Engineering of Amphiphilic Block Copolymers for Drug and Gene Delivery

  • Xiao-Bing Xiong
  • Hasan Uludağ
  • Afsaneh Lavasanifar
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Amphiphilic block copolymers have been used for diverse applications in pharmaceutical industry for decades (Croy and Kwon, 2006; Alexandridis and Lindman, 2000). They have been used as safer replacements for low molecular weight surfactants in the solubilization of poorly soluble drugs (Kwon, 2003), as stabilizing agents in the formulation of coarse and colloidal dispersions (Tadros, 2006; Shenoy and Amiji, 2005), as gels providing depot or formulations (Vinogradov et al., 2002), and, more recently, as core/shell self-assembled colloids for nanoscale drug and gene delivery (Nishiyama and Kataoka, 2006).

Modern pharmaceutics rely heavily on the design and development of nanoscale dosage forms that can incorporate therapeutic agents effectively, change the normal fate of drugs in a biological system, and direct them toward their cellular or sub-cellular targets. Polymeric micelles are important dosage forms in this regard, since segregation of core/shell structure along...


Block Copolymer Critical Micelle Concentration Gene Delivery Polymeric Micelle Amphiphilic Block Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Lavasanifar would like to acknowledge support by the National Science and Engineering Research Council of Canada (NSERC) grant numbers G121210926 and G121220086. Uludağ acknowledges the financial support by the Canadian Institute of Health Research (CIHR).


  1. Adams ML, Andes DR, Kwon GS. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 2003, 4(3):750–7.Google Scholar
  2. Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: effects of acyl chain length. J Control Release 2003, 87(1–3):23–32.Google Scholar
  3. Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4(6):1466–86.Google Scholar
  4. Alexandridis P, Lindman B. Amphiphilic Block Copolymers-Self Assembly and Applications. Elsevier 2000.Google Scholar
  5. Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006, 3(1):139–62.Google Scholar
  6. Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release 2005, 104(2):301–11.Google Scholar
  7. Aramwit P, Yu BG, Lavasanifar A, Samuel J, Kwon GS. The effect of serum albumin on the aggregation state and toxicity of amphotericin B. J Pharm Sci 2000, 89(12):1589–93.Google Scholar
  8. Arnida, Nishiyama N, Kanayama N, Jang WD, Yamasaki Y, Kataoka K. PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection. J Control Release 2006, 115(2):208–15.Google Scholar
  9. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition 2003, 42(38):4640–43.CrossRefGoogle Scholar
  10. Bae Y, Kataoka K. Drug and gene delivery with nanotechnology. Seikagaku 2006, 78(9):882–87.PubMedGoogle Scholar
  11. Behr JP. The proton sponge: A trick to enter cells the viruses did not exploit. Chimia 1997, 51(1–2):34–36.Google Scholar
  12. Bikram M, Ahn CH, Chae SY, Lee MY, Yockman JW, Kim SW. Biodegradable poly(ethylene glycol)-co-poly(L-lysine)-g-histidine multiblock copolymers for nonviral gene delivery. Macromolecules 2004, 37(5):1903–16.CrossRefGoogle Scholar
  13. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 2003, 14(3):581–87.CrossRefPubMedGoogle Scholar
  14. Brzezinska KR, Deming TJ. Synthesis of AB diblock copolymers by atom-transfer radical polymerization (ATRP) and living polymerization of alpha-amino acid-N-carboxyanhydrides. Macromol Biosci 2004, 4(6):566–69.CrossRefPubMedGoogle Scholar
  15. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo – Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 1995, 92(16):7297–301.CrossRefPubMedGoogle Scholar
  16. Choi JS, Lee EJ, Choi YH, Jeong YJ, Park JS. Poly(ethylene glycol)-block-poly(L-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjug Chem 1999, 10(1):62–5.Google Scholar
  17. Clements BA, Bai J, Kucharski C, Farrell LL, Lavasanifar A, Ritchie B, et al. RGD conjugation to polyethyleneimine does not improve DNA delivery to bone marrow stromal cells. Biomacromolecules 2006, 7(5):1481–8.Google Scholar
  18. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006, 12(36):4669–84.Google Scholar
  19. Deming TJ. Transition metal-amine initiators for preparation of well-defined poly(gamma-benzyl L-glutamate). J Am Chem Soc 1997, 119(11):2759–60.CrossRefGoogle Scholar
  20. Deming TJ. Living polymerization of alpha-amino acid-N-carboxyanhydrides. J Polym Sci (A1) 2000, 38(17):3011–18.Google Scholar
  21. Deming TJ. Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv Drug Deliv Rev 2002, 54(8):1145–55.CrossRefPubMedGoogle Scholar
  22. Demeneix B, Behr JP. Polyethylenimine (PEI). Adv Genet 2005, 53:217–30.Google Scholar
  23. Deng M, Wang R, Rong G, Sun J, Zhang X, Chen X, et al. Synthesis of a novel structural triblock copolymer of poly(gamma -benzyl-l-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone). Biomaterials 2004, 25(17):3553–8.Google Scholar
  24. Dvorak M, Rypacek F. Preparation and polymerization of N-carboxyanhydrides of alpha-amino-acids. Chemicke Listy 1995, 89(7):423–36.Google Scholar
  25. Erbacher P, Roche AC, Monsigny M, Midoux P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA lactosylated polylysine complexes. Exp Cell Res 1996, 225(1):186–94.CrossRefPubMedGoogle Scholar
  26. Freireic S, Gertner D, Zilkha A. Polymerization of N-carboxy anhydrides by organotin catalysts. Eur Polym J 1974, 10(5):439–43.CrossRefGoogle Scholar
  27. Fuller WD, Verlander MS, Goodman M. A procedure for the facile synthesis of amino-acid N-carboxyanhydrides. Biopolymers 1976, 15(9):1869–71.Google Scholar
  28. Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules 2004, 5(1):32–9.Google Scholar
  29. Gadzinowski M, Sosnowski S, Slomkowski S. Kinetics of the dispersion ring-opening polymerization of epsilon-caprolactone initiated with diethylaluminum ethoxide. Macromolecules 1996, 29(20):6404–07.CrossRefGoogle Scholar
  30. Goto M, Yura H, Chang CW, Kobayashi A, Shinoda T, Maeda A, et al. Lactose-carrying polystyrene as a drug carrier – Investigation of body distributions to parenchymal liver-cells using I-125 labeled lactose-carrying polystyrene. J Control Release 1994, 28(1–3):223–33.Google Scholar
  31. Harada A, Kataoka K. Formation of Polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 1995, 28(15):5294–99.CrossRefGoogle Scholar
  32. Harada A, Togawa H, Kataoka K. Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. Eur J Pharm Sci 2001, 13(1):35–42.CrossRefPubMedGoogle Scholar
  33. Harwood HJ. Comments concerning the mechanism of strong base initiated NCA polymerization. Abstracts of Papers of the American Chemical Society 1984, 187(APR):72-Poly.Google Scholar
  34. Hirano T, Klesse W, Ringsdorf H. Polymeric Derivatives of Activated Cyclophosphamide as drug delivery systems in anti-tumor chemotherapy – Pharmacologically Active Polymers .20. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1979, 180(4):1125–31.Google Scholar
  35. Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka K. Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 1999, 32(4):1140–46.CrossRefGoogle Scholar
  36. Itaka K, Kanayama N, Nishiyama N, Jang WD, Yamasaki Y, Nakamura K, et al. Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pK(a) directed to enhance intracellular gene silencing. J Am Chem Soc 2004, 126(42):13612–13.CrossRefPubMedGoogle Scholar
  37. Ito K, Hashizuka Y, Yamashita Y. Equilibrium cyclic oligomer formation in anionic-polymerization of epsilon-caprolactone. Macromolecules 1977, 10(4):821–24.CrossRefGoogle Scholar
  38. Jeong YI, Nah JW, Lee HC, Kim SH, Cho CS. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(gamma-benzyl L-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm 1999, 188(1):49–58.Google Scholar
  39. Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem 2003, 14(1):177–86.Google Scholar
  40. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002, 54(5):759–79.Google Scholar
  41. Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 2002, 54(2):223–33.Google Scholar
  42. Kabanov A, Zhu J, Alakhov V. Pluronic block copolymers for gene delivery. Adv Genet 2005, 53PA:231–61.Google Scholar
  43. Kakizawa Y, Harada A, Kataoka K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 1999, 121(48):11247–48.CrossRefGoogle Scholar
  44. Kakizawa Y, Harada A, Kataoka K. Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(L-lysine): A potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2001, 2(2):491–97.CrossRefPubMedGoogle Scholar
  45. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002, 54(2):203–22.CrossRefPubMedGoogle Scholar
  46. Kanayama N, Fukushima S, Nishiyama N, Itaka K, Jang WD, Miyata K, et al. A PEG-based biocompatible block catiomer with high buffering capacity for the construction of polyplex micelles showing efficient gene transfer toward primary cells. Chem Med Chem 2006, 1(4):439–44.Google Scholar
  47. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 2000, 64(1–3):143–53.Google Scholar
  48. Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem 1997, 8(5):702–7.Google Scholar
  49. Katayose S, Kataoka K. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J Pharm Sci 1998, 87(2):160–3.Google Scholar
  50. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block-Copolymer Micelles as Vehicles for Drug Delivery. J Control Release 1993, 24(1–3):119–32.Google Scholar
  51. Kim SH, Jeong JH, Joe CO, Park TG. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate. J Control Release 2005, 103(3):625–34.CrossRefGoogle Scholar
  52. Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 2001, 53(3):341–58.CrossRefPubMedGoogle Scholar
  53. Kricheldorf HR, Mulhaupt R. Mechanism of the NCA polymerization .7. primary and secondary amine-initiated polymerization of beta-amino acid NCAS. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1979, 180(6):1419–33.Google Scholar
  54. Kricheldorf HR, Von Lossow C, Schwarz G. Primary amine and solvent-induced polymerizations of L- or D,L-phenylalanine N-carboxyanhydride. Macromol Chem Phys 2005, 206(2):282–90.CrossRefGoogle Scholar
  55. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003, 20(5):357–403.Google Scholar
  56. Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med 2003, 5(7):588–99.Google Scholar
  57. Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 2003, 14(1):222–31.CrossRefPubMedGoogle Scholar
  58. Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Micelles based on Ab block copolymers of poly(ethylene oxide) and poly(beta-benzyl L-aspartate). Langmuir 1993, 9(4):945–49.CrossRefGoogle Scholar
  59. Kwon GS, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res 1995, 12(2):192–5.Google Scholar
  60. La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 1996a, 85(1):85–90.Google Scholar
  61. La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 1996b, 85(1):85–90.CrossRefGoogle Scholar
  62. Lavasanifar A, Samuel J, Kwon GS. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J Control Release 2001, 77(1–2):155–60.Google Scholar
  63. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002a, 54(2):169–90.Google Scholar
  64. Lavasanifar A, Samuel J, Sattari S, Kwon GS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res 2002b, 19(4):418–22.Google Scholar
  65. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003a, 91(1–2):103–13.CrossRefGoogle Scholar
  66. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003b, 91(1–2):103–13.Google Scholar
  67. Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J Control Release 2004, 94(2–3):323–35.Google Scholar
  68. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005, 103(2):405–18.CrossRefPubMedGoogle Scholar
  69. Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005, 60(2):247–66.Google Scholar
  70. Mahmud A, Xiong XB, Lavasanifar A. Novel self-associating poly(ethylene oxide)-block-poly(epsilon-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 2006, 39(26):9419–28.CrossRefGoogle Scholar
  71. Mahmud A, Xiong XB, Lavasanifar A. Self-associating poly(ethylene oxide)-block-poly(e-caprolactone) copolymers with carboxyl, benzyl carboxylate and doxorubicin side group:Novel micellar nano-containers and drug conjugates. Proceedings of the Annual Meeting of the Controlled Release Society, July 2007, US. 2007.Google Scholar
  72. Matsumura Y, Yokoyama M, Kataoka K, Okano T, Sakurai Y, Kawaguchi T, et al. Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Jpn J Cancer Res 1999, 90(1):122–8.Google Scholar
  73. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983, 52:711–60.CrossRefPubMedGoogle Scholar
  74. Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release 2005, 105(3):269–78.Google Scholar
  75. Murao A, Nishikawa M, Managit C, Wong J, Kawakami S, Yamashita F, et al. Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: Effect of lipid composition. Pharm Res 2002, 19(12):1808–14.CrossRefPubMedGoogle Scholar
  76. Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 2004, 126(8):2355–61.CrossRefPubMedGoogle Scholar
  77. Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001, 74(1–3):295–302.CrossRefPubMedGoogle Scholar
  78. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 2004, 43(46):6323–7.Google Scholar
  79. Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed polymeric micelle for a vehicle of an active targeting drug delivery system. Abstracts of Papers of the American Chemical Society 2001, 221:U434–U34.Google Scholar
  80. Newman MJ, Actor JK, Balusubramanian M, Jagannath C. Use of nonionic block copolymers in vaccines and therapeutics. Crit Rev Ther Drug Carrier Syst 1998a, 15(2):89–142.Google Scholar
  81. Newman MJ, Todd CW, Balusubramanian M. Design and development of adjuvant-active nonionic block copolymers. J Pharm Sci 1998b, 87(11):1357–62.Google Scholar
  82. Nguyen CA, Allemann E, Schwach G, Doelker E, Gurny R. Cell interaction studies of PLA-MePEG nanoparticles. Int J Pharm 2003, 254(1):69–72.Google Scholar
  83. Nishiyama N, Kataoka K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum(II) in the core. J Control Release 2001, 74(1–3):83–94.Google Scholar
  84. Nishiyama N, Kataoka K. Polymeric micelle drug carrier systems: PEG-PAsp(Dox) and second generation of micellar drugs Polymer Drugs in the Clinical Stage: Advantages and Prospects, 2003:155–77.Google Scholar
  85. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006, 112(3):630–48.Google Scholar
  86. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res 2001, 18(7):1035–41.Google Scholar
  87. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003, 63(24):8977–83.Google Scholar
  88. Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum(II) and poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymer in an aqueous medium. Langmuir 1999, 15(2):377–83.CrossRefGoogle Scholar
  89. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release 2003, 91(1–2):173–81.Google Scholar
  90. Omelyanenko V, Kopeckova P, Gentry C, Kopecek J. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release 1998, 53(1–3):25–37.CrossRefPubMedGoogle Scholar
  91. Opanasopit P, Sakai M, Nishikawa M, Kawakami S, Yamashita F, Hashida M. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J Control Release 2002, 80(1–3):283–94.Google Scholar
  92. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res 2004, 21(11):2001–08.Google Scholar
  93. Osada K, Kataoka K. Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers Adv poly sci 2006, 202:113–53.Google Scholar
  94. Sagara K, Kim SW. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J Control Release 2002, 79(1–3):271–81.Google Scholar
  95. Scholz C, Iijima M, Nagasaki Y, Kataoka K. A Novel Reactive Polymeric Micelle with Aldehyde Groups on Its Surface. Macromolecules 1995, 28(21):7295–97.CrossRefGoogle Scholar
  96. Sekiguchi H. Mechanism of N-carboxy-alpha-amino acid anhydride (NCA) polymerization. Pure Appl Chem 1981, 53(9):1689–714.CrossRefGoogle Scholar
  97. Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005, 293(1–2):261–70.Google Scholar
  98. Smeenk JM, Lowik DWPM, van Hest JCM. Peptide-containing block copolymers: Synthesis and potential applications of bio-mimetic materials. Curr Org Chem 2005, 9(12):1115–25.CrossRefGoogle Scholar
  99. Stridsberg KM, Ryner M, Albertsson AC. Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Degradable Aliphatic Polyesters 2002, 157:41–65.CrossRefGoogle Scholar
  100. Tadros T. Principles of emulsion stabilization with special reference to polymeric surfactants. J Cosmet Sci 2006, 57(2):153–69.Google Scholar
  101. Tian HY, Deng C, Lin H, Sun JR, Deng MX, Chen XS, et al. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 2005, 26(20):4209–17.CrossRefPubMedGoogle Scholar
  102. Tsuruta T, Matsuura K, Inoue S. Copolymerization of Propylene Oxide with N-Carboxy-Dl-Alanine Anhydride by Organometallic Systems. Makromolekulare Chemie 1965, 83(APR):289-&.CrossRefGoogle Scholar
  103. Van Domeselaar GH, Kwon GS, Andrew LC, Wishart DS. Application of solid phase peptide synthesis to engineering PEO-peptide block copolymers for drug delivery. Colloids Surf B-Biointerfaces 2003, 30(4):323–34.CrossRefGoogle Scholar
  104. Vayaboury W, Giani O, Cottet H, Deratani A, Schue F. Living polymerization of alpha-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature. Macromol Rapid Commun 2004, 25(13):1221–24.CrossRefGoogle Scholar
  105. Vega J, Ke S, Fan Z, Wallace S, Charsangavej C, Li C. Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol Spacer. Pharm Res 2003, 20(5):826–32.CrossRefPubMedGoogle Scholar
  106. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002, 54(1):135–47.Google Scholar
  107. von Harpe A, Petersen H, Li YX, Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 2000, 69(2):309–22.CrossRefGoogle Scholar
  108. Wang Y, Liu S, Li CY, Yuan F. A novel method for viral gene delivery in solid tumors. Cancer Res 2005, 65(17):7541–5.Google Scholar
  109. Ward CM, Pechar M, Oupicky D, Ulbrich K, Seymour LW. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J Gene Med 2002, 4(5):536–47.CrossRefPubMedGoogle Scholar
  110. Wolk SK, Swift G, Paik YH, Yocom KM, Smith RL, Simon ES. One-Dimensional and 2-Dimensional Nuclear-Magnetic-Resonance Characterization of Poly(Aspartic Acid) Prepared by Thermal Polymerization of L-Aspartic Acid. Macromolecules 1994, 27(26):7613–20.CrossRefGoogle Scholar
  111. Won CY, Chu CC, Lee JD. Synthesis and characterization of biodegradable poly(L-aspartic acid-co-PEG). J Polym Sci (A1) 1998, 36(16):2949–59.Google Scholar
  112. Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: Emerging novel approaches and applications. Frontiers in Bioscience 2002, 7:D717–D25.CrossRefPubMedGoogle Scholar
  113. Xiong XB, Aliabadi HM, Lavasanifar A. PEO-modified Poly(L-amino acid) micelles for drug delivery. Nanotechnology for Cancer Therapy 2006. Editor, Mansoor M. Amiji, CRC 40(12):1085–90.Google Scholar
  114. Xiong XB, Mahmud A, Uludag H, Lavasanifar A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules 2007, 8:874–84a.Google Scholar
  115. Xiong XB, Mahmud A, Uludag H, lavasanifar A. Novel RGD-functionalized polymer-drug conjugate for targeted drug delivery. Proceedings of the Annual Meeting of the Controlled Release Society, July 2007, US. 2007b.Google Scholar
  116. Yamamoto Y, Nagasaki Y, Kato M, Kataoka K. Surface charge modulation of poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles: conjugation of charged peptides. Colloids Surf B-Biointerfaces 1999, 16(1–4):135–46.CrossRefGoogle Scholar
  117. Yamashit S, Tani H. Polymerization of gamma-benzyl L-glutamate N-carboxyanhydride with metal acetate-tri-normal-butylphosphine catalyst system. Macromolecules 1974, 7(4):406–09.CrossRefGoogle Scholar
  118. Yamashit S, Waki K, Yamawaki N, Tani H. Stereoselective polymerization of alpha-amino-acid N-carboxyanhydrides with nickel Dl-2-methylbutyrate-tri-normal-butylphosphine catalyst system. Macromolecules 1974, 7(4):410–15.CrossRefGoogle Scholar
  119. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 1998, 50(1–3):79–92.CrossRefPubMedGoogle Scholar
  120. Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly(ethylene oxide) poly(aspartic acid) block-copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release 1994, 32(3):269–77.CrossRefGoogle Scholar
  121. Yokoyama M, Opanasopit P, Okano T, Kawano K, Maitani Y. Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J Drug Target 2004, 12(6):373–84.Google Scholar
  122. Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991, 51(12):3229–36.Google Scholar
  123. Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K. Introduction of cisplatin into polymeric micelle. J Control Release 1996, 39(2–3):351–56.CrossRefGoogle Scholar
  124. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 2001, 70(1–2):63–70.Google Scholar
  125. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 1998, 55(2–3):219–29.Google Scholar
  126. Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, et al. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials 2005, 26(14):2121–8.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Xiao-Bing Xiong
    • 1
  • Hasan Uludağ
    • 1
  • Afsaneh Lavasanifar
    • 1
  1. 1.Faculty of Pharmacy and Pharmaceutical Sciences and Department of Chemical & Materials EngineeringUniversity of AlbertaEdmontonCanada T6G 2N8

Personalised recommendations