Nanoemulsions for Intravenous Drug Delivery

  • Jonathan P. Fast
  • Sandro Mecozzi
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Nanoemulsions are composed of nanoscale droplets of one immiscible liquid dispersed within another. Many drugs are hydrophobic, which leads to limited water solubility, causing the delivery of water-insoluble drugs to be a primary focus of drug delivery research. Emulsions provide a central oil core, stably dispersed in water, that can act as reservoir for hydrophobic drugs. While emulsions have long been used for topical administration, the small size of nanoemulsions makes them attractive for parenteral delivery. In addition to solubilization of hydrophobic drugs, emulsions can reduce pain or irritation upon injection, improve pharmacokinetics, allow for new forms of administration, and can provide for sustained or targeted release.

Emulsion Definitions

Emulsions have been broadly defined as two immiscible phases dispersed within another (Becher, 2001). In principle, this definition could apply to a number of systems including, but not limited to, gas-in-liquid,...


Droplet Size Cerebral Malaria Emulsion Droplet Boron Neutron Capture Therapy United States Pharmacopeia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrol, S., Trehan, A., & Katare, O. P. (2004). Formulation, characterization and in vitro evaluation of silymarin-loaded lipid microspheres. Drug Delivery, 11, 185–191.CrossRefPubMedGoogle Scholar
  2. Akkar, A., & Müller, R. H. (2003a). Formulation of intravenous Carbamazepine emulsions by SolEmuls Technology. European Journal of Pharmaceutics and Biopharmaceutics, 55, 305–312.CrossRefGoogle Scholar
  3. Akkar, A., & Müller, R. H. (2003b). Intravenous itraconazole emulsions produced by SolEmuls technology. European Journal of Pharmaceutics and Biopharmaceutics, 56, 29–36.CrossRefGoogle Scholar
  4. Akkar, A., Namsolleck, P., Blaut, M., & Müller, R. H. (2004). Solubilizing poorly soluble antimycotic agents by emulsification via a solvent-free process. AAPS Pharmaceutical Science and Technology, 5(1).Google Scholar
  5. Amselem, S., & Friedman, D. (1998). Submicron emulsions as drug carriers for topical administration. In S. Benita (Ed.), Submicron emulsions in drug targeting and delivery (pp. 153–173). Amsterdam: Harwood Academic Publishers.Google Scholar
  6. Becher, P. (2001). Emulsions: Theory and Practice (3rd ed.). New York: Oxford University Press.Google Scholar
  7. Benita, S. (Ed.). (1998). Submicron emulsions in drug targeting and delivery (Vol. 9). Amsterdam: Harwod Academic Publishers.Google Scholar
  8. Benita, S., & Levy, M. Y. (1993). Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. Journal of Pharmaceutical Sciences, 82(11), 1069–1079.CrossRefPubMedGoogle Scholar
  9. Bourdon, O., Mosqueira, V., Legrand, P., & Blais, J. (2000). A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra (hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells. Journal of Photochemistry and Photobiology B: Biology, 55, 164–171.CrossRefGoogle Scholar
  10. Buszello, K., & Müller, B. W. (2000). Emulsions as drug delivery systems. In F. Nielloud & G. Marti-Mestres (Eds.), Pharmaceutical emulsions and suspensions (Vol. 105, pp. 191–228). New York: Marcel Dekker.Google Scholar
  11. Capek, I. (2004). Degradation of kinetically-stable o/w emulsions. Advances in Colloid and Interface Science, 107, 125–155.CrossRefPubMedGoogle Scholar
  12. Chansri, N., Kawakami, S., Yamashita, F., & Hashida, M. (2006). Inhibition of liver metastasis by all-trans retinoic acid incorporated into O/W emulsions in mice. International Journal of Pharmaceutics, 321(1–2), 42–49.CrossRefPubMedGoogle Scholar
  13. Chiari, P. C., Pagel, P. S., Tanaka, K., Krolikowski, J. G., M., L. L., Trillo, R. A., et al. (2004). Intravenous Emulsified Halogenated Anesthetics Produce Acute and Delayed Preconditioning against Myocardial Infarction in Rabbits. Anesthesiology, 101, 1160–1166.CrossRefPubMedGoogle Scholar
  14. Constantinides, P. P., Lambert, K. J., Tustian, A. K., Schneider, B., Lalji, S., Ma, W., et al. (2000). Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharmaceutical Research, 17(2), 175–182.CrossRefPubMedGoogle Scholar
  15. Cruz, L., Schaffazick, S. R., Costa, T. D., Soares, L. U., Mezzalira, G., da Silveira, N. P., et al. (2006). Physico-Chemical characterization and in vivo evaluation of indomethacin ethyl-ester-loaded nanocapsules by PCS, TEM, SAXS, interfacial alkaline hydrolysis and antiedematogenic activity. Journal of Nanoscience and Nanotechnology, 6, 3154–3162.CrossRefPubMedGoogle Scholar
  16. Cuignet, O. Y., Baele, P. M., & Van Obbergh, L. J. (2002). A second-generation blood substitute (Perflubron Emulsion) increases the blood solubility of modern volatile anesthetics in vitro. Anesthesia and Analgesia, 95, 368–372.CrossRefPubMedGoogle Scholar
  17. De Smet, Y., Deriemaeker, L., & Finsy, R. (1999). Ostwald ripening of alkane emulsions in the presence of surfactant micelles. Langmuir, 15, 6745–6754.CrossRefGoogle Scholar
  18. Dias, M. L. N., Carvalho, J. P., Rodrigues, D. G., Graziani, S. R., & Maranhão, R. C. (2007). Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients in gynecologic cancers. Cancer Chemotherapy and Pharmacology, 59, 105–111.CrossRefPubMedGoogle Scholar
  19. Driscoll, D. F. (2006). Lipid injectable emulsions: pharmacopeial and safety issues. Pharmaceutical Research, 23(9), 1959–1969.CrossRefPubMedGoogle Scholar
  20. Eger, R. P., & MacLeod, B. A. (1995). Anaesthesia by intravenous emulsified isoflurane in mice. Canadian Journal of Anesthesia, 42(2), 173–176.CrossRefPubMedGoogle Scholar
  21. El-Aasser, M. S., & Sudol, E. D. (2004). Miniemulsions: overview of research and applications. Journal of Coatings Technology and Research, 1(1), 20–31.Google Scholar
  22. Erdlenbruch, B., Jendrossek, V., Eibl, H., & Lakomek, M. (2000). Transient and controllable opening of the blood-brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Experimental Brain Research, 135, 417–422.CrossRefGoogle Scholar
  23. Fast, J. P., Perkins, M. G., Pearce, R. A., & Mecozzi, S. (2008). Fluoropolymer-based emulsions for the intravenous delivery of sevoflurane. Anesthesiology, 109, October issue.Google Scholar
  24. Forster, T., & Von Rybinski, W. (1998). Applications of emulsions. In B. Binks (Ed.), Modern aspects of emulsion science (pp. 395–426). Cambridge: The Royal Society of Chemistry.Google Scholar
  25. Friberg, S., & Solans, C. (1978). Emulsification and the HLB-temperature. Journal of Colloid and Interface Science, 66, 367–368.CrossRefGoogle Scholar
  26. Gupta, P. K., & Cannon, J. B. (2000). Emulsions and microemulsions for drug solubilization and delivery. In R. Liu (Ed.), Water-insoluble drug formulation (pp. 169–211). Denver: Interpharm Press.Google Scholar
  27. Higuchi, W. I., & Misra, J. (1962). Physical degradation of emulsions Via the molecular diffusion route and the possible prevention thereof. Journal of Pharmaceutical Sciences, 51(5), 459–466.CrossRefPubMedGoogle Scholar
  28. Hillaireau, H., & Couvreur, P. (2006). Polymeric nanoparticles as drug carriers. In I. F. Uchegbu & A. G. Schätzlein (Eds.), Polymers in drug delivery. Boca Raton: CRC.Google Scholar
  29. Hoang, T. K. N., La, V. B., Deriemaeker, L., & Finsy, R. (2003). Ostwald ripening of alkane in water emulsions stabilized by hexaethylene glycol dodecyl ether. Langmuir, 19, 6019–6025.CrossRefGoogle Scholar
  30. Hoar, T., & Schulman, J. (1943). Transparent water-in-oil dispersions: The oleopathic hydro-micelle. Nature, 152, 102–103.CrossRefGoogle Scholar
  31. Hung, C.-F., Chen, J.-K., Liao, M.-H., Lo, H.-M., & Fang, J.-Y. (2006). Development and evaluation of emulsion-liposome blends for resveratrol delivery. Journal of Nanoscience and Nanotechnology, 6, 2950–2958.CrossRefPubMedGoogle Scholar
  32. Ishida, E., Managit, C., Kawakami, S., Nishikawa, M., Yamashita, F., & Hashida, M. (2004). Biodistribution characteristics of galactosylated emulsions and incorporated probucol for hepatocyte-selective targeting of lipophilic drugs in mice. Pharmaceutical Research, 21(6), 932–939.CrossRefPubMedGoogle Scholar
  33. Israelachvili, J. (1991). Intermolecular and surface forces. San Diego: Academic Press.Google Scholar
  34. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., et al. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18, 26–30.CrossRefGoogle Scholar
  35. Jadhav, K. R., Shaikh, I. M., Ambade, K. W., & Kadam, V. J. (2006). Applications of microemulsion based drug delivery system. Current Drug Delivery, 3, 267–273.CrossRefPubMedGoogle Scholar
  36. Jafari, S. M., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization – A comparison. International Journal of Food Properties, 9, 475–485.CrossRefGoogle Scholar
  37. Kabalnov, A. S., & Shchukin, E. D. (1992). Ostwald ripening theory: Applications to fluorocarbon emulsion stability. Advances in Colloid and Interface Science, 38, 69–97.CrossRefGoogle Scholar
  38. Kabalnov, A. S., & Wennerstrom, H. (1996). Macroemulsion stability: The oriented wedge theory revisited. Langmuir, 12, 276–292.CrossRefGoogle Scholar
  39. Kawamoto, M., Suzuki, N., & Takasaki, M. (1992). Acute pulmonary edema after intravenous liquid halothane in dogs. Anesthesia and Analgesia, 74, 747–752.CrossRefPubMedGoogle Scholar
  40. Khan, A. Y., Talegaonkar, S., Iqbal, Z., Ahmed, F. J., & Khar, R. K. (2006). Multiple emulsions: An overview. Current Drug Delivery, 3, 429–443.CrossRefPubMedGoogle Scholar
  41. Kim, S.-J., Choi, H.-K., & Lee, Y.-B. (2002). Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats. International Journal of Pharmaceutics, 249(1–2), 149–156.CrossRefPubMedGoogle Scholar
  42. Klang, S., & Benita, S. (1998). Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration. In S. Benita (Ed.), Submicron emulsions in drug targeting and delivery (Vol. 9, pp. 119–152). Amsterdam: Harwood Academic Publishers.Google Scholar
  43. Komori, Y., Aiba, T., Kushima, M., Kawasaki, H., & Kurosaki, Y. (2007). Alteration of therapeutic efficacy of lipid microspheres incorporating prostaglandin E1 by mixing with aqueous solution. Journal of Pharmaceutical Sciences, 96(4), 935–943.CrossRefPubMedGoogle Scholar
  44. Kopriva, C. J., & Lowenstein, E. (1969). An anesthetic accident: cardiovascular collapse from liquid halothane delivery. Anesthesiology, 30, 246–247.CrossRefPubMedGoogle Scholar
  45. Krafft, M. P., Riess, J. G., & Weers, J. G. (1998). The design and engineering of oxygen-delivering fluorocarbon emulsions. In S. Benita (Ed.), Submicron emulsions in drug targeting and delivery (pp. 235–333). Amsterdam: Harwood Academic Publishers.Google Scholar
  46. Krafft, M. P., Rolland, J.-P., & Riess, J. G. (1991). Detrimental effect of excess lecithin on the stability of fluorocarbon/lecithin emulsions. Journal of Physical Chemistry, 95, 5673–5676.CrossRefGoogle Scholar
  47. Krishna, S., ter Kuile, F., Supanaranond, W., Pukrittayakamee, S., Teja-Isavadharm, P., Kyle, D., et al. (1993). Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. British journal of clinical pharmacology, 36, 585–591.PubMedGoogle Scholar
  48. Lance, M. R., Washington, C., & Davis, S. S. (1995). Structure and toxicity of amphotericin B/triglyceride emulsion formulations. Journal of Antimicrobial Chemotherapy, 36(1), 119–128.CrossRefPubMedGoogle Scholar
  49. Lifshitz, I. M., & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19(1–2), 35–50.CrossRefGoogle Scholar
  50. Liu, W., Sun, D., Li, C., Liu, Q., & Xu, J. (2006). Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 303, 557–563.CrossRefPubMedGoogle Scholar
  51. Liu, Y., Huang, K., Peng, D., Liu, S., & Wu, H. (2007). Preparation of poly(butylene-co-ε-caprolactone carbonate) and their use as drug carriers for a controlled delivery system. Journal of Polymer Science Part A: Polymer Chemistry, 45(11), 2152–2160.CrossRefGoogle Scholar
  52. Lixin, W., Haibing, H., Xing, T., Ruiying, S., & Dawei, C. (2006). A less irritant norcantharidin lipid microspheres: Formulation and drug distribution. International Journal of Pharmaceutics, 323(1–2), 161–167.CrossRefPubMedGoogle Scholar
  53. Lo, M. W., Schary, W. L., & Whitney, C. C. (1987). The disposition and bioavailability of intravenous and oral nalbuphine in healthy volunteers. Journal of Clinical Pharmacology, 27, 866–873.PubMedGoogle Scholar
  54. Madhusudhan, B., Rambhau, D., Apte, S. S., & Gopinath, D. (2007). 1-O-alkylglycerol stabilized carbamazepine intravenous o/w nanoemulsions for drug targeting in mice. Journal of Drug Targeting, 15(2), 154–161.CrossRefPubMedGoogle Scholar
  55. Mason, T., Wilking, J., Meleson, K., Chang, C., & Graves, S. (2006). Nanoemulsions: formation, structure and physical properties. Journal of Physics: Condensed Matter, 18, R635–R666.CrossRefGoogle Scholar
  56. Medina, J., Salvadó, A., & del Pozo, A. (2001). Use of ultrasound to prepare lipid emulsions of lorazepam for intravenous injection. International Journal of Pharmaceutics, 216(1–2), 1–8.CrossRefPubMedGoogle Scholar
  57. Miller, C. A. (2006). Spontaneous emulsification recent developments with emphasis on self-emulsification. In J. Sjoblom (Ed.), Emulsions and emulsion stability (2nd ed., Vol. 132, pp. 107–126). New York: Marcel Dekker.Google Scholar
  58. Mosqueira, V., Legrand, P., & Barratt, G. (2006). Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. Journal of Nanoscience and Nanotechnology, 6, 3193–3202.CrossRefPubMedGoogle Scholar
  59. Mosqueira, V., Loiseau, P. M., Bories, C., Legrand, P., Devissaguet, J.-P., & Barratt, G. (2004). Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrobial Agents and Chemotherapy, 48, 1222.CrossRefPubMedGoogle Scholar
  60. Mozzi, G., Benelli, P., Bruzzese, T., Galmozzi, M. R., & Bonabello, A. (2002). The use of lipid emulsions for the iv administration of a new water soluble polyene antibiotic, SPK-843. Journal of Antimicrobial Chemotherapy, 49(2), 321–325.CrossRefPubMedGoogle Scholar
  61. Müller, R. H., Schmidt, S., Buttle, I., Akkar, A., Schmitt, J., & Bromer, S. (2004). SolEmuls – novel technology for the formulation of i.v. emulsions with poorly soluble drugs. International Journal of Pharmaceutics, 269(2), 293–302.CrossRefPubMedGoogle Scholar
  62. Musser, J. B., Fontana, J. L., & Mongan, P. D. (1999). The Anesthetic and Physiologic Effects of an Intravenous Administration of a Halothane Lipid Emulsion (5% vol/vol). Anesthesia and Analgesia, 88, 671–675.CrossRefPubMedGoogle Scholar
  63. Nakajima, H. (1997). Microemulsions in cosmetics. In C. Solans & H. Kunieda (Eds.), Industrial applications of microemulsions (pp. 175–197). New York: Marcel Dekker.Google Scholar
  64. Nordén, T. P., Siekmann, B., Lundquist, S., & Malmsten, M. (2001). Physicochemical characterisation of a drug-containing phospholipid-stabilised o/w emulsion for intravenous administration. European Journal of Pharmaceutical Sciences, 13(4), 393–401.CrossRefPubMedGoogle Scholar
  65. Ozpolat, B., Lopez-Berestein, G., Adamson, P., Fu, C. J., & Williams, A. H. (2003). Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. Journal of Pharmacy & Pharmaceutical Sciences, 6, 292–301.Google Scholar
  66. Palakurthi, S., Vyas, S. P., & Diwan, P. V. (2005). Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats. International Journal of Pharmaceutics, 290(1–2), 55–62.CrossRefPubMedGoogle Scholar
  67. Petsev, D., Denkov, N., & Kralchevsky, P. (1995). Flocculation of deformable emulsion droplets. II. Interaction energy. Journal of Colloid and Interface Science, 176, 201–213.CrossRefGoogle Scholar
  68. Pohlmann, A. R., Weiss, V., Mertins, O., da Silveira, N. P., & Guterres, S. S. (2002). Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. European Journal of Pharmaceutical Sciences, 16(4–5), 305–312.CrossRefGoogle Scholar
  69. Primo, F. L., Macaroff, P. P., Lacava, Z. G. M., Azevedo, R. B., Morais, P. C., & Tedesco, A. C. (2007). Binding of photophysical studies of biocompatible magnetic fluid in biological medium and development of magnetic nanoemulsion: a new candidate for cancer treatment. Journal of Magnetism and Magnetic Materials, 310, 2838–2840.CrossRefGoogle Scholar
  70. Riess, J. G. (2001). Oxygen Carriers (“Blood Substitutes”;)-Raison d'Etre, Chemistry, and Some Physiology. Chemical Reviews, 101(9), 2797–2920.CrossRefPubMedGoogle Scholar
  71. Riess, J. G. (2005). Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial Cells, Blood Substitutes and Biotechnology, 33, 47–63.CrossRefGoogle Scholar
  72. Russel, W., Saville, D., & Schowalter, W. (1989). Colloidal dispersions. Cambridge: Cambridge University Press.Google Scholar
  73. Salager, J. L., Loaiza-Maldonado, I., Miñana-Pérez, M., & Silva, F. (1982). Surfactant-oil-water systems near the affinity inversion. Part I: Relationship between equilibrium phase behavior and emulsion type and stability. Journal of Dispersion Science and Technology, 3, 279–292.CrossRefGoogle Scholar
  74. Sandison, J. W., Sivapragasam, S., Hayes, J. A., & Woo-Ming, M. O. (1970). An experimental study of pulmonary damage associated with intravenous injection of halothane in dogs. British Journal of Anaesthesia, 42, 419–423.CrossRefPubMedGoogle Scholar
  75. Sarker, D. K. (2005). Engineering of nanoemulsions for drug delivery. Current Drug Delivery, 2, 297–310.CrossRefPubMedGoogle Scholar
  76. Schulman, J., Stoeckenius, W., & Prince, L. (1959). Mechanism of formation and structure of micro emulsions by electron microscopy. Journal of Physical Chemistry, 63, 1677–1680.CrossRefGoogle Scholar
  77. Seki, J., Sonoke, S., Saheki, A., Fukui, H., Sasaki, H., & Mayumi, T. (2004). A nanometer lipid emulsion, lipid nano-sphere (LNS), as a parenteral drug carrier for passive drug targeting. International Journal of Pharmaceutics, 273(1–2), 75–83.CrossRefPubMedGoogle Scholar
  78. Sharma, S. K., Lowe, K. C., & Davis, S. S. (1988). Novel Compositions of Emulsified Perfluorochemicals for Biological Uses. Biomaterials, Artificial Cells, and Artificial Organs, 16, 447–450.PubMedGoogle Scholar
  79. Shawer, M., Greenspan, P., Oie, S., & Lu, D. R. (2002). VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting. Journal of Pharmaceutical Sciences, 91(6), 1405–1413.CrossRefPubMedGoogle Scholar
  80. Shinoda, K., & Saito, H. (1968). Effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. Journal of Colloid and Interface Science, 26, 70–74.CrossRefGoogle Scholar
  81. Siekmann, B., & Westesen, K. (1998). Submicron lipid suspensions (Solid Lipid Nanoparticles) versus lipid nanoemulsions: Similarities and differences. In S. Benita (Ed.), Submicron emulsions in drug targeting and delivery (pp. 205–218). Amsterdam: Harwood Academic Publishers.Google Scholar
  82. Solans, C., Esquena, J., Forgiarini, A. M., Uson, N., Morales, D., Izquierdo, P., et al. (2003). Nano-emulsions: formation, properties, and applications. In Adsorption and Aggregation of Surfactants in Solution (Vol. 109, pp. 524–554). New York: Marcel Dekker, Inc.Google Scholar
  83. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10, 102–110.CrossRefGoogle Scholar
  84. Strippoli, V., D'Auria, F. D., Simonetti, G., Bruzzese, T., & Simonetti, N. (2000). Anticandidal activity of SPA-S-843, a new polyenic drug. Journal of Antimicrobial Chemotherapy, 45, 235–237.CrossRefPubMedGoogle Scholar
  85. Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318.CrossRefPubMedGoogle Scholar
  86. Taylor, P. (1998). Ostwald ripening in emulsions. Advances in Colloid and Interface Science, 75, 107–163.CrossRefGoogle Scholar
  87. Taylor, P. (2003). Ostwald ripening in emulsions. Estimation of solution thermodynamics of the disperse phase. Advances in Colloid and Interface Science, 106, 261–285.CrossRefPubMedGoogle Scholar
  88. Teixeira, M., Alonso, M. J., Pinto, M. M. M., & Barbosa, C. M. (2005). Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. European Journal of Pharmaceutics and Biopharmaceutics, 59, 491–500.CrossRefPubMedGoogle Scholar
  89. The United States Pharmacopeia. (2006). Vol. 29. Rockville: The United States Pharmacopeial Convention.Google Scholar
  90. Tiwari, S., Tan, Y.-M., & Amiji, M. (2006). Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. Journal of Biomedical Nanotechnology, 2, 217–224.CrossRefGoogle Scholar
  91. Ueda, K., Furukawa, T., Kawaguchi, Y., Miki, Y., Sakaeda, T., & Iwakawa, S. (2004). Prolonged circulation of menatetrenone by emulsions with hydrogenated castor oils in rats. Journal of Controlled Release, 95(1), 93–100.CrossRefPubMedGoogle Scholar
  92. Verwey, E., & Overbeek, J. (1948). Theory of the stability of lyophobic colloids. Amsterdam: Elsevier.Google Scholar
  93. Wagner, C. (1961). Z. Elektrochem., 65, 581–591.Google Scholar
  94. Walstra, P., & Smulders, P. (1998). Emulsion formation. In B. Binks (Ed.), Modern aspects of emulsion science (pp. 56–99). Cambridge: The Royal Society of Chemistry.Google Scholar
  95. Wang, J.-J., Sung, K. C., Hu, O. Y.-P., Yeh, C.-H., & Fang, J.-Y. (2006). Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. Journal of Controlled Release, 115(2), 140–149.CrossRefPubMedGoogle Scholar
  96. Wang, Y. J., Wang, J., Zhang, H. Y., He, H. B., & Tang, X. (2007). Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres. Journal of Pharmacy and Pharmacology, 59, 351–357.CrossRefPubMedGoogle Scholar
  97. Watkins, W. M., Woodrow, C., & Marsh, K. (1993). Falciparum malaria: differential effects of antimalarial drugs on ex vivo parasite viability during the critical early phase of therapy. American Journal of Tropical Medicine and Hygiene, 49, 106.PubMedGoogle Scholar
  98. Weers, J. G., Ni, Y., Tarara, T. E., Pelura, T. J., & Arlauskas, R. A. (1994). The effect of molecular diffusion on initial particle size distributions in phospholipid-stabilized fluorocarbon emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 84, 81–87.CrossRefGoogle Scholar
  99. Yeeprae, W., Kawakami, S., Higuchi, Y., Yamashita, F., & Hashida, M. (2005). Biodistribution characteristics of mannosylated and fucosylated O/W emulsions in mice. Journal of Drug Targeting, 13(8), 479–487.CrossRefPubMedGoogle Scholar
  100. Yeeprae, W., Kawakami, S., Yamashita, F., & Hashida, M. (2006). Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. Journal of Controlled Release, 114(2), 193–201.CrossRefPubMedGoogle Scholar
  101. Yu, J., He, H. B., & Tang, X. (2006). Formulation and evaluation of nimodipine-loaded lipid microspheres. Journal of Pharmacy and Pharmacology, 58, 1429–1435.CrossRefPubMedGoogle Scholar
  102. Zhou, J.-X., Luo, N.-F., Liang, X.-M., & Liu, J. (2006). The Efficacy and Safety of Intravenous Emulsified Isoflurane in Rats. Anesthesia and Analgesia, 102, 129–134.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Jonathan P. Fast
    • 1
  • Sandro Mecozzi
    • 1
  1. 1.Department of Chemistry and School of PharmacyUniversity of WisconsinMadisonUSA

Personalised recommendations