Nanotechnology for Cancer Vaccine Delivery

  • Samar Hamdy
  • Aws Alshamsan
  • John Samuel
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


In spite of all the efforts of the biomedical community, cancer still represents one of the leading causes of death, suffering, and disability. Worldwide, one of eight deaths is ascribed to cancer. Consequently, cancer is responsible for one-third of the lost years of life and is second to cardiovascular diseases as a major killer (World Health Organization 2005). Most cancer patients are treated by a combination of surgery, radiotherapy, and/or chemotherapy. Whereas the primary tumor can, in most cases, be efficiently treated by a combination of these standard therapies, preventing the metastatic spread of the disease through disseminated tumor cells is often not effective. Besides, lack of specificity by those standard therapies leads to debilitating and distressing side effects, destroying healthy tissues along with cancer cells. To overcome these obstacles, there has been a growing focus on immunotherapy as a means to combat this disease (Schuster, Nechansky, &...


Natural Killer Cell Treg Cell Cancer Vaccine PLGA Nanoparticles Particulate Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675–680.PubMedGoogle Scholar
  2. Alas, S., & Bonavida, B. (2003). Inhibition of constitutive stat3 activity sensitizes resistant non-Hodgkin's lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res, 9(1), 316–326.PubMedGoogle Scholar
  3. Albert, M. L., Sauter, B., & Bhardwaj, N. (1998). Dendritic cells acquire antigen from apoptotic cells and induce class i-restricted ctls. Nature, 392(6671), 86–89.PubMedGoogle Scholar
  4. Albertsson, P. A., Basse, P. H., Hokland, M., Goldfarb, R. H., Nagelkerke, J. F., Nannmark, U., et al. (2003). Nk cells and the tumour microenvironment: Implications for nk-cell function and anti-tumour activity. Trends Immunol, 24(11), 603–609.PubMedGoogle Scholar
  5. Banchereau, J., & Palucka, A. K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol, 5(4), 296–306.PubMedGoogle Scholar
  6. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252.PubMedGoogle Scholar
  7. Bernards, R., Destree, A., McKenzie, S., Gordon, E., Weinberg, R. A., & Panicali, D. (1987). Effective tumor immunotherapy directed against an oncogene-encoded product using a vaccinia virus vector. Proc Natl Acad Sci USA, 84(19), 6854–6858.Google Scholar
  8. Beutler, B. (2004). Inferences, questions and possibilities in toll-like receptor signalling. Nature, 430(6996), 257–263.PubMedGoogle Scholar
  9. Blaskovich, M. A., Sun, J., Cantor, A., Turkson, J., Jove, R., & Sebti, S. M. (2003). Discovery of jsi-124 (cucurbitacin i), a selective janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res, 63, 1270–1279.PubMedGoogle Scholar
  10. Borst, J., Hendriks, J., & Xiao, Y. (2005). Cd27 and cd70 in t cell and b cell activation. Curr Opin Immunol, 17(3), 275–281.PubMedGoogle Scholar
  11. Bousso, P., & Robey, E. (2003). Dynamics of cd8+ t cell priming by dendritic cells in intact lymph nodes. Nat Immunol, 4(6), 579–585.PubMedGoogle Scholar
  12. Brandacher, G., Winkler, C., Schroecksnadel, K., Margreiter, R., & Fuchs, D. (2006). Antitumoral activity of interferon-gamma involved in impaired immune function in cancer patients. Curr Drug Metab, 7(6), 599–612.PubMedGoogle Scholar
  13. Brigl, M., & Brenner, M. B. (2004). Cd1: Antigen presentation and t cell function. Annu Rev Immunol, 22, 817–890.PubMedGoogle Scholar
  14. Cady, S. G., & Sono, M. (1991). 1-methyl-dl-tryptophan, beta-(3-benzofuranyl)-dl-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-dl-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys, 291(2), 326–333.PubMedGoogle Scholar
  15. Casadevall, A. (1999). Passive antibody therapies: Progress and continuing challenges. Clin Immunol, 93(1), 5–15.PubMedGoogle Scholar
  16. Cella, M., Engering, A., Pinet, V., Pieters, J., & Lanzavecchia, A. (1997). Inflammatory stimuli induce accumulation of mhc class ii complexes on dendritic cells. Nature, 388(6644), 782–787.PubMedGoogle Scholar
  17. Chang, D. H., Osman, K., Connolly, J., Kukreja, A., Krasovsky, J., Pack, M., et al. (2005). Sustained expansion of nkt cells and antigen-specific t cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med, 201(9), 1503–1517.PubMedGoogle Scholar
  18. Chaux, P., Moutet, M., Faivre, J., Martin, F., & Martin, M. (1996). Inflammatory cells infiltrating human colorectal carcinomas express hla class ii but not b7-1 and b7-2 costimulatory molecules of the t-cell activation. Lab Invest, 74(5), 975–983.PubMedGoogle Scholar
  19. Cheng, F., Wang, H. W., Cuenca, A., Huang, M., Ghansah, T., Brayer, J., et al. (2003). A critical role for stat3 signaling in immune tolerance. Immunity, 19(3), 425–436.PubMedGoogle Scholar
  20. Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H., & Rana, T. M. (2004). Visualizing a correlation between sirna localization, cellular uptake, and rnai in living cells. Chem Biol, 11(8), 1165–1175.PubMedGoogle Scholar
  21. Cooper, M. A., Fehniger, T. A., Fuchs, A., Colonna, M., & Caligiuri, M. A. (2004). Nk cell and dc interactions. Trends Immunol, 25(1), 47–52.PubMedGoogle Scholar
  22. Copland, M. J., Baird, M. A., Rades, T., McKenzie, J. L., Becker, B., Reck, F., et al. (2003). Liposomal delivery of antigen to human dendritic cells. Vaccine, 21(9–10), 883–890.PubMedGoogle Scholar
  23. Cumberbatch, M., & Kimber, I. (1995). Tumour necrosis factor-alpha is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology, 84(1), 31–35.PubMedGoogle Scholar
  24. Datta, S. K., Redecke, V., Prilliman, K. R., Takabayashi, K., Corr, M., Tallant, T., et al. (2003). A subset of toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol, 170(8), 4102–4110.PubMedGoogle Scholar
  25. De Vries, I. J., Krooshoop, D. J., Scharenborg, N. M., Lesterhuis, W. J., Diepstra, J. H., Van Muijen, G. N., et al. (2003). Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res, 63(1), 12–17.PubMedGoogle Scholar
  26. Degli-Esposti, M. A., & Smyth, M. J. (2005). Close encounters of different kinds: Dendritic cells and nk cells take centre stage. Nat Rev Immunol, 5(2), 112–124.PubMedGoogle Scholar
  27. Dermime, S., Armstrong, A., Hawkins, R. E., & Stern, P. L. (2002). Cancer vaccines and immunotherapy. Br Med Bull, 62, 149–162.PubMedGoogle Scholar
  28. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C., & Bhardwaj, N. (2001). Antigen-specific inhibition of effector t cell function in humans after injection of immature dendritic cells. J Exp Med, 193(2), 233–238.PubMedGoogle Scholar
  29. Diehl, L., den Boer, A. T., Schoenberger, S. P., van der Voort, E. I., Schumacher, T. N., Melief, C. J., et al. (1999). Cd40 activation in vivo overcomes peptide-induced peripheral cytotoxic t-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med, 5(7), 774–779.PubMedGoogle Scholar
  30. Diwan, M., Elamanchili, P., Cao, M., & Samuel, J. (2004). Dose sparing of cpg oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr Drug Deliv, 1(4), 405–412.PubMedGoogle Scholar
  31. Diwan, M., Elamanchili, P., Lane, H., Gainer, A., & Samuel, J. (2003). Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary t cell responses. J Drug Target, 11(8–10), 495–507.PubMedGoogle Scholar
  32. Elamanchili, P., Lutsiak, C., Hamdy, S., Diwan, M., & Samuel, J. (2007). Pathogen-mimicking' nanoparticles for vaccine delivery to dendritic cells. J Immunother, 30(4), 378–395.Google Scholar
  33. Elamanchili, P., Diwan, M., Cao, M., & Samuel, J. (2004). Characterization of poly(d,l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine, 22(19), 2406–2412.PubMedGoogle Scholar
  34. Enk, A. H., Jonuleit, H., Saloga, J., & Knop, J. (1997). Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer, 73(3), 309–316.PubMedGoogle Scholar
  35. Fehervari, Z., & Sakaguchi, S. (2004). Control of foxp3+ cd25+cd4+ regulatory cell activation and function by dendritic cells. Int Immunol, 16(12), 1769–1780.PubMedGoogle Scholar
  36. Foged, C., Sundblad, A., & Hovgaard, L. (2002). Targeting vaccines to dendritic cells. Pharm Res, 19(3), 229–238.PubMedGoogle Scholar
  37. Friberg, M., Jennings, R., Alsarraj, M., Dessureault, S., Cantor, A., Extermann, M., et al. (2002). Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of t cell-mediated rejection. Int J Cancer, 101(2), 151–155.PubMedGoogle Scholar
  38. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L., & Steinman, R. M. (2003). Activation of natural killer t cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined cd4 and cd8 t cell immunity to a coadministered protein. J Exp Med, 198(2), 267–279.PubMedGoogle Scholar
  39. Gabrilovich, D. I., Corak, J., Ciernik, I. F., Kavanaugh, D., & Carbone, D. P. (1997). Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res, 3(3), 483–490.PubMedGoogle Scholar
  40. Gao, L., Zhang, L., Hu, J., Li, F., Shao, Y., Zhao, D., et al. (2005a). Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering rnas suppresses growth of human prostate tumor in vivo. Clin Cancer Res, 11(17), 6333–6341.Google Scholar
  41. Gao, L. F., Xu, D. Q., Wen, L. J., Zhang, X. Y., Shao, Y. T., & Zhao, X. J. (2005b). Inhibition of stat3 expression by sirna suppresses growth and induces apoptosis in laryngeal cancer cells. Acta Pharmacol Sin, 26(3), 377–383.Google Scholar
  42. Gao, L. F., Wen, L. J., Yu, H., Zhang, L., Meng, Y., Shao, Y. T., et al. (2006). Knockdown of stat3 expression using rnai inhibits growth of laryngeal tumors in vivo. Acta Pharmacol Sin, 27(3), 347–352.PubMedGoogle Scholar
  43. Garg, S., Oran, A., Wajchman, J., Sasaki, S., Maris, C. H., Kapp, J. A., et al. (2003). Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nat Immunol, 4(9), 907–912.PubMedGoogle Scholar
  44. Gaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., et al. (2006). Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem, 49(2), 684–692.PubMedGoogle Scholar
  45. Geng, D., Joshi, S. K., Podolsky, R., & She, J. X. (2007). Gcsf receptor regulates antigen uptake and expression of cytokines and costimulatory molecules in dendritic cells. Mol Immunol, 44(4), 521–529.PubMedGoogle Scholar
  46. Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G., & Trinchieri, G. (2002). Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med, 195(3), 327–333.PubMedGoogle Scholar
  47. Godfrey, D. I., & Kronenberg, M. (2004). Going both ways: Immune regulation via cd1d-dependent nkt cells. J Clin Invest, 114(10), 1379–1388.PubMedGoogle Scholar
  48. Gong, J., Chen, D., Kashiwaba, M., & Kufe, D. (1997). Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med, 3(5), 558–561.PubMedGoogle Scholar
  49. Hamdy, S., Elamanchili, P., Alshamsan, A., Molavi, O., Satou, T., & Samuel, J. (2007). Enhanced antigen-specific primary cd4+ and cd8+ responses by co-delivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid a in poly(d,l-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A, 81(3), 652–662.Google Scholar
  50. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., et al. (2004). Lymphoid follicle destruction and immunosuppression after repeated cpg oligodeoxynucleotide administration. Nat Med, 10(2), 187–192.PubMedGoogle Scholar
  51. Heit, A., Huster, K. M., Schmitz, F., Schiemann, M., Busch, D. H., & Wagner, H. (2004). Cpg-DNA aided cross-priming by cross-presenting b cells. J Immunol, 172(3), 1501–1507.PubMedGoogle Scholar
  52. Hertz, C. J., Kiertscher, S. M., Godowski, P. J., Bouis, D. A., Norgard, M. V., Roth, M. D., et al. (2001). Microbial lipopeptides stimulate dendritic cell maturation via toll-like receptor 2. J Immunol, 166(4), 2444–2450.PubMedGoogle Scholar
  53. Hill, J. A., Ichim, T. E., Kusznieruk, K. P., Li, M., Huang, X., Yan, X., et al. (2003). Immune modulation by silencing il-12 production in dendritic cells using small interfering rna. J Immunol, 171(2), 691–696.PubMedGoogle Scholar
  54. Hirao, M., Onai, N., Hiroishi, K., Watkins, S. C., Matsushima, K., Robbins, P. D., et al. (2000). Cc chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: Critical role in migration from the tumor site to draining lymph nodes. Cancer Res, 60(8), 2209–2217.PubMedGoogle Scholar
  55. Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. O., et al. (2006). Rna interference in vitro and in vivo using a novel chitosan/sirna nanoparticle system. Mol Ther, 14(4), 476–484.PubMedGoogle Scholar
  56. Hwu, P., Du, M. X., Lapointe, R., Do, M., Taylor, M. W., & Young, H. A. (2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of t cell proliferation. J Immunol, 164(7), 3596–3599.PubMedGoogle Scholar
  57. Itaka, K., Kanayama, N., Nishiyama, N., Jang, W. D., Yamasaki, Y., Nakamura, K., et al. (2004). Supramolecular nanocarrier of sirna from peg-based block catiomer carrying diamine side chain with distinctive pka directed to enhance intracellular gene silencing. J Am Chem Soc, 126(42), 13612–13613.PubMedGoogle Scholar
  58. Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol, 5(10), 987–995.PubMedGoogle Scholar
  59. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., & Enk, A. H. (2000). Induction of interleukin 10-producing, nonproliferating cd4(+) t cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med, 192(9), 1213–1222.PubMedGoogle Scholar
  60. Kakizawa, Y., Furukawa, S., & Kataoka, K. (2004). Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and sirna delivery. J Control Release, 97(2), 345–356.PubMedGoogle Scholar
  61. Kamath, A. T., Sheasby, C. E., & Tough, D. F. (2005). Dendritic cells and nk cells stimulate bystander t cell activation in response to tlr agonists through secretion of ifn-alpha beta and ifn-gamma. J Immunol, 174(2), 767–776.PubMedGoogle Scholar
  62. Kaufman, H. L., & Disis, M. L. (2004). Immune system versus tumor: Shifting the balance in favor of dcs and effective immunity. J Clin Invest, 113(5), 664–667.PubMedGoogle Scholar
  63. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., et al. (1997). Cd1d-restricted and tcr-mediated activation of valpha14 nkt cells by glycosylceramides. Science, 278(5343), 1626–1629.PubMedGoogle Scholar
  64. Khaled, A., Guo, S., Li, F., & Guo, P. (2005). Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using rna nanotechnology. Nano Lett, 5(9), 1797–1808.PubMedGoogle Scholar
  65. Khan, A., Benboubetra, M., Sayyed, P. Z., Ng, K. W., Fox, S., Beck, G., et al. (2004). Sustained polymeric delivery of gene silencing antisense odns, sirna, dnazymes and ribozymes: In vitro and in vivo studies. J Drug Target, 12(6), 393–404.PubMedGoogle Scholar
  66. Kitamura, H., Iwakabe, K., Yahata, T., Nishimura, S., Ohta, A., Ohmi, Y., et al. (1999). The natural killer t (nkt) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (il)-12 production by dendritic cells and il-12 receptor expression on nkt cells. J Exp Med, 189(7), 1121–1128.PubMedGoogle Scholar
  67. Konnikova, L., Kotecki, M., Kruger, M. M., & Cochran, B. H. (2003). Knockdown of stat3 expression by rnai induces apoptosis in astrocytoma cells. BMC Cancer, 3, 23.PubMedGoogle Scholar
  68. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med, 11(12), 1314–1321.PubMedGoogle Scholar
  69. Kowalczyk, D. W., Wysocki, P. J., & Mackiewicz, A. (2003). Cancer immunotherapy using cells modified with cytokine genes. Acta Biochim Pol, 50(3), 613–624.PubMedGoogle Scholar
  70. Kubo, T., Hatton, R. D., Oliver, J., Liu, X., Elson, C. O., & Weaver, C. T. (2004). Regulatory t cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by tlr-activated dendritic cells. J Immunol, 173(12), 7249–7258.PubMedGoogle Scholar
  71. Kunisawa, J., Masuda, T., Katayama, K., Yoshikawa, T., Tsutsumi, Y., Akashi, M., et al. (2005). Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release. J Control Release, 105(3), 344–353.PubMedGoogle Scholar
  72. Laderach, D., Compagno, D., Danos, O., Vainchenker, W., & Galy, A. (2003). Rna interference shows critical requirement for nf-kappa b p50 in the production of il-12 by human dendritic cells. J Immunol, 171(4), 1750–1757.PubMedGoogle Scholar
  73. Lathe, R., Kieny, M. P., Gerlinger, P., Clertant, P., Guizani, I., Cuzin, F., et al. (1987). Tumour prevention and rejection with recombinant vaccinia. Nature, 326(6116), 878–880.PubMedGoogle Scholar
  74. Lee, J. R., Dalton, R. R., Messina, J. L., Sharma, M. D., Smith, D. M., Burgess, R. E., et al. (2003). Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest, 83(10), 1457–1466.PubMedGoogle Scholar
  75. Lee, S. O., Lou, W., Qureshi, K. M., Mehraein-Ghomi, F., Trump, D. L., & Gao, A. C. (2004). Rna interference targeting stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate, 60(4), 303–309.PubMedGoogle Scholar
  76. Liu, G., Ng, H., Akasaki, Y., Yuan, X., Ehtesham, M., Yin, D., et al. (2004). Small interference rna modulation of il-10 in human monocyte-derived dendritic cells enhances the th1 response. Eur J Immunol, 34(6), 1680–1687.PubMedGoogle Scholar
  77. Lutsiak, C. M., Sosnowski, D. L., Wishart, D. S., Kwon, G. S., & Samuel, J. (1998). Use of a liposome antigen delivery system to alter immune responses in vivo. J Pharm Sci, 87(11), 1428–1432.PubMedGoogle Scholar
  78. Lutsiak, M. E., Kwon, G. S., & Samuel, J. (2006). Biodegradable nanoparticle delivery of a th2-biased peptide for induction of th1 immune responses. J Pharm Pharmacol, 58(6), 739–747.PubMedGoogle Scholar
  79. Mack, C. A., Song, W. R., Carpenter, H., Wickham, T. J., Kovesdi, I., Harvey, B. G., et al. (1997). Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 8(1), 99–109.PubMedGoogle Scholar
  80. Means, T. K., Hayashi, F., Smith, K. D., Aderem, A., & Luster, A. D. (2003). The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol, 170(10), 5165–5175.PubMedGoogle Scholar
  81. Melief, C. J., Van Der Burg, S. H., Toes, R. E., Ossendorp, F., & Offringa, R. (2002). Effective therapeutic anticancer vaccines based on precision guiding of cytolytic t lymphocytes. Immunol Rev, 188, 177–182.PubMedGoogle Scholar
  82. Mercer, J. C., Ragin, M. J., & August, A. (2005). Natural killer t cells: Rapid responders controlling immunity and disease. Int J Biochem Cell Biol, 37(7), 1337–1343.PubMedGoogle Scholar
  83. Mesa, C., & Fernandez, L. E. (2004). Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol, 82(6), 644–650.PubMedGoogle Scholar
  84. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene bin1, potentiates cancer chemotherapy. Nat Med, 11(3), 312–319.PubMedGoogle Scholar
  85. Muller, A. J., & Prendergast, G. C. (2005). Marrying immunotherapy with chemotherapy: Why say ido? Cancer Res, 65(18), 8065–8068.PubMedGoogle Scholar
  86. Munn, D. H., & Mellor, A. L. (2004). Ido and tolerance to tumors. Trends Mol Med, 10(1), 15–18.PubMedGoogle Scholar
  87. Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., et al. (2004). Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest, 114(2), 280–290.PubMedGoogle Scholar
  88. Murthy N, C. J., Fausto N, Hoffman AS, Stayton PS. (2003). Bioinspired ph-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem, 14(2), 412–419.Google Scholar
  89. Neeson, P., & Paterson, Y. (2006). Effects of the tumor microenvironment on the efficacy of tumor immunotherapy. Immunol Invest, 35(3–4), 359–394.PubMedGoogle Scholar
  90. Nefedova, Y., Cheng, P., Gilkes, D., Blaskovich, M., Beg, A. A., Sebti, S. M., et al. (2005a). Activation of dendritic cells via inhibition of jak2/stat3 signaling. J Immunol, 175(7), 4338–4346.Google Scholar
  91. Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M., & Gabrilovich, D. I. (2005b). Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res, 65(20), 9525–9535.Google Scholar
  92. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., et al. (2004). Hyperactivation of stat3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol, 172(1), 464–474.PubMedGoogle Scholar
  93. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., et al. (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med, 4(3), 328–332.PubMedGoogle Scholar
  94. Nestle, F. O., Banchereau, J., & Hart, D. (2001). Dendritic cells: On the move from bench to bedside. Nat Med, 7(7), 761–765.PubMedGoogle Scholar
  95. Newman, K. D., Samuel, J., & Kwon, G. (1998). Ovalbumin peptide encapsulated in poly(d,l lactic-co-glycolic acid) microspheres is capable of inducing a t helper type 1 immune response. J Control Release, 54(1), 49–59.PubMedGoogle Scholar
  96. Nicchitta, C. V. (2003). Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat Rev Immunol, 3(5), 427–432.PubMedGoogle Scholar
  97. Nishioka, Y., & Yoshino, H. (2001). Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev, 47(1), 55–64.PubMedGoogle Scholar
  98. Niu, G., Heller, R., Catlett-Falcone, R., Coppola, D., Jaroszeski, M., Dalton, W., et al. (1999). Gene therapy with dominant-negative stat3 suppresses growth of the murine melanoma b16 tumor in vivo. Cancer Res, 59, 5059–5063.PubMedGoogle Scholar
  99. O'Hagan D, S. M. (2003). Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines, 2, 269–283.PubMedGoogle Scholar
  100. O'Hagan, D. T., & Valiante, N. M. (2003). Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov, 2(9), 727–735.PubMedGoogle Scholar
  101. Orabona, C., Belladonna, M. L., Vacca, C., Bianchi, R., Fallarino, F., Volpi, C., et al. (2005). Cutting edge: Silencing suppressor of cytokine signaling 3 expression in dendritic cells turns cd28-ig from immune adjuvant to suppressant. J Immunol, 174(11), 6582–6586.PubMedGoogle Scholar
  102. Oussoren, C., & Storm, G. (1997). Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: Iii. Influence of surface modification with poly(ethyleneglycol). Pharm Res, 14(10), 1479–1484.PubMedGoogle Scholar
  103. Oussoren, C., & Storm, G. (2001). Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev, 50(1–2), 143–156.PubMedGoogle Scholar
  104. Palmer, M., Parker, J., Modi, S., Butts, C., Smylie, M., Meikle, A., et al. (2001). Phase i study of the blp25 (muc1 peptide) liposomal vaccine for active specific immunotherapy in stage iiib/iv non-small-cell lung cancer. Clin Lung Cancer, 3(1), 49–57; discussion 58.PubMedGoogle Scholar
  105. Pasare, C., & Medzhitov, R. (2003). Toll pathway-dependent blockade of cd4+cd25+ t cell-mediated suppression by dendritic cells. Science, 299(5609), 1033–1036.PubMedGoogle Scholar
  106. Pinzon-Charry, A., Maxwell, T., & Lopez, J. A. (2005). Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol Cell Biol, 83(5), 451–461.PubMedGoogle Scholar
  107. Probst, H. C., Lagnel, J., Kollias, G., & van den Broek, M. (2003). Inducible transgenic mice reveal resting dendritic cells as potent inducers of cd8+ t cell tolerance. Immunity, 18(5), 713–720.PubMedGoogle Scholar
  108. Razzaque, A., Dye, E., & Puri, R. K. (2000). Characterization of tumor vaccines during product development. Vaccine, 19(6), 644–647.PubMedGoogle Scholar
  109. Reddy, S. T., Berk, D. A., Jain, R. K., & Swartz, M. A. (2006a). A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol, 101(4), 1162–1169.Google Scholar
  110. Reddy, S. T., Rehor, A., Schmoekel, H. G., Hubbell, J. A., & Swartz, M. A. (2006b). In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release, 112(1), 26–34.Google Scholar
  111. Reddy, S. T., Swartz, M. A., & Hubbell, J. A. (2006c). Targeting dendritic cells with biomaterials: Developing the next generation of vaccines. Trends Immunol, 27(12), 573–579.Google Scholar
  112. Rehor, A., Hubbell, J. A., & Tirelli, N. (2005). Oxidation-sensitive polymeric nanoparticles. Langmuir, 21(1), 411–417.PubMedGoogle Scholar
  113. Richards Grayson, A. C., Doody, A. M., & Putnam, D. (2006). Biophysical and structural characterization of polyethylenimine-mediated sirna delivery in vitro. Pharm Res, 23(8), 1868–1876.Google Scholar
  114. Rosenberg, S. A., Yang, J. C., & Restifo, N. P. (2004). Cancer immunotherapy: Moving beyond current vaccines. Nat Med, 10(9), 909–915.PubMedGoogle Scholar
  115. Schroder, M., & Bowie, A. G. (2005). Tlr3 in antiviral immunity: Key player or bystander? Trends Immunol, 26(9), 462–468.PubMedGoogle Scholar
  116. Schulz, O., Diebold, S. S., Chen, M., Naslund, T. I., Nolte, M. A., Alexopoulou, L., et al. (2005). Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature, 433(7028), 887–892.PubMedGoogle Scholar
  117. Schuster, M., Nechansky, A., & Kircheis, R. (2006). Cancer immunotherapy. Biotechnol J, 1(2), 138–147.PubMedGoogle Scholar
  118. Shen, H., Ackerman, A. L., Cody, V., Giodini, A., Hinson, E. R., Cresswell, P., et al. (2006). Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology, 117(1), 78–88.PubMedGoogle Scholar
  119. Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H., & Godfrey, D. I. (2002). Nkt cells – conductors of tumor immunity? Curr Opin Immunol, 14(2), 165–171.PubMedGoogle Scholar
  120. Smyth, M. J., Hayakawa, Y., Takeda, K., & Yagita, H. (2002). New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer, 2(11), 850–861.PubMedGoogle Scholar
  121. Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptors. Annu Rev Immunol, 21, 335–376.PubMedGoogle Scholar
  122. Tamura, Y., Peng, P., Liu, K., Daou, M., & Srivastava, P. K. (1997). Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 278(5335), 117–120.PubMedGoogle Scholar
  123. Terness, P., Chuang, J. J., Bauer, T., Jiga, L., & Opelz, G. (2005). Regulation of human auto- and alloreactive t cells by indoleamine 2,3-dioxygenase (ido)-producing dendritic cells: Too much ado about ido? Blood, 105(6), 2480–2486.PubMedGoogle Scholar
  124. Tsujitani, S., Furukawa, T., Tamada, R., Okamura, T., Yasumoto, K., & Sugimachi, K. (1987). Langerhans cells and prognosis in patients with gastric carcinoma. Cancer, 59(3), 501–505.PubMedGoogle Scholar
  125. Turkson, J., Ryan, D., Kim, J. S., Zhang, Y., Chen, Z., Haura, E., et al. (2001). Phosphotyrosyl peptides block stat3-mediated dna binding activity, gene regulation, and cell transformation. J Biol Chem, 276(48), 45443–45455.PubMedGoogle Scholar
  126. Tuting, T., Storkus, W. J., & Lotze, M. T. (1997). Gene-based strategies for the immunotherapy of cancer. J Mol Med, 75(7), 478–491.PubMedGoogle Scholar
  127. Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 9(10), 1269–1274.PubMedGoogle Scholar
  128. van Duin, D., Medzhitov, R., & Shaw, A. C. (2006). Triggering tlr signaling in vaccination. Trends Immunol, 27(1), 49–55.PubMedGoogle Scholar
  129. Walter, E., Dreher, D., Kok, M., Thiele, L., Kiama, S. G., Gehr, P., et al. (2001). Hydrophilic poly(dl-lactide-co-glycolide) microspheres for the delivery of dna to human-derived macrophages and dendritic cells. J Control Release, 76(1–2), 149–168.PubMedGoogle Scholar
  130. Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L., & Vivier, E. (2005). Natural-killer cells and dendritic cells: “l'union fait la force”. Blood, 106(7), 2252–2258.PubMedGoogle Scholar
  131. Wan, T., Zhou, X., Chen, G., An, H., Chen, T., Zhang, W., et al. (2004). Novel heat shock protein hsp70l1 activates dendritic cells and acts as a th1 polarizing adjuvant. Blood, 103(5), 1747–1754.PubMedGoogle Scholar
  132. Wang, D., Robinson, D. R., Kwon, G. S., & Samuel, J. (1999). Encapsulation of plasmid dna in biodegradable poly(d, l-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J Control Release, 57(1), 9–18.PubMedGoogle Scholar
  133. Warger, T., Osterloh, P., Rechtsteiner, G., Fassbender, M., Heib, V., Schmid, B., et al. (2006). Synergistic activation of dendritic cells by combined toll-like receptor ligation induces superior ctl responses in vivo. Blood, 108(2), 544–550.PubMedGoogle Scholar
  134. Werth, S., Urban-Klein, B., Dai, L., Hobel, S., Grzelinski, M., Bakowsky, U., et al. (2006). A low molecular weight fraction of polyethylenimine (pei) displays increased transfection efficiency of dna and sirna in fresh or lyophilized complexes. J Control Release, 112(2), 257–270.PubMedGoogle Scholar
  135. Xu, H., Chen, T., Wang, H. Q., Ji, M. J., Zhu, X., & Wu, W. X. (2006). Prolongation of rat intestinal allograft survival by administration of donor interleukin-12 p35-silenced bone marrow-derived dendritic cells. Transplant Proc, 38(5), 1561–1563.Google Scholar
  136. Yamaguchi, N., Hiraoka, S., Mukai, T., Takeuchi, N., Zhou, X. Y., Ono, S., et al. (2004). Induction of tumor regression by administration of b7-ig fusion proteins: Mediation by type 2 cd8+ t cells and dependence on il-4 production. J Immunol, 172(3), 1347–1354.PubMedGoogle Scholar
  137. Yang, Y., Huang, C. T., Huang, X., & Pardoll, D. M. (2004). Persistent toll-like receptor signals are required for reversal of regulatory t cell-mediated cd8 tolerance. Nat Immunol, 5(5), 508–515.PubMedGoogle Scholar
  138. Yee, C. (2005). Adoptive t cell therapy: Addressing challenges in cancer immunotherapy. J Transl Med, 3(1), 17.PubMedGoogle Scholar
  139. Yuan, D., Koh, C. Y., & Wilder, J. A. (1994). Interactions between b lymphocytes and nk cells. Faseb J, 8(13), 1012–1018.PubMedGoogle Scholar
  140. Yuan, D., Wilder, J., Dang, T., Bennett, M., & Kumar, V. (1992). Activation of b lymphocytes by nk cells. Int Immunol, 4(12), 1373–1380.PubMedGoogle Scholar
  141. Zanoni, I., Foti, M., Ricciardi-Castagnoli, P., & Granucci, F. (2005). Tlr-dependent activation stimuli associated with th1 responses confer nk cell stimulatory capacity to mouse dendritic cells. J Immunol, 175(1), 286–292.PubMedGoogle Scholar
  142. Zeid, N. A., & Muller, H. K. (1993). S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology, 25(4), 338–343.PubMedGoogle Scholar
  143. Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 5(4), 263–274.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Samar Hamdy
    • 1
  • Aws Alshamsan
    • 1
  • John Samuel
    • 1
  1. 1.Faculty of Pharmacy and Pharmaceutical Sciences3133 Dentistry/Pharmacy Centre, University of AlbertaEdmonton, AlbertaCanada

Personalised recommendations