Nano-sized Advanced Delivery Systems as Parenteral Formulation Strategies for Hydrophobic Anti-cancer Drugs

  • Patrick Lim Soo
  • Michael Dunne
  • Jubo Liu
  • Christine Allen
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


An estimated 40% of the new drug candidates that are emerging through efforts in drug discovery are hydrophobic or lipophilic in nature (Hite et al., 2003). In addition to the low aqueous solubility of these compounds, many are plagued with unfavorable pharmacokinetics, poor biodistribution profiles and/or toxicity issues that prevent full exploitation of their therapeutic potential (Strickley, 2004; Danson et al., 2004). Conventional formulations and advanced delivery systems have been employed as strategies to move these molecules forward from bench to market.

There are several conventional excipients that are commonly used to prepare injectable formulations of hydrophobic drugs including non-ionic surfactants (e.g., polyethoxylated castor oil, polysorbate 80), water-soluble organic solvents (e.g., ethanol, polyethylene glycol 400, polypropylene glycol), cyclodextrins and phospholipids as outlined in Strickley’s review (Strickley, 2004). These conventional formulations...


Critical Micelle Concentration Maximum Tolerate Dose Liposome Formulation Hydrophobic Drug Drug Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham, S. A.; Waterhouse, D. N.; Mayer, L. D.; Cullis, P. R.; Madden, T. D.; Bally, M. B., The liposomal formulation of doxorubicin. Liposomes, Pt E, 2005; Vol. 391, pp 71–97.Google Scholar
  2. Adams, M. L.; Kwon, G. S., Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: effects of acyl chain length. Journal of Controlled Release 2003, 87, (1–3), 23–32.PubMedGoogle Scholar
  3. Adams, M. L.; Lavasanifar, A.; Kwon, G. S., Amphiphilic block copolymers for drug delivery. Journal of Pharmaceutical Sciences 2003, 92, (7), 1343–55.PubMedGoogle Scholar
  4. Alakhov, V., Polymer-Based Nanomedicines for Oncology: From Preclinical Studies to the Clinical Proof of the Concept. In 4th International Nanomedicine and Drug Delivery Symposium, Omaha, Nebraska, US, 2006.Google Scholar
  5. Alakhov, V., Klinski, E., Li, S., Pietrzynski, G., Venne, A., Batrakova, E., Bronitch, T., and Kabanov, A., Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids and Surfaces B: Biointerfaces 1999, 16, 113–134.Google Scholar
  6. Aliabadi, H. M.; Mahmud, A.; Sharifabadi, A. D.; Lavasanifar, A., Micelles of methoxy poly(ethylene oxide)-b-poly(ɛ-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. Journal of Controlled Release 2005, 104, (2), 301–311.PubMedGoogle Scholar
  7. Allen, C., Han, J., Yu, T., Maysinger, D., and Eisenberg, A., Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. Journal of Controlled Release 2000, 63, 275–286.PubMedGoogle Scholar
  8. Allen, C., Maysinger, D., and Eisenberg, A., Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces 1999, 16, 3–27.Google Scholar
  9. Allen, C.; Yu, Y.; Maysinger, D.; Eisenberg, A., Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjugate Chemistry 1998, 9, (5), 564–72.PubMedGoogle Scholar
  10. Allen, T. M., Long-Circulating (Sterically Stabilized) Liposomes for Targeted Drug-Delivery. Trends in Pharmacological Sciences 1994, 15, (7), 215–220.PubMedGoogle Scholar
  11. Allen, T. M.; Chonn, A., Large Unilamellar Liposomes with Low Uptake into the Reticuloendothelial System. Febs Letters 1987, 223, (1), 42–46.PubMedGoogle Scholar
  12. Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yauyoung, A., Liposomes Containing Synthetic Lipid Derivatives of Poly(Ethylene Glycol) Show Prolonged Circulation Half-Lives Invivo. Biochimica Et Biophysica Acta 1991, 1066, (1), 29–36.PubMedGoogle Scholar
  13. Allen, T. M.; Martin, F. J., Advantages of liposomal delivery systems for anthracyclines. Seminars in Oncology 2004, 31, (6), 5–15.PubMedGoogle Scholar
  14. Allen, T. M.; Stuart, D. D., Liposome Pharmacokinetics. Liposomes - Rational Design, Janoff, A. S., Ed. Marcel Dekker, Inc.: New York, 1999; pp 63–87.Google Scholar
  15. Baban, D. F.; Seymour, L. W., Control of tumour vascular permeability. Advanced Drug Delivery Reviews 1998, 34, (1), 109–119.PubMedGoogle Scholar
  16. Bader, H.; Ringsdorf, H.; Schmidt, B., Watersoluble Polymers in Medicine. Die Angewandte Makromolekulare Chemie 1984, 123/124, 457–485.Google Scholar
  17. Bangham, A. D.; Standish, M. M.; Watkins, J. C., Diffusion of Univalent Ions across Lamellae of Swollen Phospholipids. Journal of Molecular Biology 1965, 13, (1), 238–252.PubMedGoogle Scholar
  18. Bartsch, W.; Sponer, G.; Dietmann, K.; Fuchs, G., Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-methylpyrrolidone, polyethylene glycol 400, 1,2-propanediol and Tween 20. Arzneimittelforschung 1976, 26, (8), 1581–3.PubMedGoogle Scholar
  19. Batrakova, E. V., Li, S., Li, Y., Alakhov, V.Y., Elmquist, W.F., and Kabanov, A.V., Distribution kinetics of a micelle-forming block copolymer Pluronic P85. Journal of Controlled Release 2004, 100, 389–397.PubMedGoogle Scholar
  20. Batrakova, E. V., Li, S., Miller, D.W., and Kabanov, A.V., Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and caco-2 cell monolayers. Pharmaceutical Research 1999, 16, (9), 1366–1372.PubMedGoogle Scholar
  21. Benahmed, A.; Ranger, M.; Leroux, J. C., Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharmaceutical Research 2001, 18, (3), 323–8.PubMedGoogle Scholar
  22. Bhatt, R.; De Vries, P.; Tulinsky, J.; Bellamy, G.; Baker, B.; Singer, J. W.; Klein, P., Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20(S)-camptothecin. Journal of Medicinal Chemistry 2003, 46, (1), 190–193.PubMedGoogle Scholar
  23. Brazeau, G. A.; Cooper, B.; Svetic, K. A.; Smith, C. L.; Gupta, P., Current perspectives on pain upon injection of drugs. Journal of Pharmaceutical Sciences 1998, 87, (6), 667–77.PubMedGoogle Scholar
  24. Cabanes, A.; Briggs, K. E.; Gokhale, P. C.; Treat, J. A.; Rahman, A., Comparative in vivo studies with paclitaxel and liposome-encapsulated paclitaxel. International Journal of Oncology 1998, 12, (5), 1035–1040.PubMedGoogle Scholar
  25. Carmona-Ribeiro, A. M., Lipid bilayer fragments and disks in drug delivery. Current Medicinal Chemistry 2006, 13, (12), 1359–1370.PubMedGoogle Scholar
  26. Chen, J.; Ping, Q. N.; Guo, J. X.; Chu, X. Z.; Song, M. M., Effect of phospholipid composition on characterization of liposomes containing 9-nitrocamptothecin. Drug Development and Industrial Pharmacy 2006, 32, (6), 719–726.PubMedGoogle Scholar
  27. Cho, Y. W.; Lee, J.; Lee, S. C.; Huh, K. M.; Park, K., Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. Journal of Controlled Release 2004, 97, (2), 249–57.PubMedGoogle Scholar
  28. Choucair, A.; Eisenberg, A., Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E 2003, 10, 37–44.Google Scholar
  29. Chow, D. S. L.; Gong, L.; Wolfe, M. D.; Giovanella, B. C., Modified lactone/carboxylate salt equilibria in vivo by liposomal delivery of 9-nitro-camptothecin. In Camptothecins: Unfolding Their Anticaner Potential, 2000; Vol. 922, pp 164–174.Google Scholar
  30. Chung, T. W.; Cho, K. Y.; Lee, H.-C.; Nah, J. W.; Yeo, J. H.; Akaike, T.; Cho, C. S., Novel micelle-forming block copolymer composed of poly (ɛ- caprolactone) and poly(vinyl pyrrolidone). Polymer 2004, 45, (5), 1591–1597.Google Scholar
  31. Croy, S. R.; Kwon, G. S., The effects of Pluronic block copolymers on the aggregation state of nystatin. Journal of Controlled Release 2004, 95, (2), 161–171.PubMedGoogle Scholar
  32. Danhauser-Riedl, S.; Hausmann, E.; Schick, H.-D.; Bender, R.; Dietzfelbinger, H.; Rastetter, J.; Hanauske, A.-R., Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Investigational New Drugs 1993, 11, (2–3), 187–195.PubMedGoogle Scholar
  33. Danson, S.; Ferry, D.; Alakhov, V.; Margison, J.; Kerr, D.; Jowle, D.; Brampton, M.; Halbert, G.; Ranson, M., Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. British Journal of Cancer 2004, 90, (11), 2085–2091.PubMedGoogle Scholar
  34. Defrise-Quertain, F.; Chatelain, P.; Delmelle, M.; Ruysschaert, J.-M., Model Studies for Drug Entrapment and Liposome Stability. In Liposome Technology, Gregoriadis, G., Ed. CRC Press, Inc: Boca Raton, 1984; Vol. II, pp 1–18.Google Scholar
  35. Discher, D. E.; Eisenberg, A., Polymer vesicles. Science 2002, 297, (5583), 967–73.PubMedGoogle Scholar
  36. Drummond, D. C.; Meyer, O.; Hong, K. L.; Kirpotin, D. B.; Papahadjopoulos, D., Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews 1999, 51, (4), 691–743.PubMedGoogle Scholar
  37. Duncan, R., Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer 2006, 6, (9), 688–701.PubMedGoogle Scholar
  38. Duncan, R., The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 2003, 2, (5), 347–360.PubMedGoogle Scholar
  39. Duncan, R.; Cable, H. C.; Lloyd, J. B.; Rejmanova, P.; Kopecek, J., Degradation of side-chains of N-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases. Bioscience Reports 1982, 2, (12), 1041–6.PubMedGoogle Scholar
  40. Duncan, R.; Gac-Breton, S.; Keane, R.; Musila, R.; Sat, Y. N.; Satchi, R.; Searle, F., Polymer-drug conjugates, PDEPT and PELT: Basic principles for design and transfer from the laboratory to clinic. Journal of Controlled Release 2001, 74, (1–3), 135–146.PubMedGoogle Scholar
  41. Duncan, R.; Pratten, M. K.; Cable, H. C.; Ringsdorf, H.; Lloyd, J. B., Effect of molecular size of 125I-labelled poly(vinylpyrrolidone) on its pinocytosis by rat visceral yolk sacs and rat peritoneal macrophages. Biochemical Journal 1981, 196, (1), 49–55.PubMedGoogle Scholar
  42. Duncan, R.; Ringsdorf, H.; Satchi-Fainaro, R., Polymer therapeutics: Polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities. Advances in Polymer Science 2006, 192, (1), 1–8.Google Scholar
  43. Ehlrich, P., Collected Studies on Immunity. J. Wiley & Sons: New York, 1906; p 442.Google Scholar
  44. Emerson, D. L.; Bendele, R.; Brown, E.; Chiang, S. M.; Desjardins, J. P.; Dihel, L. C.; Gill, S. C.; Hamilton, M.; LeRay, J. D.; Moon-McDermott, L.; Moynihan, K.; Richardson, F. C.; Tomkinson, B.; Luzzio, M. J.; Baccanari, D., Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: A low-clearance liposomal formulation of lurtotecan. Clinical Cancer Research 2000, 6, (7), 2903–2912.PubMedGoogle Scholar
  45. Forssen, E. A., The design and development of DaunoXome(R) for solid tumor targeting in vivo. Advanced Drug Delivery Reviews 1997, 24, (2–3), 133–150.Google Scholar
  46. Fournier, E.; Dufresne, M. H.; Smith, D. C.; Ranger, M.; Leroux, J. C., A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharmaceutical Research 2004, 21, (6), 962–968.PubMedGoogle Scholar
  47. Frank, D. W.; Gray, J. E.; Weaver, R. N., Cyclodextrin nephrosis in the rat. American Journal of Pathology 1976, 83, (2), 367–82.PubMedGoogle Scholar
  48. Fried, M. W.; Shiffman, M. L.; Reddy, K. R.; Smith, C.; Marinos, G.; Goncales Jr., F. L.; Haussinger, D.; Diago, M.; Carosi, G.; Dhumeaux, D.; Craxi, A.; Lin, A.; Hoffman, J.; Yu, J., Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. New England Journal of Medicine 2002, 347, (13), 975–982.PubMedGoogle Scholar
  49. Fu, R. C.; Lidgate, D. M.; Whatley, J. L.; McCullough, T., The biocompatibility of parenteral vehicles–in vitro/in vivo screening comparison and the effect of excipients on hemolysis. Journal of Parenteral Science and Technology 1987, 41, (5), 164–8.PubMedGoogle Scholar
  50. Fukushima, S., Machida, M., Akutsu, T., Shimizu, K., Tanaka, S., Okamoto, K., Mashiba, H., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Roles of adriamycin and adriamycin dimer in antitumor activity of the polymeric micelle carrier system. Colloids and Surfaces B: Biointerfaces 1999, 16, 227–236.Google Scholar
  51. Gabizon, A. A., Applications of Liposomal Drug Delivery Systems to Cancer Therapy. In Nanotechnology for Cancer Therapy, Amiji, M. M., Ed. CRC Press: Boca Raton, 2007; pp 595–611.Google Scholar
  52. Gabizon, A. A., Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy. Cancer Investigation 2001, 19, (4), 424–436.PubMedGoogle Scholar
  53. Gabizon, A.; Papahadjopoulos, D., Liposome Formulations with Prolonged Circulation Time in Blood and Enhanced Uptake by Tumors. Proceedings of the National Academy of Sciences of the United States of America 1988, 85, (18), 6949–6953.PubMedGoogle Scholar
  54. Gianni, L.; Kearns, C. M.; Giani, A.; Capri, G.; Vigano, L.; Locatelli, A.; Bonadonna, G.; Egorin, M. J., Nonlinear Pharmacokinetics and Metabolism of Paclitaxel and Its Pharmacokinetic/Pharmacodynamic Relationships in Humans. Journal of Clinical Oncology 1995, 13, (1), 180–190.PubMedGoogle Scholar
  55. Graham, M. L., Pegaspargase: A review of clinical studies. Advanced Drug Delivery Reviews 2003, 55, (10), 1293–1302.PubMedGoogle Scholar
  56. Greenwald, R. B.; Choe, Y. H.; McGuire, J.; Conover, C. D., Effective drug delivery by PEGylated drug conjugates. Advanced Drug Delivery Reviews 2003, 55, (2), 217–50.PubMedGoogle Scholar
  57. Greenwald, R. B.; Gilbert, C. W.; Pendri, A.; Conover, C. D.; Xia, J.; Martinez, A., Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. Journal of Medicinal Chemistry 1996, 39, (2), 424–31.PubMedGoogle Scholar
  58. Gregoriadis, G.; Ryman, B. E., Liposomes as Carriers of Enzymes or Drugs - New Approach to Treatment of Storage Diseases. Biochemical Journal 1971, 124, (5), 58P.PubMedGoogle Scholar
  59. Guchelaar, H.-J.; Ten Napel, C. H. H.; De Vries, E. G. E.; Mulder, N. H., Clinical, toxicological and pharmaceutical aspects of the antineoplastic drug taxol: A review. Clinical Oncology 1994, 6, (1), 40–48.PubMedGoogle Scholar
  60. Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. British Journal of Cancer 2005, 92, (7), 1240–6.PubMedGoogle Scholar
  61. Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y., Transmembrane Ammonium-Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases. Biochimica Et Biophysica Acta 1993, 1151, (2), 201–215.PubMedGoogle Scholar
  62. Harris, J. M.; Chess, R. B., Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery 2003, 2, (3), 214–21.PubMedGoogle Scholar
  63. Hauswirth, A. W.; Simonitsch-Klupp, I.; Uffmann, M.; Koller, E.; Sperr, W. R.; Lechner, K.; Valent, P., Response to therapy with interferon alpha-2b and prednisolone in aggressive systemic mastocytosis: Report of five cases and review of the literature. Leukemia Research 2004, 28, (3), 249–257.PubMedGoogle Scholar
  64. Hite, M.; Turner, S.; Federici, C., Part 1: Oral Delivery of Poorly Soluble Drugs. Pharmaceutical Manufacturing and Packing Sourcer 2003, Summer '03.Google Scholar
  65. Ho, D. H.; Brown, N. S.; Yen, A., Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metabolism and Disposition 1986, 14, (3), 349–352.PubMedGoogle Scholar
  66. Hofheinz, R. D.; Gnad-Vogt, S. U.; Beyer, U.; Hochhaus, A., Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs 2005, 16, (7), 691–707.PubMedGoogle Scholar
  67. Hope, M. J.; Bally, M. B.; Webb, G.; Cullis, P. R., Production of Large Unilamellar Vesicles by a Rapid Extrusion Procedure - Characterization of Size Distribution, Trapped Volume and Ability to Maintain a Membrane-Potential. Biochimica Et Biophysica Acta 1985, 812, (1), 55–65.Google Scholar
  68. Hruby, M.; Konak, C.; Ulbrich, K., Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release 2005, 103, (1), 137–148.PubMedGoogle Scholar
  69. Hsieh, H. L.; Quirk, R. P., Anionic Polymerization : Principles and Practical Applications. Marcel Dekker: New York, 1996; p 727.Google Scholar
  70. Jaeckle, K. A.; Phuphanich, S.; van den Bent, M. J.; Aiken, R.; Batchelor, T.; Campbell, T.; Fulton, D.; Gilbert, M.; Heros, D.; Rogers, L.; O'Day, S. J.; Akerley, W.; Allen, J.; Baldas, S.; Gertler, S. Z.; Greenberg, H. S.; LaFollette, S.; Lesser, G.; Mason, W.; Recht, L.; Wong, E.; Chamberlain, M. C.; Cohn, A.; Glantz, M. J.; Guthell, J. C.; Maria, B.; Moots, P.; New, P.; Russell, C.; Shapiro, W.; Swinnen, L.; Howell, S. B., Intrathecal treatment of neoplastic meningitis due to breast cancer with a slow-release formulation of cytarabine. British Journal of Cancer 2001, 84, (2), 157–163.PubMedGoogle Scholar
  71. Jette, K. K.; Law, D.; Schmitt, E. A.; Kwon, G. S., Preparation and drug loading of poly(ethylene glycol)-block-poly(ɛ-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharmaceutical Research 2004, 21, (7), 1184–91.PubMedGoogle Scholar
  72. Juliano, R. L.; Stamp, D., Effect of Particle-Size and Charge on Clearance Rates of Liposomes and Liposome Encapsulated Drugs. Biochemical and Biophysical Research Communications 1975, 63, (3), 651–658.PubMedGoogle Scholar
  73. Kabanov, A.; Alakhov, V. Y., Micelles of amphiphilic block copolymers as vehicles for drug delivery. In Amphiphilic Block Copolymers: Self-Assembly and Applications, Alexandridis, P.; Lindman, B., Eds. Elsevier Science B.V.: The Netherlands, 2000; pp 347–376.Google Scholar
  74. Kabanov, A. V.; Alakhov, V. Y., Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Critical Reviews in Therapeutic Drug Carrier Systems 2002, 19, (1), 1–72.PubMedGoogle Scholar
  75. Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y., Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release 2002, 82, (2–3), 189–212.PubMedGoogle Scholar
  76. Kabanov, A. V.; Chekhonin, V. P.; Alakhov, V. Y.; Batrakova, E. V.; Lebedev, A. S.; Melik-Nubarov, N. S.; Arzhakov, S. A.; Levashov, A. V.; Morozov, G. V.; et al., The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Letters 1989, 258, (2), 343–5.PubMedGoogle Scholar
  77. Kato, K.; Hamaguchi, T.; Yasui, H.; Okusaka, T.; Ueno, H.; Ikeda, M.; Shirao, K.; Shimada, Y.; Nakahama, H.; Muro, K.; Matsumura, Y., Phase I study of NK105, a paclitaxel-incorporating micellar nanoparticle, in patients with advanced cancer. Journal of Clinical Oncology 2006, 24, (18), 83 s–83 s.Google Scholar
  78. Kim, C.; Lee, S. C.; Kwon, I. C.; Chung, H.; Jeong, S. Y., Complexation of poly(2-ethyl-2-oxazoline)-block-poly(ɛ-caprolactone) micelles with multifunctional carboxylic acids. Macromolecules 2002, 35, (1), 193–200.Google Scholar
  79. Kim, S.; Howell, S. B., Multivesicular Liposomes Containing Cytarabine Entrapped in the Presence of Hydrochloric-Acid for Intracavitary Chemotherapy. Cancer Treatment Reports 1987, 71, (7–8), 705–711.PubMedGoogle Scholar
  80. Kim, S. C., Kim, D.W., Shim, Y.H., Bang, J.S., Oh, H.S., Kim, S.W., and Seo, M.H., In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. Journal of Controlled Release 2001, 72, 191–202.PubMedGoogle Scholar
  81. Kim, T. Y., Kim, D.W., Chung, J.Y., Shin, S.G., Kim, S.C., Heo, D.S., Kim, N.K., and Bang, Y.J., Phase I and pharmacokinetics study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research 2004, 10, 3708–3716.PubMedGoogle Scholar
  82. Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L., Amphipathic Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes. Febs Letters 1990, 268, (1), 235–237.PubMedGoogle Scholar
  83. Krasnici, S.; Werner, A.; Eichhorn, M. E.; Schmitt-Sody, M.; Pahernik, S. A.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Naujoks, K.; Dellian, M., Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. International Journal of Cancer 2003, 105, (4), 561–567.Google Scholar
  84. Kwon, G., Suwa, S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. Journal of Controlled Release 1994, 29, 17–23.Google Scholar
  85. Kwon, G. S.; Naito, M.; Kataoka, K.; Yokoyama, M.; Sakurai, Y.; Okano, T., Block copolymer micelles as vehicles for hydrophobic drugs. Colloids and Surfaces, B: Biointerfaces 1994, 2, (4), 429–34.Google Scholar
  86. Kwon, G. S.; Okano, T., Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 1996, 21, (2), 107–116.Google Scholar
  87. La, S. B., Okano, T., and Kataoka, K., Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(β-benzyl L-aspartate) block copolymer micelles. Journal of Pharmaceutical Sciences 1996, 85, (1), 85–90.PubMedGoogle Scholar
  88. Lam, J. S.; Benson, M. C.; O'Donnell, M. A.; Sawczuk, A.; Gavazzi, A.; Wechsler, M. H.; Sawczuk, I. S., Bacillus Calmete-Guerin plus interferon-α2B intravesical therapy maintains an extended treatment plan for superficial bladder cancer with minimal toxicity. Urologic Oncology: Seminars and Original Investigations 2003, 21, (5), 354–360.PubMedGoogle Scholar
  89. Lammers, T.; Kuhnlein, R.; Kissel, M.; Subr, V.; Etrych, T.; Pola, R.; Pechar, M.; Ulbrich, K.; Storm, G.; Huber, P.; Peschke, P., Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. Journal of Controlled Release 2005, 110, (1), 103–18.PubMedGoogle Scholar
  90. Langer, C. J., CT-2103: a novel macromolecular taxane with potential advantages compared with conventional taxanes. Clinical Lung Cancer 2004, 6 Suppl 2, S85–8.PubMedGoogle Scholar
  91. Lavasanifar, A.; Samuel, J.; Kwon, G. S., Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. Journal of Controlled Release 2001, 77, (1–2), 155–160.PubMedGoogle Scholar
  92. Le Garrec, D.; Gori, S.; Luo, L.; Lessard, D.; Smith, D. C.; Yessine, M. A.; Ranger, M.; Leroux, J. C., Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. Journal of Controlled Release 2004, 99, (1), 83–101.PubMedGoogle Scholar
  93. Lee, J.; Cho, E. C.; Cho, K., Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. Journal of Controlled Release 2004, 94, (2–3), 323–35.PubMedGoogle Scholar
  94. Li, Y.; Kwon, G. S., Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-L-aspartamide). Part I: Effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharmaceutical Research 2000, 17, (5), 607–11.PubMedGoogle Scholar
  95. Lim Soo, P.; Eisenberg, A., Preparation of block copolymer vesicles in solution. Journal of Polymer Science: Part B: Polymer Physics 2004, 42, (6), 923–938.Google Scholar
  96. Lim Soo, P.; Lovric, J.; Davidson, P.; Maysinger, D.; Eisenberg, A., Polycaprolactone-block-poly(ethylene oxide) micelles: A nanodelivery system for 17B-estradiol. Molecular Pharmaceutics 2005, 2, (6), 519–527.PubMedGoogle Scholar
  97. Lim Soo, P.; Luo, L.; Maysinger, D.; Eisenberg, A., Incorporation and Release of Hydrophobic Probes in Biocompatible Polycaprolactone-block-poly(ethylene oxide) Micelles: Implications for Drug Delivery. Langmuir 2002, 18, (25), 9996–10004.Google Scholar
  98. Lin, W. J., Lee, W.J., and Lin, C.C., Stability and release performance of a series of pegylated copolymeric micelles. Pharmaceutical Research 2003, 20, (4), 668–673.PubMedGoogle Scholar
  99. Liu, J., Xiao, Y., and Allen, C., Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. Journal of Pharmaceutical Sciences 2004, 93, (1), 132–143.PubMedGoogle Scholar
  100. Liu, J.; Allen, C., Polymeric Nanocarriers: Delivery Technology for Therapies of the 21st Century. The Drug Delivery Companies Report Autumn/Winter 2003 2003, 25–29.Google Scholar
  101. Liu, J.; Lee, H.; Huesca, M.; Young, A.; Allen, C., Liposome formulation of a novel hydrophobic aryl-imidazole compound for anti-cancer therapy. Cancer Chemotherapy and Pharmacology 2006, 58, (3), 306–318.PubMedGoogle Scholar
  102. Liu, J.; Zeng, F.; Allen, C., In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics 2007, 65, (3), 309–319.PubMedGoogle Scholar
  103. Liu, J.; Zeng, F.; Allen, C., Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. Journal of Controlled Release 2005, 103, (2), 481–97.PubMedGoogle Scholar
  104. Liu, S. Q.; Tong, Y. W.; Yang, Y.-Y., Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b- poly(D,L-lactide-co-glycolide) with varying compositions. Biomaterials 2005, 26, (24), 5064–5074.PubMedGoogle Scholar
  105. Lukyanov, A. N.; Torchilin, V. P., Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced Drug Delivery Reviews 2004, 56, (9), 1273–1289.PubMedGoogle Scholar
  106. Luppi, B.; Bigucci, F.; Cerchiara, T.; Andrisano, V.; Pucci, V.; Mandrioli, R.; Zecchi, V., Micelles based on polyvinyl alcohol substituted with oleic acid for targeting of lipophilic drugs. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents 2005, 12, (1), 21–26.Google Scholar
  107. Luppi, B.; Orienti, I.; Bigucci, F.; Cerchiara, T.; Zuccari, G.; Fazzi, S.; Zecchi, V., Poly(vinylalcohol-co-vinyloleate) for the preparation of micelles enhancing retinyl palmitate transcutaneous permeation. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents 2002, 9, (3), 147–152.Google Scholar
  108. Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation 2001, 41, 189–207.PubMedGoogle Scholar
  109. Maeda, H.; Matsumura, Y., Tumoritropic and lymphotropic principles of macromolecular drugs. Critical Reviews in Therapeutic Drug Carrier Systems 1989, 6, (3), 193–210.PubMedGoogle Scholar
  110. Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shitao, K., Okusaka, T., Ueno, H., Ikeda, M., and Watanabe, N., Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer 2004, 91, 1775–1781.PubMedGoogle Scholar
  111. Matsumura, Y.; Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research 1986, 46, 6387–92.PubMedGoogle Scholar
  112. Matsuoka, S.; Murata, M., Membrane permeabilizing activity of amphotericin B is affected by chain length of phosphatidylcholine added as minor constituent. Biochimica Et Biophysica Acta-Biomembranes 2003, 1617, (1–2), 109–115.Google Scholar
  113. Mayhew, E.; Rustum, Y. M.; Szoka, F.; Papahadjopoulos, D., Role of Cholesterol in Enhancing the Anti-Tumor Activity of Cytosine-Arabinoside Entrapped in Liposomes. Cancer Treatment Reports 1979, 63, (11–1), 1923–1928.PubMedGoogle Scholar
  114. Meerum Terwogt, J. M.; ten Bokkel Huinink, W. W.; Schellens, J. H.; Schot, M.; Mandjes, I. A.; Zurlo, M. G.; Rocchetti, M.; Rosing, H.; Koopman, F. J.; Beijnen, J. H., Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 2001, 12, (4), 315–23.PubMedGoogle Scholar
  115. Mizumura, Y.; Matsumura, Y.; Hamaguchi, T.; Nishiyama, N.; Kataoka, K.; Kawaguchi, T.; Hrushesky, W. J.; Moriyasu, F.; Kakizoe, T., Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Japanese Journal of Cancer Research 2001, 92, (3), 328–36.PubMedGoogle Scholar
  116. Molineux, G., The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Current Pharmaceutical Design 2004, 10, (11), 1235–1244.PubMedGoogle Scholar
  117. Montaguti, P.; Melloni, E.; Cavalletti, E., Acute intravenous toxicity of dimethyl sulfoxide, polyethylene glycol 400, dimethylformamide, absolute ethanol, and benzyl alcohol in inbred mouse strains. Arzneimittelforschung 1994, 44, (4), 566–70.PubMedGoogle Scholar
  118. Moribe, K.; Maruyama, K.; Iwatsuru, M., Encapsulation characteristics of nystatin in liposomes: effects of cholesterol and polyethylene glycol derivatives. International Journal of Pharmaceutics 1999, 188, (2), 193–202.PubMedGoogle Scholar
  119. Nah, J.-W.; Jeong, Y.-I.; Cho, C.-S., Clonazepam release from core-shell type nanoparticles composed of poly(B-benzyl L-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science, Part B: Polymer Physics 1998, 36, (3), 415–423.Google Scholar
  120. Nakanishi, T.; Fukushima, S.; Okamoto, K.; Suzuki, M.; Matsumura, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K., Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release 2001, 74, (1–3), 295–302.PubMedGoogle Scholar
  121. Nishiyama, N.; Kataoka, K., Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology and Therapeutics 2006, 112, (3), 630–648.PubMedGoogle Scholar
  122. Okusaka, T.; Matsumura, Y.; Aoki, K., New approaches for pancreatic cancer in Japan. Cancer Chemotherapy and Pharmacology 2004, 54, (SUPPL. 1).Google Scholar
  123. Panchagnula, R., Pharmaceutical aspects of paclitaxel. International Journal of Pharmaceutics 1998, 172, (1–2), 1–15.Google Scholar
  124. Papahadjopoulos, D., Steric Stabilization. In Liposomes – Rational Design, Janoff, A. S., Ed. Marcel Dekker, Inc.: New York, 1999; pp 1–12.Google Scholar
  125. Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C.; et al., Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America 1991, 88, (24), 11460–4.PubMedGoogle Scholar
  126. Parveen, S.; Sahoo, S. K., Nanomedicine: Clinical applications of polyethylene glycol conjugated proteins and drugs. Clinical Pharmacokinetics 2006, 45, (10), 965–988.PubMedGoogle Scholar
  127. Raffy, S.; Teissie, J., Control of lipid membrane stability by cholesterol content. Biophysical Journal 1999, 76, (4), 2072–2080.PubMedGoogle Scholar
  128. Ramaswamy, M.; Zhang, X.; Burt, H. M.; Wasan, K. M., Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. Journal of Pharmaceutical Sciences 1997, 86, (4), 460–4.PubMedGoogle Scholar
  129. Reed, K. W.; Yalkowsky, S. H., Lysis of human red blood cells in the presence of various cosolvents. Journal of Parenteral Science and Technology 1985, 39, (2), 64–9.PubMedGoogle Scholar
  130. Ringsdorf, H., Structure and Properties of Pharmacologically Active Polymers. Journal of Polymer Science, Polymer Symposia 1975, (51), 135–153.Google Scholar
  131. Rowinsky, E. K.; Rizzo, J.; Ochoa, L.; Takimoto, C. H.; Forouzesh, B.; Schwartz, G.; Hammond, L. A.; Patnaik, A.; Kwiatek, J.; Goetz, A.; Denis, L.; McGuire, J.; Tolcher, A. W., A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. Journal of Clinical Oncology 2003, 21, (1), 148–57.PubMedGoogle Scholar
  132. Saetern, A. M.; Flaten, G. E.; Brandl, M., A method to determine the incorporation capacity of camptothecin in liposomes. Aaps Pharmscitech 2004, 5, (3).Google Scholar
  133. Samyang Corporation website.
  134. Satchi-Fainaro, R.; Duncan, R.; Barnes, C. M., Polymer therapeutics for cancer: Current status and future challenges. Advances in Polymer Science 2006, 193, (1), 1–65.Google Scholar
  135. Scarpa, A.; Degier, J., Cation Permeability of Liposomes as a Function of Chemical Composition of Lipid Bilayers. Biochimica Et Biophysica Acta 1971, 241, (3), 789–797.PubMedGoogle Scholar
  136. Seki, J.; Sonoke, S.; Saheki, A.; Koike, T.; Fukui, H.; Doi, M.; Mayumi, T., Lipid transfer protein transports compounds from lipid nanoparticles to plasma lipoproteins. International Journal of Pharmaceutics 2004, 275, (1–2), 239–48.PubMedGoogle Scholar
  137. Senior, J. H., Fate and Behavior of Liposomes Invivo - a Review of Controlling Factors. Crc Critical Reviews in Therapeutic Drug Carrier Systems 1987, 3, (2), 123–193.PubMedGoogle Scholar
  138. Senior, J.; Crawley, J. C. W.; Gregoriadis, G., Tissue Distribution of Liposomes Exhibiting Long Half-Lives in the Circulation after Intravenous-Injection. Biochimica Et Biophysica Acta 1985, 839, (1), 1–8.PubMedGoogle Scholar
  139. Sessa, G.; Weissman, G., Phospholipid Spherules (Liposomes) as a Model for Biological Membranes. Journal of Lipid Research 1968, 9, (3), 310–318.PubMedGoogle Scholar
  140. Seymour, L. W.; Duncan, R.; Strohalm, J.; Kopecek, J., Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. Journal of Biomedical Materials Research 1987, 21, (11), 1341–58.PubMedGoogle Scholar
  141. Seymour, L. W.; Ferry, D. R.; Anderson, D.; Hesslewood, S.; Julyan, P. J.; Poyner, R.; Doran, J.; Young, A. M.; Burtles, S.; Kerr, D. J., Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. Journal of Clinical Oncology 2002, 20, (6), 1668–76.PubMedGoogle Scholar
  142. Shabbits, J. A.; Chiu, G. N.; Mayer, L. D., Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. Journal of Controlled Release 2002, 84, (3), 161–70.PubMedGoogle Scholar
  143. Shaffer, S. A.; Baker Lee, C.; Kumar, A.; Singer, J. W., Proteolysis of xyotax by lysosomal cathepsin B; metabolic profiling in tumor cells using LC-MS. European Journal of Cancer 2002, 38, S129–S129.Google Scholar
  144. Shen, L.-J.; Shen, W.-C., Drug evaluation: ADI-PEG-20 - A PEGylated arginine deiminase for arginine-auxotrophic cancers. Current Opinion in Molecular Therapeutics 2006, 8, (3), 240–248.PubMedGoogle Scholar
  145. Shuai, X.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J., Micellar carriers based on block copolymers of poly(ɛ-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release 2004, 98, (3), 415–426.PubMedGoogle Scholar
  146. Simard, P.; Leroux, J.-C.; Allen, C.; Meyer, O., Liposomes for Drug Delivery. In Nanoparticles for Pharmaceutical Applications, Domb, A. J.; Tabata, Y.; Ravi Kumar, M. N. V.; Farber, S., Eds. ASP: Stevenson Ranch, 2007; pp 1–62.Google Scholar
  147. Slichenmyer, W. J.; Rowinsky, E. K.; Donehower, R. C.; Kaufmann, S. H., The current status of camptothecin analogues as antitumor agents. Journal of National Cancer Institute 1993, 85, (4), 271–91.Google Scholar
  148. Soepenberg, O.; De Jonge, M. J. A.; Sparreboom, A.; De Bruin, P.; Eskens, F. A. L. M.; De Heus, G.; Wanders, J.; Cheverton, P.; Ducharme, M. P.; Verweij, J., Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clinical Cancer Research 2005, 11, (2 I), 703–711.PubMedGoogle Scholar
  149. Sparreboom, A.; van Zuylen, L.; Brouwer, E.; Loos, W. J.; de Bruijn, P.; Gelderblom, H.; Pillay, M.; Nooter, K.; Stoter, G.; Verweij, J., Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Research 1999, 59, (7), 1454–7.PubMedGoogle Scholar
  150. Strickley, R. G., Solubilizing excipients in oral and injectable formulations. Pharmaceutical Research 2004, 21, (2), 201–30.PubMedGoogle Scholar
  151. Strieth, S.; Eichhorn, M. E.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Dellian, M., Neovascular targeting chemotherapy: Encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. International Journal of Cancer 2004, 110, (1), 117–124.Google Scholar
  152. Supratek Pharma Inc. website.
  153. Swenson, C. E.; Perkins, W. R.; Roberts, P.; Janoff, A. S., Liposome technology and the development of Myocet (TM) (liposomal doxorubicin citrate). Breast 2001, 10, 1–7.Google Scholar
  154. Thiesen, J.; Kramer, I., Physico-chemical stability of docetaxel premix solution and docetaxel infusion solutions in PVC bags and polyolefine containers. Pharmacy World and Science 1999, 21, (3), 137–141.PubMedGoogle Scholar
  155. Thomson, A. H.; Vasey, P. A.; Murray, L. S.; Cassidy, J.; Fraier, D.; Frigerio, E.; Twelves, C., Population pharmacokinetics in phase I drug development: A phase I study of PK1 in patients with solid tumours. British Journal of Cancer 1999, 81, (1), 99–107.PubMedGoogle Scholar
  156. Trimaille, T.; Mondon, K.; Gurny, R.; Moller, M., Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). International Journal of Pharmaceutics 2006, 319, (1–2), 147–154.PubMedGoogle Scholar
  157. Uchino, H.; Matsumura, Y.; Negishi, T.; Koizumi, F.; Hayashi, T.; Honda, T.; Nishiyama, N.; Kataoka, K.; Naito, S.; Kakizoe, T., Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. British Journal of Cancer 2005, 93, (6), 678–687.PubMedGoogle Scholar
  158. Vakil, R.; Kwon, G. S., Poly(ethylene glycol)-b-poly(ɛ-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir 2006, 22, (23), 9723–9729.PubMedGoogle Scholar
  159. van Zuylen, L.; Verweij, J.; Sparreboom, A., Role of formulation vehicles in taxane pharmacology. Investigational New Drugs 2001, 19, (2), 125–141.PubMedGoogle Scholar
  160. Vasey, P. A.; Kaye, S. B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A. H.; Murray, L. S.; Hilditch, T. E.; Murray, T.; Burtles, S.; Fraier, D.; Frigerio, E.; Cassidy, J., Phase I clinical and pharmacokinetic study of PK1 [N-(2- hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents - Drug-polymer conjugates. Clinical Cancer Research 1999, 5, (1), 83–94.PubMedGoogle Scholar
  161. Veronese, F. M.; Pasut, G., PEGylation, successful approach to drug delivery. Nature Reviews Drug Discovery 2005, 10, (21), 1451–8.Google Scholar
  162. Vicent, M. J.; Duncan, R., Polymer conjugates: Nanosized medicines for treating cancer. Trends in Biotechnology 2006, 24, (1), 39–47.PubMedGoogle Scholar
  163. Wachters, F. M.; Groen, H. J.; Maring, J. G.; Gietema, J. A.; Porro, M.; Dumez, H.; de Vries, E. G.; van Oosterom, A. T., A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours. British Journal of Cancer 2004, 90, (12), 2261–7.PubMedGoogle Scholar
  164. Waterhouse, D. N.; Madden, T. D.; Cullis, P. R.; Bally, M. B.; Mayer, L. D.; Webb, M. S., Preparation, characterization, and biological analysis of liposomal formulations of vincristine. Liposomes, Pt E, 2005; Vol. 391, pp 40–57.Google Scholar
  165. Webb, M. S.; Saxon, D.; Wong, F. M. P.; Lim, H. J.; Wang, Z.; Bally, M. B.; Choi, L. S. L.; Cullis, P. R.; Mayer, L. D., Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): Effects on the pharmacokinetics of liposomal vincristine. Biochimica Et Biophysica Acta-Biomembranes 1998, 1372, (2), 272–282.Google Scholar
  166. Wente, M. N.; Kleeff, J.; Buchler, M. W.; Wanders, J.; Cheverton, P.; Langman, S.; Friess, H., DE-310, a macromolecular prodrug of the topoisomerase-I-inhibitor exatecan (DX-8951), in patients with operable solid tumors. Investigational New Drugs 2005, 23, (4), 339–347.PubMedGoogle Scholar
  167. Wong, H. L.; Bendayan, R.; Rauth, A. M.; Wu, X. Y., Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. Journal of Controlled Release 2006, 116, (3), 275–284.PubMedGoogle Scholar
  168. Woodle, M. C.; Lasic, D. D., Sterically Stabilized Liposomes. Biochimica Et Biophysica Acta 1992, 1113, (2), 171–199.PubMedGoogle Scholar
  169. Yamamoto, Y.; Nagasaki, Y.; Kato, Y.; Sugiyama, Y.; Kataoka, K., Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. Journal of Controlled Release 2001, 77, (1–2), 27–38.PubMedGoogle Scholar
  170. Yamaoka, T.; Tabata, Y.; Ikada, Y., Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. Journal of Pharmaceutical Sciences 1994, 83, (4), 601–6.PubMedGoogle Scholar
  171. Yasugi, K.; Nagasaki, Y.; Kato, M.; Kataoka, K., Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier. Journal of Controlled Release 1999, 62, (1–2), 89–100.PubMedGoogle Scholar
  172. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., and Okano, T., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. Journal of Controlled Release 1998, 50, 79–92.PubMedGoogle Scholar
  173. Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D. A.; Torchilin, V. P.; Jain, R. K., Vascular-Permeability in a Human Tumor Xenograft - Molecular-Size Dependence and Cutoff Size. Cancer Research 1995, 55, (17), 3752–3756.PubMedGoogle Scholar
  174. Zhang, J. A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I., Development and characterization of a novel Cremophor (R) EL free liposome-based paclitaxel (LEP-ETU) formulation. European Journal of Pharmaceutics and Biopharmaceutics 2005, 59, (1), 177–187.PubMedGoogle Scholar
  175. Zhang, J. A.; Xuan, T.; Parmar, M.; Ma, L.; Ugwu, S.; Ali, S.; Ahmad, I., Development and characterization of a novel liposome-based formulation of SN-38. International Journal of Pharmaceutics 2004, 270, (1–2), 93–107.PubMedGoogle Scholar
  176. Zhigaltsev, I. V.; Maurer, N.; Akhong, Q. F.; Leone, R.; Leng, E.; Wang, J.; Semple, S. C.; Cullis, P. R., Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. Journal of Controlled Release 2005, 104, (1), 103–111.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Patrick Lim Soo
    • 1
  • Michael Dunne
    • 1
  • Jubo Liu
    • 1
  • Christine Allen
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of TorontoToronto, OntarioCanada M5S 3M2

Personalised recommendations