Stimuli-Sensitive Nanotechnology for Drug Delivery

  • Andre G. Skirtach
  • Oliver Kreft
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


The challenges faced in drug delivery are to develop means for administering drugs with release rates that vary according to therapeutic needs of a patient. One of the most desirable features is to develop materials, structures and perhaps even devices which respond to external signals or trigger in a pre-determined mode. Such an undertaking is feasible for a platform that responds to external stimuli. An ideal stimuli-sensitive delivery platform would (1) monitor the related pharmacokinetic parameters of a patient; (2) produce a continuous feedback signal to the device; and (3) administer pre-determined doses of a drug upon request. Ultimately, the advantages of such a system would be (a) increase of therapeutic efficacy, (b) reduction of side effects and (c) circumvention of drug tolerance. All these functionalities can be implemented in a system responding to external stimuli such as pH, temperature, light, electric or magnetic fields. In fact, recent efforts by...


Drug Delivery Lower Critical Solution Temperature Polymeric Micelle Melamine Formaldehyde Melamine Formaldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Prof. Helmuth Möhwald for critical reading of the manuscript and support during research; we also thank Dr. D. G. Shchukin and Prof. G. B. Sukhorukov for helpful discussions. We thank Dr. B. G. De Geest and K. Köhler for assistance in text and illustration preparations. The support by EU FP-6 programs (“SELECTNANO” and “NANOCAPS”) as well as Volkswagen-Foundation is kindly acknowledged.


  1. Akagi, T., Ueno, M., Hiraishi, K., Baba, M., & Akashi, M. (2005) AIDS vaccine: Intranasal immunization using inactivated HIV-1-capturing core–corona type polymeric nanospheres. J. Controlled Release, 109, 49–61.Google Scholar
  2. Ahrens, H., Büscher, K., Eck, D., Förster, S., Luap, C., Papastavrou, G., Schmitt, J., Steitz, R., & Helm, C. A. (2004). Poly(styrene sulfonate) self-organization: Electrostatic and secondary interactions. Macromol. Symp., 211, 93–105.Google Scholar
  3. Angelatos, A. S., Radt, B., & Caruso, F. (2005). Light-responsive polyelectrolyte / gold nanoparticle microcapsules. J. Phys. Chem. B, 109, 3071–3076.PubMedGoogle Scholar
  4. Antipov, A. A., Sukhorukov, G. B., & Möhwald, H. (2003). Influence of the ionic strength on the polyelectrolyte multilayers’ permeability. Langmuir, 19, 2444–2448.Google Scholar
  5. Arotçaréna, M., Heise, B., Ishaya, S., & Laschewsky. A. (2002). Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsitivity, J. Am. Chem. Soc., 124, 3787–3793.PubMedGoogle Scholar
  6. Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett., 78, 4217–4220.Google Scholar
  7. Berth, G., Voigt, A., Dautzenberg, H., Donath, E., & Möhwald, H. (2002). Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate. Biomacromol., 3, 579–590.Google Scholar
  8. Bhadra, D., Bhadra, S., Jain, S., & Jain, N. K. (2003). A PEGylated dendritic nanoparticle carrier of fluorouracil. Int. J. Pharm., 257, 111–124.PubMedGoogle Scholar
  9. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.PubMedGoogle Scholar
  10. Borodina, T., Markvicheva, E., Kunizhev, S., Möhwald, H., Sukhorukov, G. B. & Kreft, O. (2007). Controlled Release of DNA from Self-Degrading Microcapsules. Macromol. Rapid Commun. 28, 1894–1899.Google Scholar
  11. Boulmedais, F., Frisch, B., Etienne, O., Lavalle, Ph., Picart, C., Ogier, J., Voegel, J.-C., Schaaf, P.,& Egles, C. (2004). Polyelectrolyte multilayer films with PEGylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials, 25, 2003–2011.PubMedGoogle Scholar
  12. Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. USA, 92, 7297–7301.Google Scholar
  13. Burke, S. E., & Barrett, C. J. (2003). pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromol., 4, 1773–1783.Google Scholar
  14. Buscher, K., Graf, K., Ahrens, H., & Helm, C. A. (2002). Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir, 18, 3585–3591.Google Scholar
  15. Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K., & Okano, T. (1997). Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Controlled Release , 48, 157–164.Google Scholar
  16. Corbierre, M. K., Cameron, N. S., Sutton, M., Mochrie, S. G. J., Lurio, L. B., Ruhm, A., & Lennox,R. B. (2001). Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices J. Am. Chem. Soc., 126, 2867–2873.Google Scholar
  17. Couvreur, P., Barratt, G., Fattal, E., Legrand, P., & Vauthier, C. (2002). Nanocapsule technology: A review. Crit. Rev. Ther. Drug Carrier Syst., 19, 99–134.PubMedGoogle Scholar
  18. Das, M., Zhang, H., & Kumacheva, E. (2006). Microgels: Old materials with new applications. Ann. Rev. Mat. Res., 36, 117–142.Google Scholar
  19. Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites, Science, 277, 1232–1237.Google Scholar
  20. Decher, G., & Hong, G. D. (1991). Buildup of ultrathin multilayer films by a self-assembly process: I. consecutive adsorption of anionic and cationic bipolar amphiphiles. Macromol. Chem. Macromol. Symp., 46, 321–327.Google Scholar
  21. Decher, G., Schaaf, P., Voegel, J.-C., & Picart, C. (2004). Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromol., 5, 284–294.Google Scholar
  22. De Geest, B. G., Dégunat, C., Sukhorukov, G. B., Braeckmans, K., De Smedt, S. C., & Demeester. J. (2005). Self-rupturing microcapsules. Adv. Mater., 17, 2357–2361.Google Scholar
  23. De Geest, B. G., Vandenbroucke, R. E., Guenther, A. M., Sukhorukov, G. B., Hennink, W. E., Sanders, N. N., Demeester, J., & De Smedt, S. C. (2006). Intracellularly degradable polyelectrolyte microcapsules. Adv. Mater., 18, 1005–1009.Google Scholar
  24. Diaspro, A., Silvano, D. Krol, S., Cavalleri, O., & Gliozzi, A. (2002). Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir, 18, 5047–5050.Google Scholar
  25. Donath, E., Sukhorukov, G. B., Caruso, F., Davies, S. A., & Möhwald, H. (1998). Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed., 37, 2202–2205.Google Scholar
  26. Dong, L. C., & Hoffman, A. S. (1990). Synthesis and application of thermally reversible heterogels for drug delivery, J. Controlled Release, 13, 21–31.Google Scholar
  27. Dubreuil, F., Elsner N., & Fery, A. (2003). Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur. Phys. J., 12, 215–221.Google Scholar
  28. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Optical properties of gold nanoparticles. Science, 277, 1078–1081.PubMedGoogle Scholar
  29. Escobar-Chávez, J. J., López-Cervantes, M., Naïk, A. Kalia, Y. N., Quintanar-Guerrero, D., & Ganem-Quintanar, A. (2006). Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharmaceut. Sci., 9, 339–358.Google Scholar
  30. Estrela-Lopis, I., Leporatti, S., Moya, S., Brandt, A., Donath, E., & Möhwald, H. (2002). SANS studies of polyelectrolyte multilayers on colloidal templates. Langmuir, 18, 7861– 7866.Google Scholar
  31. Faraassen, S., Vörös, J., Csucs, G., Textor, M., Merkle, H. P., & Walter, E. (2003). Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharm. Res., 20, 237–246.Google Scholar
  32. Farhat T. R., & Schlenoff J. B. (2001). Ion transport and equilibria in polyelectrolyte multilayers. Langmuir, 17, 1184–1192.Google Scholar
  33. Fery, A., Scholer, B., Cassagneau, T., & Caruso, F. (2001). Nanoporous thin films formed by salt-induced structural changes in multilayers of poly(acrylic acid) and poly(allylamine). Langmuir, 17, 3779–3783.Google Scholar
  34. Fischlechner, M., Zschörnig, O., Hofmann, J., & Donath, E. (2005). Engineering virus functionalities on colloidal polyelectrolyte lipid composites. Angew. Chem. Int. Ed., 44, 2892–2895.Google Scholar
  35. Firestone, B. A., & Siegel, R. A. (1991). Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J. Appl. Polym. Sci., 43, 901–914.Google Scholar
  36. Haensler, J., & Szoka, F. C. (1993). Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem., 4, 372–379.PubMedGoogle Scholar
  37. De las Heras Alarcón, C., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev., 34, 276–285.PubMedGoogle Scholar
  38. Gan, D. J., & Lyon, L. A. (2001). Tunable swelling kinetics in core-shell hydrogel nanoparticles. J. Am. Chem. Soc., 123, 7511–7517.PubMedGoogle Scholar
  39. Gao, C. Y., Moya, S., Lichtenfeld, H., Casoli, A., Fiedler, H., Donath, E., & Möhwald, H. (2001). The decomposition process of melamine formaldehyde cores: The key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol. Mater. Eng., 286, 355–361.Google Scholar
  40. Gao, C., Leporatti, S., Moya, S., Donath, E., & Möhwald, H. (2003). Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. Chem.-Eur. J, 9, 915–920.Google Scholar
  41. Germain, M., Balaguer, P., Nicolas, J.-C., Lopez, F., Esteve, J.-P., Sukhorukov, G. B., Winterhalter, M., Richard-Foy, H., & Fournier, D. (2006). Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens. and Bioelectron., 21, 1566–1573.Google Scholar
  42. Gilbert, J., Richardson, J. L. Davies, M. C., Pallin, K. J., & Hadgraft, J. (1987). The effect of solutes and polymers on the gelation properties of Pluronic F-127 solution for controlled drug delivery. J. Controlled Release, 5, 113–118.Google Scholar
  43. Gillies, E. R., Jonsson, T. B., & Fréchet, J. M. J. (2004). Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126, 11936–11943.PubMedGoogle Scholar
  44. Gillies, E. R., & Fréchet, J. M. J. (2005). Dendrimers and dendritic polymers in drug delivery, Drug Delivery Today, 10, 35–43.Google Scholar
  45. Gittins, D., & Caruso, F. (2001). Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed., 40, 3001–3004.Google Scholar
  46. Graham, N. B., & Cameron, A. (1998). Nanogels and microgels: The new polymeric materials playground.  Pure Appl. Chem., 70, 1271–1275.Google Scholar
  47. Gref, R., Minaniitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanosphere. Science, 263, 1600–1603.PubMedGoogle Scholar
  48. Guo, A., Liu, G., & Tao, J. (1996). Star polymers and nanospheres from cross-linkable diblock copolymers, Macromolecules, 29, 2487–2493.Google Scholar
  49. Gupta, P., Vermani, K., & Garg, S. (2002). Hydrogels: from controlled release to pH-responsive drug delivery. Drug Disc. Today, 7, 569–579.Google Scholar
  50. Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments, Macromolecules, 28, 5294–5299.Google Scholar
  51. Harada, A., & Kataoka, K. (1999). Chain length recognition: core–shell supramolecular assembly from oppositely charged block copolymers. Science, 283, 65–67.PubMedGoogle Scholar
  52. Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 54, 13–36.PubMedGoogle Scholar
  53. Hirayama, F., & Uekama, K. (1999). Cyclodextrin-based controlled drug release system. Adv. Drug Del. Rev., 36, 125–141.Google Scholar
  54. Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J., & West, J. L. (2003). A whole blood immunoassay using gold nanoshells. Anal. Chem, 75, 2377– 2381.PubMedGoogle Scholar
  55. Ibarz, G., Dähne, L., Donath, E., & Möhwald, H. (2002). Controlled permeability of polyelectrolyte capsules via defined annealing. Chem. Mater., 14, 4059–4062.Google Scholar
  56. Itoh, Y., Matsusaki, M., Kida, T., & Akashi, M. (2006). Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules. Biomacromol., 7, 2715–2718.Google Scholar
  57. Izumrudov, V. A., Ortiz, H. O., Zezin, A. B., & Kabanov, V. A. (1998). Temperature controllable interpolyelectrolyte substitution reactions. Macromol. Chem. Phys., 199, 1057– 1062.Google Scholar
  58. Jansen, J. F. G. A., Debraban der Vandenberg, E. M. M., & Meijer, E. W. (1994). Encapsulation of guest molecules into a dendritic box. Science, 266, 1226–1229.PubMedGoogle Scholar
  59. Jansen, J. F. G. A., Meijer, E. W., & Debraban der Vandenberg, E. M. M. (1995). The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc., 117, 4417–4418.Google Scholar
  60. Jiang, C. Y., & Tsukruk, V. V. (2006). Freestanding nanostructures via layer-by-layer assembly. Adv. Mater., 18, 829–840.Google Scholar
  61. Kabanov, A. V., Chekhonln, V. P., Alakhov, V. Y., Batrakova, E. V., Lebedev, A. S., Melik- Nubarov, N. S., Arzhakov S. A., Levashov, A. V., Morozov, G. V., Severin, E. S., & Kabanov, V. A. (1989). The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles Micelles as microcontainers for drug targeting, FEBS Lett., 258, 343–345.PubMedGoogle Scholar
  62. Kai, E., Sawata, S., Ikebukuro, K., Iida, T., Honda, T., & Karube, I. (1999). Detection of PCR products in solution using surface plasmon resonance. Anal. Chem., 71, 796–800.PubMedGoogle Scholar
  63. Kamath, K., & Park, K. (1993). Biodegradable hydrogels in drug delivery, Adv. Drug Del. Rev., 11, 59–84.Google Scholar
  64. Kataoka, K., Ishihara, A., Harada, A., & Miyazaki, H. (1998). Effect of secondary structure of poly(L-lysine) segments on the micellization of poly(ethylene glycol)–poly(L-lysine) block copolymer partially substituted with hydrocinnamoyl-group at the N -position in aqueous milieu. Macromolecules, 31, 6071–6076.Google Scholar
  65. Kataoka, K., Harada, A., & Nagasaki, Y. (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Del. Rev., 47, 113–131.Google Scholar
  66. Kikuchi, A., & Okano, T. (2002). Pulsatile drug release control using hydrogels, Adv. Drug Del. Rev., 54, 53–77.Google Scholar
  67. Köhler, K., Shchukin, D. G., Möhwald, H., & Sukhorukov, G. B. (2005). Thermal behaviour of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. J. Phys. Chem. B, 109, 18250–18259.PubMedGoogle Scholar
  68. Kreft, O., Georgieva, R., Bäumler, H., Steup, M., Müller-Röber, B., Sukhorukov, G. B., & Möhwald, H. (2006) Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins. Macromol. Rapid Commun., 27, 435–440.Google Scholar
  69. Kreft, O., Muñoz Javier, A., Sukhorukov, G. B. & Parak, W. J. (2007). Polymer Microcapsules as Mobile Local pH-sensors. J. Materials Chemistry. 17, 4471–4476.Google Scholar
  70. Kreibig, U., Schmitz, B., & Breuer, H. D. (1987). Separation of plasmon-polariton modes of small metal particles. Phys. Rev. B, 36, 5027–5030.Google Scholar
  71. Kügler, R., Schmitt, J., & Knoll, W. (2002). The swelling behavior of polyelectrolyte multilayers in air of different relative humidity and in water. Macromol. Chem. Phys., 203, 413–419.Google Scholar
  72. Kwoh, D. Y., Coffin, C. C., Lollo, C. P., Jovenal, J., Banaszczyk, M. G., Mullen, P., Phillips, A., Amini, A., Fabrycki, J., Bartholomew, R. M., Brostoff, S. W., & Carlo, D. J. (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta, 1444, 171–190.PubMedGoogle Scholar
  73. Lebedew, P. (1901) Testings on the compressive force of light. Ann. der Phys., 6, 433–458.Google Scholar
  74. Leporatti, S., Gao, C., Voigt, A., Donath, E., & Möhwald, H. (2001). Shrinking of ultrathin polyelectrolyte multilayer capsules upon annealing: A confocal laser scanning microscopy and scanning force microscopy study. Eur.Phys. J. E, 5, 13–20.Google Scholar
  75. Liu, S. Y., & Armes, S. P. (2002). Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem. Int. Ed., 41, 1413–1416.Google Scholar
  76. Lowman, A. M., & Peppas, N. A. (1999). Hydrogels. In Encyclopaedia of Controlled Drug Delivery (Mathiowitz, E., ed.), pp. 397–418, John Wiley & Sons.Google Scholar
  77. Lvov, Y., Antipov, A. A., Mamedov, A., Möhwald, H., & Sukhorukov, G. B. (2001). Urease encapsulation in nanoorganized microshells. Nano Lett., 1, 125–128.Google Scholar
  78. Lu, Z., Prouty, M. D., Guo, Z., Golub, V. O., Kumar, C. S. S. R., & Lvov, Y. M. (2005). Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir, 21, 2042–2050.PubMedGoogle Scholar
  79. Lulevich, V. V., Nordschild, S., & Vinogradova, O. I. (2004). Investigation of molecular weight and aging effect on the stiffness of polyelectrolyte multilayer microcapsules. Macromolecules, 37, 7736–7741.Google Scholar
  80. Ma, Y., Dong, W.-F., Hempenius, M. A., Möhwald, H., & Vancso, G. J. (2006). Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater., 5, 724–729.PubMedGoogle Scholar
  81. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release, 65, 271–284.Google Scholar
  82. Mansur, C. R. E., Barboza, S. P., González, G., & Lucas, E. F. (2004). Pluronic×tetronic polyols: Study of their properties and performance in the destabilization of emulsions formed in the petroleum industry, J. Col. Int. Sci., 271, 232–240.Google Scholar
  83. Mart, R. J., Osborne, R. D., Stevens, M. M., & Ulijn, R. V. Peptide-based stimuli-responsive biomaterials  (2006). Soft Matter, 2, 822–835.Google Scholar
  84. Mayer, C. (2005). Nanocapsules as drug delivery systems. Int. J. Artif Organs., 28, 1163–1171.PubMedGoogle Scholar
  85. Mauser, T., Dejugnat, C., & Sukhorukov, G. B. (2006). Balance of hydrophobic and electrostatic forces in the pH response of weak polyelectrolyte capsules. J. Phys. Chem. B, 110, 20246–20253.PubMedGoogle Scholar
  86. Moffitt, M., Khougaz, K., & Eisenberg, A. (1996). Micellization of ionic block copolymers. Acc. Chem. Res., 29, 95–102.Google Scholar
  87. Möhwald, H., Donath. E., & Sukhorukov, G. B. in Multilayer Thin Films, Wiley-VCH, New York, 2003, pp 363–392.Google Scholar
  88. Moya, S., Dähne, L., Voigt, A., Leporatti, S., Donath, E., & Möhwald, H. (2001). Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry. Colloids Surf. A, 183, 27– 40.Google Scholar
  89. Müller, R., Köhler, K., Weinkamer, R., Sukhorukov, G., & Fery, A. (2005). Melting of PDADMAC/PSS capsules investigated with AFM force spectroscopy. Macromol., 38, 9766–9771.Google Scholar
  90. Murata, M., Kaku, W., Anada, T., Sato, Y., Kano, T., Maeda, M., & Katayama, Y. (2003) Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett., 13, 3967–3970.PubMedGoogle Scholar
  91. Niemeyer, C. M., & Ceyhan, B. (2001). DNA-directed functionalization of colloidal Gold with proteins. Angew. Chem, Int. Ed., 40, 3685–3688.Google Scholar
  92. Nishiyama, N., Yokoyama, M., Aoyagi, T., Okano, T., Sakurai, Y., & Kataoka K. (1999). Preparation and characterization of self-assembled polymer–metal complex micelle from cis-dichlorodiamine platinum (II) and poly(ethylene glycol)– poly(a,b-aspartic acid) block copolymer in an aqueous medium. Langmuir, 15, 377–383.Google Scholar
  93. Nori, A., & Kopecek, J. (2005). Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Delivery Rev., 57, 609–639.Google Scholar
  94. Norman, T., Jr., Grant, C. D., Magana, D., Zhang, J. Z., Liu, J., Cao, D., Bridges, F., & van Buuren, A. (2002). Near infrared optical absorption of gold nanoparticle aggregates. J. Phys. Chem. B, 106, 7005–7012.Google Scholar
  95. Ooya, T., Choi, H. S., Yamashita, A., Yui, N., Sugaya, Y., Kano, A., Maruyama, A., Akita, H., Ito, R., Kogure, K., & Harashima, H. (2005). Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery, J. Am. Chem. Soc., 128, 3852–3853.Google Scholar
  96. Oupicky, D., Bisht, H. S., Manickam, D. S., & Zhou, Q. (2005). Stimulus-controlled delivery of drugs and genes, Expert Opin Drug Delivery, 2, 1–13.Google Scholar
  97. Park, M. K., Xia, C. J., Advincula, R. C., Schotz, P., & Caruso, F. (2001). Cross-linked, luminescent spherical colloidal and hollow-shell particles. Langmuir, 17, 7670–7674.Google Scholar
  98. Pelton, R. (2000) Temperature-sensitive aqueous hydrogels. Adv. Col. Int. Sci. 85(1), 1–33.Google Scholar
  99. Petrov, A. I., Volodkin, D. V., & Sukhorukov, G. B. (2005). Protein-calcium carbonate coprecipitation: A tool for protein encapsulation. Biotechnol. Prog., 21, 918–925.PubMedGoogle Scholar
  100. Peyratout, C. S., & Dähne, L. (2004). Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew. Chem. Int. Ed., 43, 3762–3783.Google Scholar
  101. Picart, C., Schneider, A., Etienne, O., Mutterer, J., Schaaf, P., Egles, C., Jessen, N., & Voegel, J.-C. (2005). Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv. Funct. Mat., 15, 1771–1780.Google Scholar
  102. Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53, 321–339.PubMedGoogle Scholar
  103. Radt, B., Smith, T. A., & Caruso, F. (2004). Optically addressable nanostructured capsules. Adv. Mater., 16, 2184–2189.Google Scholar
  104. Roggan, A., Friebel, M., Dorschel, K., Hahn, A., & Muller, G. (1999). Optical properties of circulating human blood in the wavelength range 400–2500 NM. J. Biomed. Opt., 4, 36–46.Google Scholar
  105. Saunders, B. R., Crowther, H. M., Morris, G. E., Mears, S. J., Cosgrove, T., & Vincent, B. (1999) Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles. Coll. Surf. A 149 (1–3), 57–64.Google Scholar
  106. Schild, H. G. (1992). Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci., 17, 163–249.Google Scholar
  107. Schneider, G., & Decher, G. (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres, Nano Lett., 4, 1833Google Scholar
  108. Shchukin, D. G., Gorin, D. A., & Möhwald, H. (2006). Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir, 22, 7400–7404.PubMedGoogle Scholar
  109. Shchukin, D. G., Köhler, K., & Möhwald, H. (2006). Microcontainers with electrochemically reversible permeability. J. Am. Chem. Soc., 128, 4560–4461.PubMedGoogle Scholar
  110. Shenoy, D. B., Antipov, A. A., Sukhorukov, G. B., & Möhwald, H. (2003). Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromol., 4, 265–272.Google Scholar
  111. Shipway, A., Katz, E., & Wilner I. (2000). Nanoparticle arrays on surface for electronic, optical and sensor applications. Chemphyschem, 1, 18–52.Google Scholar
  112. Skirtach ,A. G., Antipov, A. A., Shchukin, D. G., & Sukhorukov, G. B.(2004). Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir, 20, 6988–6992.PubMedGoogle Scholar
  113. Skirtach, A. G., Dejugnat, C., Braun, D., Susha, A. S., Rogach, A. L., Parak, W. J., Möhwald, H., & Sukhorukov, G. B. (2005). The role of metal nanoparticles in remote release of encapsulated materials. Nano. Lett., 5, 1371–1377.PubMedGoogle Scholar
  114. Skirtach, A. G. , Munoz Javier, A., Kreft, O., Karen Köhler, Piera Alberola, A., Möhwald, H., Parak, W. J., & Sukhorukov, G. B. (2006). Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed., 45, 4612–4617.Google Scholar
  115. Skirtach, A. G., Déjugnat, C., Braun, D., Susha, A. S., Rogach, A. L., & Sukhorukov G. B. (2007a). Nanoparticles distribution control by polymers: Aggregates versus non-aggregates. J. Phys. Chem. C, 111, 555–564.Google Scholar
  116. Skirtach, A. G., De Geest, B. G., Mamedov, A., Antipov, A. A., Kotov, N. A., & Sukhorukov, G. B. (2007b). Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. J. Mat. Chem., 17, (1050–1054).Google Scholar
  117. Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G. H., Harris, J. M., & Hoffman, A. S. (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature, 378, 472–474.PubMedGoogle Scholar
  118. Steitz, R., Leiner, V., Tauer, K., Khrenov, V., & von Klitzing, R. (2002). Temperature-induced changes in polyelectrolyte films at the solid-liquid interface. Appl. Phys. A: Mater. Sci. Process., 74, S519–S521.Google Scholar
  119. Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers .4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 30, 2717–2725.Google Scholar
  120. Sui, Z. J., & Schlenoff, J. B. (2004). Phase separations in pH-responsive polyelectrolyte multilayers: Charge extrusion versus charge expulsion. Langmuir, 20, 6026–6031.PubMedGoogle Scholar
  121. Sukhishvili, S. A. (2005). Responsive polymer films and capsules via layer-by-layer assembly. Curr. Opin. Coll. Int. Sci, 10, 37–44.Google Scholar
  122. Sukhishvili, S. A., & Granick, S. (2000). Layered, erasable, ultrathin polymer films. J. Am. Chem. Soc., 122, 9550–9551.Google Scholar
  123. Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., & Möhwald, H. (1998). Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym. Adv. Technol., 9, 759–767.Google Scholar
  124. Sukhorukov, G. B., Volodkin,D. V., Günther, A., Petrov, A. I., Shenoy, D. B., & Möhwald, H. (2004). Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds, J. Mater. Chem., 14, 2073–2081.Google Scholar
  125. Suzuki, Y., Tomonaga, K., Kumazaki, M., & Nishio, I. (1996). Change in phase transition behavior of an NIPA gel induced by solvent composition: hydrophobic effect, Polym. Gels Netw., 4, 129–142.Google Scholar
  126. Thies, C. A. (1999) A short history of microencapsulation technology. In R. Arshady (Ed.), Microspheres, microcapsules and liposomes. Vol. I: Preparation and chemical application, London: Citus Books.Google Scholar
  127. Thurmond, K. B., Kowalewski, T., & Wooley, K. L. (1996). Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles, J. Am. Chem. Soc., 118, 7239–7240.Google Scholar
  128. Tonnesen, H. H., & Karlsen J. (2002). Alginate in drug delivery systems. Drug Dev Ind Pharm., 28, 621–630.PubMedGoogle Scholar
  129. Torchilin, V. P. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 61, 2549–2559.PubMedGoogle Scholar
  130. Torchilin, V. P., Trubetskoy, V. S., Whiteman, K. R., Caliceti, P., Ferruti, P., & Veronese F. M. (1995). New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci., 84, 1049–1053.PubMedGoogle Scholar
  131. Tuzar, Z., & Kratochvil, P. (1976). Block and graft copolymer micelles in solution. Adv. Col. Int. Sci., 6, 201–232.Google Scholar
  132. Unger, E. ”Drug and gene delivery with ultrasound contrast agents”, in The Leading Edge in Diagnostic Ultrasound, Atlantic City, NJ: May 13–16, 1997.Google Scholar
  133. Verberg, R., Alexeev, A., & Balazs, A. C. (2006). Modeling the release of nanoparticles from mobile microcapsules. J. Chem. Phys., 125, 224712–224722.PubMedGoogle Scholar
  134. Voigt, A., Lichtenfeld, H., Sukhorukov, G. B., Zastrow, H., Donath, E., Pumler, H. B., & Möhwald, H. (1999). Membrane filtration for microencapsulation and microcapsules fabrication by layer-by-layer polyelectrolyte adsorption. Ind. Eng. Chem. Res., 38, 4037–4043.Google Scholar
  135. Volodkin, D. V., Larionova, N. I., & Sukhorukov, G. B. (2004). Protein encapsulation via porous CaCO3 microparticles templating, Biomacromol. 5, 1962–1972.Google Scholar
  136. Williams, D. F. (1999). The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press.Google Scholar
  137. Wolff, J. A. (2002). The 'grand' problem of synthetic delivery, Nat. Biotechnol., 20, 768–769.PubMedGoogle Scholar
  138. Wu, J. Z., Zhou, B., & Hu, Z. B. (2003). Phase behavior of thermally responsive microgel colloids. Phys. Rev. Lett., 90, 48304.Google Scholar
  139. Yokoyama, M., Okano, T., & Kataoka, K. (1994). Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J. Controlled Release, 32, 269–277.Google Scholar
  140. Yoo, M. K., Seok, W. K., & Sung, Y. K. (2004). Characterisation of stimuli-sensitive polymers for biomedical applications, Macromol. Symp., 207, 173–186.Google Scholar
  141. Yu, H., & Grainger, D. W. (1993). Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: cationic, anionic, and ampholytic hydrogels, J. Appl. Polym. Sci., 49, 1553–1563.Google Scholar
  142. Zhou, H. S., Honma, I., Komiyama, H., & Haus, J. W. (1994). Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B, 50, 12052–12056.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Andre G. Skirtach
    • 1
  • Oliver Kreft
    • 1
  1. 1.Max-Planck-Institute of Colloids and Interfaces14424 Potsdam-GolmGermany

Personalised recommendations