J., & Park, K. (2003). Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm. Res., 20, 1022–30.CrossRefPubMedGoogle Scholar
  39. Lee, S., Youn, Y. S., Lee, S. H., Byun, Y., & Lee, K. C. (2006). PEGylated glucagon-like peptide-1 displays preserved effects on insulin release in isolated pancreatic islets and improved biological activity in db/db mice. Diabetologia, 49, 1608–11.CrossRefPubMedGoogle Scholar
  40. Levin, A. D., Jonas, M., Hwang, C. W., & Edelman, E. R. (2005). Local and systemic drug competition in drug-eluting stent tissue deposition properties. J. Control. Release, 109, 236–43.CrossRefPubMedGoogle Scholar
  41. Li, Y., Ho Duc, H. L., Tyler, B., Williams, T., Tupper, M., Langer, R., Brem, H., & Cima, M. J. (2005). In vivo delivery of BCNU from a MEMS device to a tumor model. J. Control. Release, 106, 138–45.CrossRefPubMedGoogle Scholar
  42. Li, Y., Shawgo, R. S., Tyler, B., Henderson, P. T., Vogel, J. S., Rosenberg, A., Storm, P. B., Langer, R., Brem, H., & Cima, M. J. (2004). In vivo release from a drug delivery MEMS device. J. Control. Release, 100, 211–9.CrossRefPubMedGoogle Scholar
  43. Lu, W., Zhang, Y., Tan, Y. Z., Hu, K. L., Jiang, X. G., & Fu, S. K. (2005). Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J. Control. Release, 107, 428–48.CrossRefPubMedGoogle Scholar
  44. Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R., & Torchilin, V. P. (2004). Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control. Release, 100, 135–44.CrossRefPubMedGoogle Scholar
  45. Maloney, J. M., Uhland, S. A., Polito, B. F., Sheppard, N. F., Jr., Pelta, C. M., & Santini, J. T., Jr. (2005). Electrothermally activated microchips for implantable drug delivery and biosensing. J. Control. Release, 109, 244–55.CrossRefPubMedGoogle Scholar
  46. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–44.CrossRefPubMedGoogle Scholar
  47. Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H., & Kataoka, K. (2004). Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc., 126, 2355–61.CrossRefPubMedGoogle Scholar
  48. Mnyusiwalla, A., S., D. A., & Singer, P. A. (2003). 'Mind the gap': science and ethics in nanotechnology. Nanotechnology, 14, R9–R13.Google Scholar
  49. National Science Foundation, USA. (February 2000). “Nanotechnology definition.” from
  50. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–7.CrossRefPubMedGoogle Scholar
  51. Niidome, T., Yamagata, M., Okamoto, Y., Akiyama, Y., Takahashi, H., Kawano, T., Katayama, Y., & Niidome, Y. (2006). PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release, 114, 343–7.CrossRefPubMedGoogle Scholar
  52. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 113, 823–39.CrossRefPubMedGoogle Scholar
  53. Orive, G., Hernandez, R. M., Rodriguez Gascon, A., Dominguez-Gil, A., & Pedraz, J. L. (2003). Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol., 14, 659–64.CrossRefPubMedGoogle Scholar
  54. Psaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381–6.CrossRefPubMedGoogle Scholar
  55. Ratner, B. D., Hoffman, A., Schoen, F., & Lemons, J. (2004). Biomaterials Science: An Introduction to Materials in Medicine. New York, Academic Press.Google Scholar
  56. Reddy, G. R., Bhojani, M. S., Mcconville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Koo, Y. E., Woolliscroft, M. J., Sugai, J. V., Johnson, T. D., Philbert, M. A., Kopelman, R., Rehemtulla, A., & Ross, B. D. (2006). Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer. Res., 12, 6677–86.CrossRefPubMedGoogle Scholar
  57. Richards Grayson, A. C., Scheidt Shawgo, R., Li, Y., & Cima, M. J. (2004). Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev., 56, 173–84.CrossRefPubMedGoogle Scholar
  58. Ringsdorf, H. (1975). Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Sympo., 51, 135–153.CrossRefGoogle Scholar
  59. Roco, M. C. (2003). Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol., 14, 337–46.CrossRefPubMedGoogle Scholar
  60. Ryman-Rasmussen, J. P., Riviere, J. E., & Monteiro-Riviere, N. A. (2006). Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci., 91, 159–65.CrossRefPubMedGoogle Scholar
  61. Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Med., 2, e97.CrossRefPubMedGoogle Scholar
  62. Sandler, R., & Kay, W. D. (2006). The national nanotechnology initiative and the social good. J. Law Med. Ethics, 34, 675–81.CrossRefPubMedGoogle Scholar
  63. Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., & Torchilin, V. P. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem., 17, 943–9.CrossRefPubMedGoogle Scholar
  64. Service, R. F. (2004). Nanotoxicology. Nanotechnology grows up. Science, 304, 1732–4.CrossRefPubMedGoogle Scholar
  65. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., & Stayton, P. S. (2003). Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjug. Chem., 14, 517–25.CrossRefPubMedGoogle Scholar
  66. Shimoboji, T., Larenas, E., Fowler, T., Kulkarni, S., Hoffman, A. S., & Stayton, P. S. (2002). Photoresponsive polymer-enzyme switches. Proc. Natl. Acad. Sci. U S A, 99, 16592–6.CrossRefPubMedGoogle Scholar
  67. Shuai, X., Merdan, T., Schaper, A. K., Xi, F., & Kissel, T. (2004). Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug. Chem., 15, 441–8.CrossRefPubMedGoogle Scholar
  68. The National Nanotechnology Initiative, USA. (July 2006). “Supplement to the President's 2007 budget.”Google Scholar
  69. Tao, S. L., & Desai, T. A. (2005). Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability. J. Control. Release, 109, 127–38.CrossRefPubMedGoogle Scholar
  70. Thierry, B., Winnik, F. M., Merhi, Y., Silver, J., & Tabrizian, M. (2003). Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules, 4, 1564–71.CrossRefPubMedGoogle Scholar
  71. Torchilin, V. P. (2006). Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 58, 1532–55.CrossRefPubMedGoogle Scholar
  72. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442, 368–73.CrossRefPubMedGoogle Scholar
  73. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R., & Weigl, B. H. (2006). Microfluidic diagnostic technologies for global public health. Nature, 442, 412–8.CrossRefPubMedGoogle Scholar
  74. Ye, S., Wang, C., Liu, X., & Tong, Z. (2005). Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. J. Control. Release, 106, 319–28.CrossRefPubMedGoogle Scholar
  75. Yeo, Y., & Park, K. (2004). A new microencapsulation method using an ultrasonic atomizer based on interfacial solvent exchange. J. Control. Release, 100, 379–88.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Sungwon Kim
    • 1
  • Keun KwonII
    • 2
  • Ick Chan Kwon
    • 3
  • Kinam Park
    • 4
  1. 1.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.School of DentistryKyung Hee UniversityKorea
  3. 3.Biomedical Research CenterKorea Institute of Science and TechnologyKorea
  4. 4.Department of Industrial and Physical PharmacyWeldon School of Biomedical Engineering, Purdue UniversityWest LafayetteUSA

Personalised recommendations