Nanotechnology for Cancer Chemotherapy

  • Alisar S. Zahr
  • Michael V. Pishko
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


This chapter will provide an in-depth discussion on the development of nanometer-sized carriers for the treatment of cancer. Anti-cancer drugs given systemically remain problematic due to their non-specificity. These cytotoxic drugs destroy both cancerous and normal cells of the body, thus leading to potentially fatal side effects. In recent developments, new cytotoxic drugs have yielded compounds with poor physiochemical properties which require alternate routes in their delivery to the diseased tissue. The use of nanoparticles for the delivery of chemotherapeutics to cancer lesions and their microenvironment has offered solutions to the problems associated with conventional administration, delivery, and formulation of chemotherapeutics. Nanoparticles, submicron-sized colloidal structures, have shown to extravasate across tumor vascular walls, penetrate into the tumor interstitium, target surface receptors on cancer cells, and control the release of the anti-cancer drug locally. The design in the surface of the colloidal carrier is important in achieving a biocompatible, long circulating, and targeted drug delivery particulate system. The rational approach in engineering colloidal carriers with the potential to treat cancer is discussed and examples of drug delivery systems which have demonstrated therapeutic efficacy are provided.


Drug Delivery System Polymeric Micelle Folate Receptor Mononuclear Phagocyte System Drug Delivery Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, T. M. (2002). Ligand-Targeted Therapeutics in Anticancer Therapy. Nature, 2, 750–763.Google Scholar
  2. Aplin, A. E., Howe, A., Alahari, S. K., and Juliano, R. L. (1998). Signal Transduction and Signal Modulation by Cell Adhesion Receptors: The Role of Integrins, Cadherins, Immunoglobulin-Cell Adhesion Molecules, and Selectins. Phamacological Reviews, 50(2), 199–252.Google Scholar
  3. Bailon, P. B., W. (1998). Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science and Technology Today, 1(8), 352–356.Google Scholar
  4. Birnbaum, D. T., and Brannon-Peppas, L. Microparticle Drug Delivery Systems. In D. M. Brown (Ed.), Drug Delivery Systems in Cancer Therapy. Totowa: Humana Press Inc.Google Scholar
  5. Brannon-Peppas, L., and Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.PubMedGoogle Scholar
  6. Brigger, I., Morizet, J., Aubert, G., Chacun, H., Terrier-Lacombe, M.-J., Couvreur, P., and Vassal, G. (2002). Poly(ethylene glycol)-Coated Hexadecylcyanoacrylate Nanospheres Display a Combined Effect for Brain Tumor Targeting. The Journal of Pharmacology and Experimental Therapeutics, 303(3), 928–936.PubMedGoogle Scholar
  7. Champion, J. A., and Mitragotri, S. A. (2006). Role of target geometry in phagocytosis. PNAS, 103(13), 4030–4033.Google Scholar
  8. Daldrup, H., Shames, D. M., Wendland, M., Okuhata, Y., Link, T. M., Rosenan, W., Lu, Y., and Brasch, R. C. (1998). Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatric Radiology, 28, 67–78.PubMedGoogle Scholar
  9. de Jaeghere, F., Doelker, E., and Gurny, R. (1999). Nanoparticles. In E. Mathiowitz (Ed.), Encyclopedia of Controlled Drug Delivery (Vol. 2, pp. 641–664). New York: John Wiley & Sons, Inc.Google Scholar
  10. Desgouilles, S., Vauthier, C., Bazile, D., Vacus, J., Grossiord, J.-L., Veillard, M., and Couvreur, P. (2003). The Design of Nanoparticles Obtained by Solvent Evaporation: A Comprehensive Study. Langmuir, 19, 9504–9510.Google Scholar
  11. di Tomaso, E., Capen, D., Haskell, A., Hart, J., Logie, J. J., Jain, R. K., McDonald, D. M., Jones, R., and Munn, L. L. (2005). Mosaic Tumor Vessels: Cellular Basis and Ultrastructure of Focal Regions Lacking Endothelial Cell Markers. Cancer Research, 65(13), 5740–5749.PubMedGoogle Scholar
  12. Dreher, M. R., Liu, W., Michelich, C. R., Dewhirst, M. W., Yuan, F., and Chilkoti, A. (2006). Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers. Journal of the National Cancer Institute, 98(5), 335–344.PubMedGoogle Scholar
  13. Dua, R. S., Gui, G. P. H., and Isacke, C. M. (2005). Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. Journal of Cancer Surgery, 31, 824–832.Google Scholar
  14. Duncan, R. (2003). The Drawing Era of Polymer Therapeutics. Nature Reviews, 2, 247–359.Google Scholar
  15. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature 6, 688–701.Google Scholar
  16. Esfand, R., and Tomalia, D. A. (2001). Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 6(8), 427–436.PubMedGoogle Scholar
  17. Faraasen, S., Voros, J., Csucs, G., Textor, M., Merkle, H. P., and Walter, E. (2003). Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharmaceutical Research, 20(2), 237–246.PubMedGoogle Scholar
  18. Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., and Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS, 103(16), 6315–6320.PubMedGoogle Scholar
  19. Feng, S.-S., and Chien, S. (2003). Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chemical Engineering Science, 58, 4087–4114.Google Scholar
  20. Fernandez-Urrusuno, R., Fattal, E., Porquet, D., Feger, J., and Couvreur, P. (1995). Influence of Surface Properties on the Inflammatory Response to Polymeric Nanoparticles. Pharmaceutical Research, 12(9), 1995.Google Scholar
  21. Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews, 5, 161–172.PubMedGoogle Scholar
  22. Gao, Z., Fain, H. D., and Rapoport, N. (2004). Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Molecular Pharmaceutics, 1(4), 317–330.PubMedGoogle Scholar
  23. Gao, Z., Lukyanov, A. N., Singhal, A., and Torchilin, V. P. (2002). Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs. Nano Letters, 2(9), 979–982.Google Scholar
  24. Gbadamosi, J. K., Hunter, A. C., and Moghimi, S. M. (2002). PEGylation of microspheres generates a heterogenous population of particles with different surface characteristics and biological performances. FEBS Letters, 532, 338–344.PubMedGoogle Scholar
  25. Gong, X., Dai, L., Griesser, H. J., and Mau, A. W. H. (2000). Surface Immobilization of Poly(ethylene oxide) Structure and Properties. Journal of Polymer Science: Part B: Polymer Physics, 38, 2323–2332.Google Scholar
  26. Gref, R., Couvreur, P., Barratt, G., and Mysiakine, E. (2003). Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials, 24, 4529–4537.PubMedGoogle Scholar
  27. Gringauz, A. (1997). How Drugs Act and Why. New York: Wiley-VCH.Google Scholar
  28. Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S., and Allen, T. M. (1995). Attachment of antibodies to sterically stabilized liposomes: Evaluation, comparison and optimization of coupling procedures. Biochimica et Biophysica Acta, 1239, 133–144.PubMedGoogle Scholar
  29. Harrington, K. J., Rowlinson-Busza, G., Syrigos, K. N., Uster, P. S., Vile, R. G., and Stewart, J. S. W. (2000). Pegylated Liposomes Have the Potential as Vehicles for Intratumoral and Subcutaneous Drug Delivery Clinical Cancer Research, 6, 2528–2537.PubMedGoogle Scholar
  30. Heldin, C.-H., Rubin, K., Pietras, K., and Ostman, A. (2004). High Interstitial Fluid Pressure- An Obstacle in Cancer Therapy. Nature Reviews: Cancer, 4, 806–813.PubMedGoogle Scholar
  31. Herbst, R. S. (2004). Review of Epidermal Growth Factor Receptor Biology. International Journal of. Radiation Oncology, Biology, Physics, 59(2), 21–26.PubMedGoogle Scholar
  32. Hirsch, L. R., Halas, N. J., and West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceeding of the National Academy of Sciences of the United States of America., 100, 13549–13554.Google Scholar
  33. Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment Proceeding of the National Academy of Sciences of the United States of America, 95, 4607–4612.Google Scholar
  34. Jaffer, F. A., and Weissleder, R. (2004). Seeing within: Molecular Imaging of the Cardiovascular System. Circulation Research, 94, 433–445.PubMedGoogle Scholar
  35. Jain, R. K. (2001). Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 46, 149–168.PubMedGoogle Scholar
  36. Jamil, H., Shiekh, S., and Ahmad, I. (2004). Liposomes: The Next Generation. Modern Drug Discovery, 37–39.Google Scholar
  37. Jang, S. H., Wientjes, M. G., Lu, D., and Au, J. L.-S. (2003). Drug Delivery and Transport to Solid Tumors Pharmaceutical Research, 20(9), 1337–1350.PubMedGoogle Scholar
  38. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J., and Thun, M. J. (2005). Cancer Statistics, 2005. CA: A Cancer Journal for Clinicians, 55(1), 10–30.Google Scholar
  39. Kim, C. K., and Lim, S. J. (2002). Recent progress in drug delivery systems for anticancer agents. Archives of Pharmacal Research, 25, 229–239.PubMedGoogle Scholar
  40. Kingsley, J. D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H. E., and Destache, C. J. (2006). Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. Journal of Neuroimmunology and. Pharmacology, 1, 340–350.Google Scholar
  41. Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics, 284(284), 109–122.PubMedGoogle Scholar
  42. Kirpotin, D., Park, J. W., Hong, K., Zalipsky, S., Li, W., Carter, P., Benz, C. C., and Papahadjopoulous, D. (1997). Sterically stabilized Anti-HER2 Immunoliposomes: Design and Targeting to Human Breast Cancer cells in vitro. Biochemistry, 36, 66–75.PubMedGoogle Scholar
  43. Langer, R. (2000). Biomaterials in Drug Delivery and Tissue Engineering: One Laboratory's Experience. Accounts of Chemical Research, 33, 94–101.PubMedGoogle Scholar
  44. Lasic, D. D., Vallner, J. J., and Working, P. K. (1999). Sterically stabilized liposomes in cancer therapy and gene delivery. Current Opinion in Molecular Therapeutics, 1(2), 177–185.PubMedGoogle Scholar
  45. LaVan, D. A., McGuire, T., and Langer, R. (2003). Small-scale systems for in vivo drug delivery Nature Biotechnology, 21, 1184–1191.PubMedGoogle Scholar
  46. Leach, K. J. (1999). Cancer, Drug Delivery to Treat Local and Systemic (Vol. 1). New York: John Wiley & Sons Inc.Google Scholar
  47. Leamon, C. P., Cooper, S. R., and Hardee, G. E. (2003). Folate-Liposome-Mediated Antisense Oligodeoxynucleotide Targeting to Cancer Cells: Evaluation in Vitro and in Vivo. Bioconjugate Chemistry, 14, 738–747.PubMedGoogle Scholar
  48. Lee, R. J., and Low, P. S. (1994). Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis. The Journal of Biological Chemistry, 269, 3198–3204.PubMedGoogle Scholar
  49. Lewanski, C. R., and Stewart, S. (1999). Pegylated liposomal adriamycin: a review of current and future applications. Pharmaceutical Science and Technology Today, 2(12), 473–477.PubMedGoogle Scholar
  50. Liu, H., Farrell, S., and Uhrich, K. (2000). Drug release characteristics of unimolecular polymeric micelles. Journal of Controlled Release, 68, 167–174.PubMedGoogle Scholar
  51. Liu, H., Farrell, S., and Uhrich, K. (2000). Drug release characteristics of unimolecular polymeric micelles. Journal of Controlled Release, 68(2), 167–174.PubMedGoogle Scholar
  52. Liu, X., Gao, C., Shen, J., and Mohwald, H. (2005). Multilayer Microcapsules as Anti-Cancer Drug Delivery Vehicle: Deposition, Sustained Release and in vitro Bioactivity. Macromolecular Bioscience, 5, 1209–1219.PubMedGoogle Scholar
  53. Loeb, K. R., and Loeb, L. A. (2000). Significance of multiple mutations in cancer. Genes Chromosomes Cancer, 38, 302–306.Google Scholar
  54. Loeb, L. A. (1991). Mutator phenotype may be required for multistage carcinogenesis. Cancer Research, 51, 3075–3079.PubMedGoogle Scholar
  55. Lu, Z., Prouty, M. D., Guo, Z., Golub, V. O., Kumar, C. S. S. R., and Lvov, Y. M. (2005). Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Aug Nanoparticles. Langmuir, 21, 2042–2050.PubMedGoogle Scholar
  56. Luck, M., Paulke, B. R., Schroder, W., Blunk, T., and Muller, R. H. (1998). Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research, 39, 478–485.PubMedGoogle Scholar
  57. Luo, Y., and Prestwich, G. D. (2002). Cancer-targeted polymeric drugs. Current Cancer Drug Targets, 2(3), 209–226.PubMedGoogle Scholar
  58. Maeda, H., Fang, J., Inutsuka, T., and Kitamoto, Y. (2003). Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. International Immunopharmocology, 3, 319–328.Google Scholar
  59. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 65, 271–284.PubMedGoogle Scholar
  60. Marshall, A. (2006). Transmission Electron Microscope (TEM) Facility.Google Scholar
  61. May, D. J., Allen, J. S., and Ferrara, K. W. (2002). Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans., 49, 1400–1410.Google Scholar
  62. Merlo, L. M. F., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews: Cancer, advanced online publication, 1–12.Google Scholar
  63. Minchinton, A. I., and Tannock, I. F. (2006). Drug penetration in solid tumors. Nature Reviews, 6, 583–592.PubMedGoogle Scholar
  64. Moghimi, S. M., Hunter, A. C., and Murray, J. C. (2005). Nanomedicine: current status and future prospects. FASEB J., 19, 311–330.PubMedGoogle Scholar
  65. Moghimi, S. M., and Szebeni, J. (2003). Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization, and protein-binding properties. Progress in Lipid Research, 42, 463–478.PubMedGoogle Scholar
  66. Moses, M. A., Brem, H., and Langer, R. (2003). Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell, 4, 337–340.PubMedGoogle Scholar
  67. Mosqueira, V. C. F., Legrand, P., Gref, R., Heuratault, B., Appel, M., and Barratt, G. (1999). Interactions between a Macrophage Cell line (J774A1) and surface-modified Poly(D,L-lactide) Nanocapsules Bearing Poly(ethylene glycol). Journal of Drug Targeting, 7(1), 65–78.PubMedGoogle Scholar
  68. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D. (1992). Handbook of X-ray Photoelectron Spectroscopy. Eden Praire, MN: Perken-Elmer Corp.Google Scholar
  69. Muller, R. H., Mader, K., and Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161–177.PubMedGoogle Scholar
  70. Napper, D. H. (1983). Polymeric Stabilization of Colloidal Dispersion. London: Academic Press.Google Scholar
  71. Neri, D., and Bicknell, R. (2005). Tumor Vascular Targeting. Nature Reviews, 5, 436–447.PubMedGoogle Scholar
  72. Nobs, L., Buchegger, F., Gurny, R., and Allemann, E. (2004). Current methods for attaching ligands to liposomes and nanoparticles. Journal of Pharmaceutical Sciences, 93, 1980–1992.PubMedGoogle Scholar
  73. Norde, W. (1996). Driving Forces for Protein Adsorption at Solid Surfaces. Macromol. Symp., 103, 5–18.Google Scholar
  74. O'Donnell, P. B., and McGinity, J. W. (1997). Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews, 28, 25–42.PubMedGoogle Scholar
  75. Oliver, M., Ahmad, A., Kamaly, N., Perouzel, E., Caussin, A., Keller, M., Herlihy, A., Bell, J., Miller, A. D., and Jorgensen, M. R. (2006). MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. Organic & Biomolecular Chemistry, 4(18), 3489–3497.Google Scholar
  76. Pante, N., and Kann, M. (2002). Nuclear Pore Complex is Able to Transport Macromolecules with Diameters ˜ 39 nm. Molecular Biology of the Cell, 13, 425–434.PubMedGoogle Scholar
  77. Papisov, M. I. (1998). Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions. Advanced Drug Delivery Reviews, 32, 119–138.PubMedGoogle Scholar
  78. Park, S. Y., Barrett, C. J., Rubner, M. F., and Mayes, A. M. (2001). Anomalous Adsorption of Polyelectrolyte Layers. Macromolecules, 34, 3384–3388.Google Scholar
  79. Peracchia, M. T. (1997). PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics. Journal of Controlled Release, 46, 223–231.Google Scholar
  80. Perez, J. M., Josephson, L., and Weissleder, R. (2004). Use of magnetic nanoparticles to probe for molecular interactions. ChemBioChem., 5, 261–264.PubMedGoogle Scholar
  81. Quintana, A., Raczka, E., Piehler, L., Lee, I., Mye, A., Majoros, I., Patri, A. K., Thomas, T., Mule, J., and Baker, J. R. (2002). Design and Function of a Dendrimer-Based Therapeutic Nanodeviced Targeted to Tumor Cells Through the Folate Receptor. Pharmaceutical Research, 19(9), 1310–1316.PubMedGoogle Scholar
  82. Ratner, B. D., Johnston, A. B., and Lenk, T. J. (1987). Biomaterial Surfaces. Journal of Biomedical Materials Research: Applied Biomaterials, 21(A1), 59–90.PubMedGoogle Scholar
  83. Reddy, G. R., Bhojani, M. S., McConville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Koo, Y.-E. L., Woolliscroft, M. J., Sugai, J. V., Johnson, T., D., Philbert, M. A., Kopelman, R., Rehemtulla, A., and Ross, B. D. (2006). Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin 12(22), 6677–6686.Google Scholar
  84. Roy, L., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., Dougherty, T. J., and Parasad, P. N. (2003). Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 125, 7860–7865.PubMedGoogle Scholar
  85. Ruan, G., Feng, S.-S., and Li, Q.-T. (2002). Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. Journal of Controlled Release, 84, 151–160.PubMedGoogle Scholar
  86. Sahoo, S. K., and Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8, 1112–1120.PubMedGoogle Scholar
  87. Saltzman, W. M. (2001). Controlled Drug Delivery Systems (Vol. 1). Oxford: Oxford University Press, Inc.Google Scholar
  88. Sanjeeb K. Sahoo, V. L. (2003). Nanotech approaches to drug delivery and imaging. DDT, 8(24), 1112–1120.Google Scholar
  89. Santander-Ortega, M. J., Jodar-Reyes, A. B., Csaba, N., Bastos-Gonzalez, D., and Ortega-Vinuesa, J. L. (2006). Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilization mechanisms. Journal of Colloid and Interface Science, 302, 522–529.PubMedGoogle Scholar
  90. Saul, J. M., Annapragada, A. V., and Bellamkonda, R. V. (2006). A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. Journal of Controlled Release, 114, 277–287.PubMedGoogle Scholar
  91. Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, S., and Torchilin, V. P. (2006). “SMART” Drug Delivery systems: Double-Targeted pH-Responsive Pharmaceutical Nanocarriers. Bioconjugate Chemistry, 17, 943–949.PubMedGoogle Scholar
  92. Scherphof, G. L., and Kamps, J. A. A. M. (1998). Receptor versus non-receptor mediated clearance of liposomes. Advanced Drug Delivery Reviews, 32, 81–97.PubMedGoogle Scholar
  93. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., and Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436, 568–572.PubMedGoogle Scholar
  94. Sheff, D. (2004). Endosomes as a route for drug delivery in the real world. Advanced Drug Delivery Reviews, 56, 927–930.PubMedGoogle Scholar
  95. Sparreboom, A., Baker, S. D., and Verweij, J. (2005). Paclitaxel Repackaged in an Albumin-Stabilized Nanoparticle: Handy or Just a Dandy? Journal of Clinical Oncology, 23(31), 7765–7767.PubMedGoogle Scholar
  96. Stolnik, S., Daudali, B., Arien, A., Whetstone, J., Heald, C. R., Garnett, M. C., Davis, S. S., and Illum, L. (2001). The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica et Biophysica Acta, 1514(2), 261–279.PubMedGoogle Scholar
  97. Stolnik, S., Illum, L., and Davis, S. S. (1995). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.Google Scholar
  98. Stolnik, S. I., L. Davis, S.S. (1995a). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.Google Scholar
  99. Stolnik, S. I., L. Davis, S.S. (1995b). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.Google Scholar
  100. Storm, G., Belliot, S. H., Daemen, T., and Lasic, D. D. (1995a). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.Google Scholar
  101. Storm, G., Belliot, S. H., Daemen, T., and Lasic, D. D. (1995b). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.Google Scholar
  102. Sudimack, J., and Lee, R. J. (2000). Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews, 41, 147–162.PubMedGoogle Scholar
  103. Sukhishvili, S. A. (2005). Responsive polymer films and capsules via layer-by-layer assembly. Current Opinion in Colloid & Interface Science, 10, 37–44.Google Scholar
  104. Sunderland, C. J., Steiert, M., Talmadge, J. E., Derfus, A. M., and Barry, S. E. (2006). Targeted nanoparticles for detecting and treating cancer. Drug Development Research, 67(1), 70–93.Google Scholar
  105. Thote, A. J., Chappell, J. T., Gupta, R. B., and Kumar, R. (2005). Drug Development and Industrial Pharmacy 31(1), 43–57.PubMedGoogle Scholar
  106. Tomalia, D. A., and Frechet, J. M. J. (2002). Discovery of dendrimers and dendritic polymers: a brief historical perspective. Journal of Polymer Sciences Part A: PolymerChemistry., 40, 2719–2728.Google Scholar
  107. Torchilin, V. P. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences, 61, 2549–2559.PubMedGoogle Scholar
  108. Torchilin, V. P. (2006). Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting. Annual Review in Biomedical Engineering, 8, 343–375.Google Scholar
  109. Tripp, B. C., Magda, J. J., and Andrade, J. D. (1995). Journal of Colloid and Interface Science, 173, 16–27.Google Scholar
  110. Unger, E. C., Porter, T., Culp, W., Labell, R., Matsunaga, T., and Zutshi, R. (2004). Therapeutic applications of lipid-coated microbubbles. Advanced Drug Delivery Reviews, 56, 1291–1314.PubMedGoogle Scholar
  111. Vandervoort, J., and Ludwig, A. (2002). Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. International Journal of Pharmaceutics, 238(1–2), 77–92.PubMedGoogle Scholar
  112. Vasir, J. K., and Labhasetwar, V. (2005). Targeted Drug Delivery in Cancer Therapy. Technology in Cancer Research & Treatment, 4(4), 363–374.Google Scholar
  113. Wang, L., Bao, J., Wang, L., Zhang, F., and Li, Y.-P. (2005). One-pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres. European Journal of Medicinal Chemistry, 12, 6341–6347.Google Scholar
  114. Watson, P., Jones, A. T., and Stephens, D. J. (2005). Intracellular trafficking pathways and drug delivery: fluorescence imaging of living cells and fixed cells. Advanced Drug Delivery Reviews, 57, 43–61.PubMedGoogle Scholar
  115. Waugh, W. N., Trissel, L. A., and Stella, V. J. (1991). Stability, compatibility, and plasticizer extraction of taxol injection diluted in infusion solutions and stored in various containers. American. Journal of Hospital Pharmacist, 48, 1520–1524.Google Scholar
  116. Weissleder, R. (2002). Scaling down Imaging: Molecular Mapping of Cancer in Mice. Nature Reviews Cancer, 2, 1–8.Google Scholar
  117. Williams, D. B., and Carter, C. B. Basic (Vol. 1). New York: Plenum Press.Google Scholar
  118. Yeh, M.-K., Coombes, A. G. A., Jenkins, P. G., and Davis, S. S. (1995). A novel emulsification-solvent extraction technique for production of protein loaded biodegradable microparticles for vaccine and drug delivery. Journal of Controlled Release, 33, 437–445.Google Scholar
  119. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., and Jain, R. K. (1995). Vascular Permeability in Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 55(17), 3752–3756.PubMedGoogle Scholar
  120. Zahr, A. S., Davis, C. A., and Pishko, M. V. (2006). Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Poly(ethylene glycol). Langmuir, 22, 8178–8185.PubMedGoogle Scholar
  121. Zahr, A. S., de Villiers, M., and Pishko, M. V. (2005). Encapsulation of Drug Nanoparticles in Self-Assembled Macromolecular Nanoshells. Langmuir, 21(1), 403–410.PubMedGoogle Scholar
  122. Zeta-Meter, I. (2006). Zeta Potential: A complete Course in 5 minutes (Catalog Information). Staunton, VA.Google Scholar
  123. Zhang, H., Mardyani, S., Chan, W. C., and Kumacheva, E. (2006). Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics. Biomacromolecules, 7, 1568–1572.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Alisar S. Zahr
    • 1
  • Michael V. Pishko
    • 2
    • 3
  1. 1.Department of Chemical EngineeringThe Pennsylvania State University
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUSA
  3. 3.Department of ChemistryUSA

Personalised recommendations