Skip to main content

Nanotechnology for Intracellular Delivery and Targeting

  • Chapter
Nanotechnology in Drug Delivery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto-Setala, K., & Vuorio, E. (1997). Gene Therapy of single-gene disorders: preface to the special section. Ann Med, 29, 549–551.

    CAS  PubMed  Google Scholar 

  • Allen, T. M., Newman, M. S., Woodle, M. C., Mayhew, E., & Uster, P. S. (1995). Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer, 62(2), 199–204.

    CAS  PubMed  Google Scholar 

  • Arnheiter, H., & Haller, O. (1988). Antiviral sTATe against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. Embo J, 7(5), 1315–1320.

    CAS  PubMed  Google Scholar 

  • Asin-Cayuela, J., Manas, A. R., James, A. M., Smith, R. A., & Murphy, M. P. (2004). Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett, 571(1–3), 9–16.

    CAS  PubMed  Google Scholar 

  • Asokan, A., & Cho, M. J. (2002). Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci, 91(4), 903–913.

    CAS  PubMed  Google Scholar 

  • Asokan, A., & Cho, M. J. (2003). Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim Biophys Acta, 1611(1–2), 151–160.

    CAS  PubMed  Google Scholar 

  • Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., & Kataoka, K. (2005). Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem, 16(1), 122–130.

    CAS  PubMed  Google Scholar 

  • Bathori, G., Cervenak, L., & Karadi, I. (2004). Caveolae – an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst, 21(2), 67–95.

    PubMed  Google Scholar 

  • Becker, M. L., Bailey, L. O., & Wooley, K. L. (2004). Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation. Bioconjug Chem, 15(4), 710–717.

    CAS  PubMed  Google Scholar 

  • Becker, M. L., Remsen, E. E., Pan, D., & Wooley, K. L. (2004). Peptide-derivatized shell-cross-linked nanoparticles. 1. Synthesis and characterization. Bioconjug Chem, 15(4), 699–709.

    CAS  PubMed  Google Scholar 

  • Belchetz, P. E., Crawley, J. C., Braidman, I. P., & Gregoriadis, G. (1977). Treatment of Gaucher's disease with liposome-entrapped glucocerebroside: beta-glucosidase. Lancet, 2(8029), 116–117.

    CAS  PubMed  Google Scholar 

  • Boddapati, S. V., Tongcharoensirikul, P., Hanson, R. N., D'Souza, G. G., Torchilin, V. P., & Weissig, V. (2005). Mitochondriotropic liposomes. J Liposome Res, 15(1–2), 49–58.

    CAS  PubMed  Google Scholar 

  • Boomer, J. A., & Thompson, D. H. (1999). Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem Phys Lipids, 99(2), 145–153.

    CAS  PubMed  Google Scholar 

  • Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 92(16), 7297–7301.

    Google Scholar 

  • Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R., & Dekaban, A. S. (1974). Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher's disease. N Engl J Med, 291(19), 989–993.

    CAS  PubMed  Google Scholar 

  • Brady, R. O., Tallman, J. F., Johnson, W. G., Gal, A. E., Leahy, W. R., Quirk, J. M., et al. (1973). Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry's disease. N Engl J Med, 289(1), 9–14.

    CAS  PubMed  Google Scholar 

  • Branden, L. J., Mohamed, A. J., & Smith, C. I. (1999). A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol, 17(8), 784–787.

    CAS  PubMed  Google Scholar 

  • Burns, R. J., & Murphy, M. P. (1997). Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch Biochem Biophys, 339, 33–39.

    CAS  PubMed  Google Scholar 

  • Burns, R. J., Smith, R. A. J., & Murphy, M. P. (1995). Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys, 322, 60–68.

    CAS  PubMed  Google Scholar 

  • Chakrabarti, R., Wylie, D. E., & Schuster, S. M. (1989). Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem, 264(26), 15494–15500.

    CAS  PubMed  Google Scholar 

  • Chen, G., & Hoffman, A. S. (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 373(6509), 49–52.

    CAS  PubMed  Google Scholar 

  • Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernal, S. D., & Lampidis, T. J. (1982a). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol, 46 Pt 1, 141–155.

    Google Scholar 

  • Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernal, S. D., & Lampidis, T. J. (1982b). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol, 46, 141–155.

    Google Scholar 

  • Colley, C. M., & Ryman, B. E. (1976). The use of a liposomally entrapped enzyme in the treatment of an artificial storage condition. Biochim Biophys Acta, 451(2), 417–425.

    CAS  PubMed  Google Scholar 

  • Costantini, P., Jacotot, E., Decaudin, D., & Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst, 92(13), 1042–1053.

    CAS  PubMed  Google Scholar 

  • Costin, G. E., Trif, M., Nichita, N., Dwek, R. A., & Petrescu, S. M. (2002). pH-sensitive liposomes are efficient carriers for endoplasmic reticulum-targeted drugs in mouse melanoma cells. Biochem Biophys Res Commun, 293(3), 918–923.

    CAS  PubMed  Google Scholar 

  • Coulter, C. V., Smith, R. A. J., & Murphy, M. P. (2001). Synthesis, characterization, and biological properties of a fullerene triphenylphosphonium salt. Fullerene Science and Technology, 9, 339–350.

    CAS  Google Scholar 

  • Csermely, P., Schnaider, T., & Szanto, I. (1995). Signaling and transport through the nuclear membrane. Biochim Biophys Acta, 1241, 425–452.

    PubMed  Google Scholar 

  • D'Souza, G. G., Rammohan, R., Cheng, S. M., Torchilin, V. P., & Weissig, V. (2003). DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release, 92(1–2), 189–197.

    PubMed  Google Scholar 

  • Das, P. K., Murray, G. J., Zirzow, G. C., Brady, R. O., & Barranger, J. A. (1985). Lectin-specific targeting of beta-glucocerebrosidase to different liver cells via glycosylated liposomes. Biochem Med, 33(1), 124–131.

    CAS  PubMed  Google Scholar 

  • Daugelavicius, R., Cvirkaite, V., Gaidelyte, A., Bakiene, E., Gabrenaite-Verkhovskaya, R., & Bamford, D. H. (2005). Penetration of enveloped double-stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol, 79(8), 5017–5026.

    CAS  PubMed  Google Scholar 

  • de la Fuente, J. M., & Berry, C. C. (2005). Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem, 16(5), 1176–1180.

    PubMed  Google Scholar 

  • Del Gaizo, V., MacKenzie, J. A., & Payne, R. M. (2003). Targeting proteins to mitochondria using TAT. Mol Genet Metab, 80(1–2), 170–180.

    CAS  PubMed  Google Scholar 

  • Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem, 271(30), 18188–18193.

    CAS  PubMed  Google Scholar 

  • Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 269(14), 10444–10450.

    CAS  PubMed  Google Scholar 

  • Desnick, R. J., Thorpe, S. R., & Fiddler, M. B. (1976). Toward enzyme therapy for lysosomal storage diseases. Physiol Rev, 56(1), 57–99.

    CAS  PubMed  Google Scholar 

  • Dodd, C. H., Hsu, H. C., Chu, W. J., Yang, P., Zhang, H. G., Mountz, J. D., Jr., et al. (2001). Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods, 256(1–2), 89–105.

    CAS  PubMed  Google Scholar 

  • Egleton, R. D., & Davis, T. P. (1997). Bioavailability and transport of peptides and peptide drugs into the brain. Peptides, 18(9), 1431–1439.

    CAS  PubMed  Google Scholar 

  • Elliott, G., & O'Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88(2), 223–233.

    CAS  PubMed  Google Scholar 

  • Elmquist, A., Lindgren, M., Bartfai, T., & Langel, U. (2001). VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res, 269(2), 237–244.

    CAS  PubMed  Google Scholar 

  • Elouahabi, A., & Ruysschaert, J. M. (2005). Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Therv, 11(3), 336–347.

    CAS  Google Scholar 

  • Espinola, L. G., Wider, E. A., Stella, A. M., & Batlle, A. M. D. C. (1983). Enzyme replacement therapy in porphyrias—II: Entrapment of δ-aminolaevulinate dehydratase in liposomes. Int J Biochem, 15(3), 439–445.

    CAS  Google Scholar 

  • Farhood, H., Serbina, N., & Huang, L. (1995). The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta, 1235(2), 289–295.

    PubMed  Google Scholar 

  • Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., et al. (1994). TAT-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA, 91(2), 664–668.

    Google Scholar 

  • Felgner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., et al. (1994). Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem, 269(4), 2550–2561.

    CAS  PubMed  Google Scholar 

  • Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA, 84(21), 7413–7417.

    Google Scholar 

  • Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., & Beltram, F. (2003). Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther, 8(2), 284–294.

    CAS  PubMed  Google Scholar 

  • Filion, M. C., & Phillips, N. C. (1997). Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta, 1329(2), 345–356.

    CAS  PubMed  Google Scholar 

  • Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., et al. (2003). Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem, 278(36), 34141–34149.

    CAS  PubMed  Google Scholar 

  • Fonseca, M. J., Jagtenberg, J. C., Haisma, H. J., & Storm, G. (2003). Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm Res, 20(3), 423–428.

    CAS  PubMed  Google Scholar 

  • Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189–1193.

    CAS  PubMed  Google Scholar 

  • Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 276(8), 5836–5840.

    CAS  PubMed  Google Scholar 

  • Gaspar, M. M., Perez-Soler, R., & Cruz, M. E. (1996). Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother Pharmacol, 38(4), 373–377.

    CAS  PubMed  Google Scholar 

  • Geisert, E. E., Jr., Del Mar, N. A., Owens, J. L., & Holmberg, E. G. (1995). Transfecting neurons and glia in the rat using pH-sensitive immunoliposomes. Neurosci Lettv, 184(1), 40–43.

    Google Scholar 

  • Grabowsky, G. A., & Desnick, R. J. (1981). Enzyme replacement in genetic diseases. In J. S. Holcenberg & J. Roberts (Eds.), Enzymes as drugs (pp. 167). New York: Wiley.

    Google Scholar 

  • Green, M., & Loewenstein, P. M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55(6), 1179–1188.

    CAS  PubMed  Google Scholar 

  • Gregoriadis, G. (1978). Liposomes in the therapy of lysosomal storage diseases. Nature, 275(5682), 695–696.

    CAS  PubMed  Google Scholar 

  • Gregoriadis, G., & Dean, M. F. (1979). Enzyme therapy in genetic diseases. Nature, 278(5705), 603–604.

    CAS  PubMed  Google Scholar 

  • Gregoriadis, G., Putman, D., Louis, L., & Neerunjun, D. (1974). Comparative effect and fate of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem J, 140(2), 323–330.

    CAS  PubMed  Google Scholar 

  • Gregoriadis, G., & Ryman, B. E. (1972). Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J, 129(1), 123–133.

    CAS  PubMed  Google Scholar 

  • Guo, X., & Szoka, F. C., Jr. (2001). Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate Chem, 12(2), 291–300.

    CAS  Google Scholar 

  • Gupta, B., Levchenko, T. S., & Torchilin, V. P. (2005). Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57(4), 637–651.

    CAS  PubMed  Google Scholar 

  • Hafez, I. M., Maurer, N., & Cullis, P. R. (2001). On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther, 8(15), 1188–1196.

    CAS  PubMed  Google Scholar 

  • Harding, A. E. (1991). Neurological disease and mitochondrial genes. Trends Neurosci, 14(4), 132–138.

    CAS  PubMed  Google Scholar 

  • Heeremans, J. L., Prevost, R., Bekkers, M. E., Los, P., Emeis, J. J., Kluft, C., et al. (1995). Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost, 73(3), 488–494.

    CAS  PubMed  Google Scholar 

  • Helms, J. B., & Zurzolo, C. (2004). Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic, 5(4), 247–254.

    CAS  PubMed  Google Scholar 

  • Hirota, Y., Masuyama, N., Kuronita, T., Fujita, H., Himeno, M., & Tanaka, Y. (2004). Analysis of post-lysosomal compartments. Biochem Biophys Res Commun, 314(2), 306–312.

    CAS  PubMed  Google Scholar 

  • Hoekstra, D., de Boer, T., Klappe, K., & Wilschut, J. (1984). Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry, 23(24), 5675–5681.

    CAS  PubMed  Google Scholar 

  • Hoekstra, D., & Klappe, K. (1986). Use of a fluorescence assay to monitor the kinetics of fusion between erythrocyte ghosts, as induced by Sendai virus. Biosci Rep, 6(11), 953–960.

    CAS  PubMed  Google Scholar 

  • Holt, I. J., Harding, A. E., & Morgan-Hughes, J. A. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331(6158), 717–719.

    CAS  PubMed  Google Scholar 

  • Horobin, R. W. (2002). Xanthenes. In R. W. Horobin, Kiernan, J.A. (Ed.), Conn's Biological Stains, 10th Edition (pp. 237). Oxford, UK: BIOS Scientific Publishers.

    Google Scholar 

  • Horobin, R. W., & Kiernan, J.A. (eds). (2002). Conn's Biological Stains (10th ed.). Oxford, UK: BIOS Scientific Publishers.

    Google Scholar 

  • Huth, U., Wieschollek, A., Garini, Y., Schubert, R., & Peschka-Suss, R. (2004). Fourier transformed spectral bio-imaging for studying the intracellular fate of liposomes. Cytometry A, 57(1), 10–21.

    PubMed  Google Scholar 

  • Inoue, M., Yoshida, H., & Akisaka, T. (1999). Visualization of acidic compartments in cultured osteoclasts by use of an acidotrophic amine as a marker for low pH. Cell Tissue Res, 298(3), 527–537.

    CAS  PubMed  Google Scholar 

  • James, A. M., Blaikie, F. H., Smith, R. A., Lightowlers, R. N., Smith, P. M., & Murphy, M. P. (2003). Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiaze pin-5-on-8-oxy)butyl]-triphenylphosphonium iodide. Eur J Biochem, 270(13), 2827–2836.

    CAS  PubMed  Google Scholar 

  • Jeang, K. T., Xiao, H., & Rich, E. A. (1999). Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem, 274(41), 28837–28840.

    CAS  PubMed  Google Scholar 

  • Jeong, J. H., Kim, S. W., & Park, T. G. (2003). Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem, 14(2), 473–479.

    CAS  PubMed  Google Scholar 

  • Johnson, W. G., Desnick, R. J., Long, D. M., Sharp, H. L., Krivit, W., Brady, B., et al. (1973). Intravenous injection of purified hexosaminidase A into a patient with Tay-Sachs disease. Birth Defects Orig Artic Ser, 9(2), 120–124.

    CAS  PubMed  Google Scholar 

  • Joliot, A., Pernelle, C., Deagostini-Bazin, H., & Prochiantz, A. (1991). Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 88(5), 1864–1868.

    Google Scholar 

  • Josephson, L., Tung, C. H., Moore, A., & Weissleder, R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem, 10(2), 186–191.

    CAS  PubMed  Google Scholar 

  • Kamata, H., Yagisawa, H., Takahashi, S., & Hirata, H. (1994). Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection. Nucleic Acids Res, 22(3), 536–537.

    CAS  PubMed  Google Scholar 

  • Kaufman, C. L., Williams, M., Ryle, L. M., Smith, T. L., Tanner, M., & Ho, C. (2003). Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation, 76(7), 1043–1046.

    CAS  PubMed  Google Scholar 

  • Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., et al. (2001). Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem, 276(7), 4588–4596.

    CAS  PubMed  Google Scholar 

  • Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., et al. (2002). Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann NY Acad Sci, 959, 263–274.

    CAS  PubMed  Google Scholar 

  • Khaw, B. A., daSilva, J., Vural, I., Narula, J., & Torchilin, V. P. (2001). Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release, 75(1–2), 199–210.

    CAS  PubMed  Google Scholar 

  • Khaw, B. A., Fallon, J. T., Beller, G. A., & Haber, E. (1979). Specificity of localization of myosin-specific antibody fragments in experimental myocardial infarction. Histologic, histochemical, autoradiographic and scintigraphic studies. Circulation, 60(7), 1527–1531.

    CAS  PubMed  Google Scholar 

  • Khaw, B. A., Scott, J., Fallon, J. T., Cahill, S. L., Haber, E., & Homcy, C. (1982). Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres. Science, 217(4564), 1050–1053.

    CAS  PubMed  Google Scholar 

  • Khaw, B. A., Torchilin, V. P., Vural, I., & Narula, J. (1995). Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat Med, 1(11), 1195–1198.

    CAS  PubMed  Google Scholar 

  • Khaw, B. A., Vural, I., DaSilva, J., & Torchilin, V. P. (2000). Use of cytoskeleton-specific immunoliposomes for preservation of cell viability and gene delivery. S.T.P, Pharma Sci, 10, 279–283.

    CAS  Google Scholar 

  • Kisel, M. A., Kulik, L. N., Tsybovsky, I. S., Vlasov, A. P., Vorob'yov, M. S., Kholodova, E. A., et al. (2001). Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. Int J Pharm, 216(1–2), 105–114.

    CAS  PubMed  Google Scholar 

  • Koch, A. M., Reynolds, F., Merkle, H. P., Weissleder, R., & Josephson, L. (2005). Transport of surface-modified nanoparticles through cell monolayers. Chembiochem, 6(2), 337–345.

    CAS  PubMed  Google Scholar 

  • Koltover, I., Salditt, T., Radler, J. O., & Safinya, C. R. (1998). An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 281(5373), 78–81.

    CAS  PubMed  Google Scholar 

  • Kratz, F., Beyer, U., & Schutte, M. T. (1999). Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug Carrier Syst, 16(3), 245–288.

    CAS  PubMed  Google Scholar 

  • Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., et al. (2003). Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release, 89(1), 113–125.

    CAS  PubMed  Google Scholar 

  • Kuwana, T., Mullock, B. M., & Luzio, J. P. (1995). Identification of a lysosomal protein causing lipid transfer, using a fluorescence assay designed to monitor membrane fusion between rat liver endosomes and lysosomes. Biochem J, 308 (Pt 3), 937–946.

    CAS  PubMed  Google Scholar 

  • Kwon, G. S., & Kataoka, K. (1995). Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev, 16, 295–309.

    CAS  Google Scholar 

  • Labat-Moleur, F., Steffan, A. M., Brisson, C., Perron, H., Feugeas, O., Furstenberger, P., et al. (1996). An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther, 3(11), 1010–1017.

    CAS  PubMed  Google Scholar 

  • Lackey, C. A., Press, O. W., Hoffman, A. S., & Stayton, P. S. (2002). A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug Chem, 13(5), 996–1001.

    CAS  PubMed  Google Scholar 

  • Larsson, L., Clapp, W. L., 3rd, Park, C. H., Cannon, J. K., & Tisher, C. C. (1987). Ultrastructural localization of acidic compartments in cells of isolated rabbit PCT. Am J Physiol, 253(1 Pt 2), F95–F103.

    CAS  PubMed  Google Scholar 

  • Lasch, J., Meye, A., Taubert, H., Koelsch, R., Mansa-ard, J., & Weissig, V. (1999). Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem, 380(6), 647–652.

    CAS  PubMed  Google Scholar 

  • Lasic, D. D. (1993). Liposomes : from physics to applications. Amsterdam ; New York: Elsevier.

    Google Scholar 

  • Lasic, D. D., & Martin, F. J. (1995). Stealth liposomes. Boca Raton: CRC Press.

    Google Scholar 

  • Lee, E. S., Na, K., & Bae, Y. H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release, 91(1–2), 103–113.

    CAS  PubMed  Google Scholar 

  • Lee, E. S., Shin, H. J., Na, K., & Bae, Y. H. (2003). Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release, 90(3), 363–374.

    CAS  PubMed  Google Scholar 

  • Leroux, J., Roux, E., Le Garrec, D., Hong, K., & Drummond, D. C. (2001). N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release, 72(1–3), 71–84.

    CAS  PubMed  Google Scholar 

  • Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., et al. (2000). TAT peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 18(4), 410–414.

    CAS  PubMed  Google Scholar 

  • Lin, T. K., Hughes, G., Muratovska, A., Blaikie, F. H., Brookes, P. S., Darley-Usmar, V., et al. (2002). Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem, 277(19), 17048–17056.

    CAS  PubMed  Google Scholar 

  • Lindgren, M., Hallbrink, M., Prochiantz, A., & Langel, U. (2000). Cell-penetrating peptides. Trends Pharmacol Sci, 21(3), 99–103.

    CAS  PubMed  Google Scholar 

  • Lisziewicz, J., Sun, D., Lisziewicz, A., & Gallo, R. C. (1995). Antitat gene therapy: a candidate for late-stage AIDS patients. Gene Ther, 2(3), 218–222.

    CAS  PubMed  Google Scholar 

  • Liu, J., Zhang, Q., Remsen, E. E., & Wooley, K. L. (2001). Nanostructured materials designed for cell binding and transduction. Biomacromolecules, 2(2), 362–368.

    CAS  PubMed  Google Scholar 

  • Lloyd, J. B. (2000). Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev, 41(2), 189–200.

    CAS  PubMed  Google Scholar 

  • Lo, Y. L., Tsai, J. C., & Kuo, J. H. (2004). Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release, 94(2–3), 259–272.

    CAS  PubMed  Google Scholar 

  • Lukyanov, A. N., Hartner, W. C., & Torchilin, V. P. (2004). Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release, 94(1), 187–193.

    CAS  PubMed  Google Scholar 

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Releasev, 65(1–2), 271–284.

    CAS  Google Scholar 

  • Marty, C., Meylan, C., Schott, H., Ballmer-Hofer, K., & Schwendener, R. A. (2004). Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell Mol Life Sci, 61(14), 1785–1794.

    CAS  PubMed  Google Scholar 

  • Mastrobattista, E., Koning, G. A., van Bloois, L., Filipe, A. C., Jiskoot, W., & Storm, G. (2002). Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem, 277(30), 27135–27143.

    CAS  PubMed  Google Scholar 

  • Midoux, P., Kichler, A., Boutin, V., Maurizot, J. C., & Monsigny, M. (1998). Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug Chem, 9(2), 260–267.

    CAS  PubMed  Google Scholar 

  • Minier, C., & Moore, M. N. (1996). Rhodamine B accumulation and MXR protein expression in mussel blood cells: effects of exposure to vincristine. Marine Ecology – Progress Series, 142, 165–173.

    CAS  Google Scholar 

  • Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res, 25(14), 2730–2736.

    CAS  PubMed  Google Scholar 

  • Moyer, B. D., & Balch, W. E. (2001). A new frontier in pharmacology: the endoplasmic reticulum as a regulated export pathway in health and disease. Expert Opin Ther Targets, 5(2), 165–176.

    CAS  PubMed  Google Scholar 

  • Murphy, M. P. (1989). Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta, 977(2), 123–141.

    CAS  PubMed  Google Scholar 

  • Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., et al. (1998). Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta, 1414(1–2), 127–139.

    CAS  PubMed  Google Scholar 

  • Ogris, M., Steinlein, P., Carotta, S., Brunner, S., & Wagner, E. (2001). DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci, 3(3), E21.

    CAS  PubMed  Google Scholar 

  • Ohashi, M., Miwako, I., Nakamura, K., Yamamoto, A., Murata, M., Ohnishi, S., et al. (1999). An arrested late endosome-lysosome intermediate aggregate observed in a Chinese hamster ovary cell mutant isolated by novel three-step screening. J Cell Sci, 112(Pt 8), 1125–1138.

    CAS  PubMed  Google Scholar 

  • Ohashi, M., Murata, M., & Ohnishi, S. (1992). A novel fluorescence method to monitor the lysosomal disintegration of low density lipoprotein. Eur J Cell Biol, 59(1), 116–126.

    CAS  PubMed  Google Scholar 

  • Park, J. W., Kirpotin, D. B., Hong, K., Shalaby, R., Shao, Y., Nielsen, U. B., et al. (2001). Tumor targeting using anti-her2 immunoliposomes. J Control Release, 74(1–3), 95–113.

    CAS  PubMed  Google Scholar 

  • Patel, H. M., & Ryman, B. E. (1974). α-Mannosidase in zinc-deficient rats. Possibility of liposomal therapy in mannosidosis. Biochem Soc Transv, 2, 1014–1017.

    CAS  Google Scholar 

  • Pollard, H., Remy, J. S., Loussouarn, G., Demolombe, S., Behr, J. P., & Escande, D. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem, 273(13), 7507–7511.

    CAS  PubMed  Google Scholar 

  • Pollard, H., Toumaniantz, G., Amos, J. L., Avet-Loiseau, H., Guihard, G., Behr, J. P., et al. (2001). Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med, 3(2), 153–164.

    CAS  PubMed  Google Scholar 

  • Pooga, M., Hallbrink, M., Zorko, M., & Langel, U. (1998). Cell penetration by transportan. Faseb J, 12(1), 67–77.

    CAS  PubMed  Google Scholar 

  • Pozzi, D., Lisi, A., De Ros, I., Ferroni, L., Giuliani, A., Ravagnan, G., et al. (1993). Use of octadecylrhodamine fluorescence dequenching to study vesicular stomatitis virus fusion with human aged red blood cells. Photochem Photobiol, 57(3), 426–430.

    CAS  PubMed  Google Scholar 

  • Preston, T. J., Abadi, A., Wilson, L., & Singh, G. (2001). Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev, 49(1–2), 45–61.

    CAS  PubMed  Google Scholar 

  • Ragin, A. D., Morgan, R.A., & Chmielewski, J. (2002). Cellular import mediated by nuclear localization signal Peptide sequences. Chem Biol, 9(8), 943–948.

    CAS  PubMed  Google Scholar 

  • Reynolds, G. C., Baker, H. J., & Reynolds, R. H. (1978). Enzyme replacement using liposome carriers in feline Gm1 gangliosidosis fibroblasts. Nature, 275(5682), 754–755.

    CAS  PubMed  Google Scholar 

  • Rideout, D., Bustamante, A., & Patel, J. (1994). Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int J Cancer, 57(2), 247–253.

    CAS  PubMed  Google Scholar 

  • Rojas, M., Donahue, J. P., Tan, Z., & Lin, Y. Z. (1998). Genetic engineering of proteins with cell membrane permeability. Nat Biotechnol, 16(4), 370–375.

    CAS  PubMed  Google Scholar 

  • Ross, M. F., Filipovska, A., Smith, R. A., Gait, M. J., & Murphy, M. P. (2004). Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochem J, 383(pt 3), 457–458.

    Google Scholar 

  • Roth, J. A., Swisher, S. G., Merritt, J. A., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1998). Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin Oncol, 25(3 Suppl 8), 33–37.

    CAS  PubMed  Google Scholar 

  • Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A., & Wender, P. A. (2004). Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc, 126(31), 9506–9507.

    CAS  PubMed  Google Scholar 

  • Rothbard, J. B., Jessop, T. C., & Wender, P. A. (2005). Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev, 57(4), 495–504.

    CAS  PubMed  Google Scholar 

  • Roux, E., Francis, M., Winnik, F. M., & Leroux, J. C. (2002). Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs. Int J Pharm, 242(1–2), 25–36.

    CAS  PubMed  Google Scholar 

  • Roux, E., Passirani, C., Scheffold, S., Benoit, J. P., & Leroux, J. C. (2004). Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release, 94(2–3), 447–451.

    CAS  PubMed  Google Scholar 

  • Roux, E., Stomp, R., Giasson, S., Pezolet, M., Moreau, P., & Leroux, J. C. (2002). Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J Pharm Sci, 91(8), 1795–1802.

    CAS  PubMed  Google Scholar 

  • Rubas, W., Supersaxo, A., Weder, H. G., Hartmann, H. R., Hengartner, H., Schott, H., et al. (1986). Treatment of murine L1210 lymphoid leukemia and melanoma B16 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int J Cancer, 37(1), 149–154.

    CAS  PubMed  Google Scholar 

  • Rudolph, C., Schillinger, U., Ortiz, A., Tabatt, K., Plank, C., Muller, R. H., et al. (2004). Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res, 21(9), 1662–1669.

    CAS  PubMed  Google Scholar 

  • Sakurai, F., Inoue, R., Nishino, Y., Okuda, A., Matsumoto, O., Taga, T., et al. (2000). Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Control Release, 66(2–3), 255–269.

    CAS  PubMed  Google Scholar 

  • Salem, A. K., Searson, P. C., & Leong, K. W. (2003). Multifunctional nanorods for gene delivery. Nat Mater, 2(10), 668–671.

    CAS  PubMed  Google Scholar 

  • Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., et al. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem, 17(4), 943–949.

    CAS  PubMed  Google Scholar 

  • Scheule, R. K., St George, J. A., Bagley, R. G., Marshall, J., Kaplan, J. M., Akita, G. Y., et al. (1997). Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther, 8(6), 689–707.

    CAS  PubMed  Google Scholar 

  • Schwarze, S. R., & Dowdy, S. F. (2000). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 21(2), 45–48.

    CAS  PubMed  Google Scholar 

  • Schwarze, S. R., Hruska, K. A., & Dowdy, S. F. (2000). Protein transduction: unrestricted delivery into all cells? Trends Cell Biol, 10(7), 290–295.

    CAS  PubMed  Google Scholar 

  • Senior, J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst, 3(2), 123–193.

    CAS  PubMed  Google Scholar 

  • Shalaev, E. Y., & Steponkus, P. L. (1999). Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Biochim Biophys Acta, 1419(2), 229–247.

    CAS  PubMed  Google Scholar 

  • Sheff, D. (2004). Endosomes as a route for drug delivery in the real world. Adv Drug Deliv Rev, 56(7), 927–930.

    CAS  PubMed  Google Scholar 

  • Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N., & de Lima, M. C. (2004). On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev, 56(7), 947–965.

    CAS  PubMed  Google Scholar 

  • Smith, R. A., Porteous, C. M., Coulter, C. V., & Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. Eur J Biochem, 263(3), 709–716.

    CAS  PubMed  Google Scholar 

  • Smith, R. A., Porteous, C. M., Gane, A. M., & Murphy, M. P. (2003). Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA, 100(9), 5407–5412.

    Google Scholar 

  • Sperl, W. (1997). [Diagnosis and therapy of mitochondriopathies]. Wien Klin Wochenschr, 109(3), 93–99.

    CAS  PubMed  Google Scholar 

  • Stanimirovic, D. B., Markovic, M., Micic, D. V., Spatz, M., & Mrsulja, B. B. (1994). Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion ‘oxidative stress’ in gerbil brain. Neurochem Res, 19(12), 1473–1478.

    CAS  PubMed  Google Scholar 

  • Steger, L. D., & Desnick, R. J. (1977). Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim Biophys Acta, 464(3), 530–546.

    CAS  PubMed  Google Scholar 

  • Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med, 11(6), 678–682.

    CAS  PubMed  Google Scholar 

  • Sudimack, J. J., Guo, W., Tjarks, W., & Lee, R. J. (2002). A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, 1564(1), 31–37.

    CAS  PubMed  Google Scholar 

  • Tager, J. M., Daems, W. T., & Hooghwinkel, G. J. M. (1974). Enzyme therapy in lysosomal storage diseases. Proceedings of the Workshop on Cell Biological and Enzymological Aspects of the Therapy of Lysosomal Storage Diseases, Leiden, The Netherlands, April 2–3, 1974 and Papers presented at a Boerhaave Advanced Course on Lysosomal Enzymopathies, Leiden, The Netherlands, April 4–5, 1974. Amsterdam: North-Holland Pub. Co., New York American Elsevier Pub. CO.

    Google Scholar 

  • Tang, F., & Hughes, J. A. (1999). Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro. Bioconjug Chem, 10(5), 791–796.

    CAS  PubMed  Google Scholar 

  • Tkachenko, A. G., Xie, H., Liu, Y., Coleman, D., Ryan, J., Glomm, W. R., et al. (2004). Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 15(3), 482–490.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (1985). Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst, 2(1), 65–115.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 4(2), 145–160.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (Ed.). (1991). Immobilized enzymes in medicine. Berlin, New York: Springer-Verlag.

    Google Scholar 

  • Torchilin, V. P., Khaw, B. A., & Weissig, V. (2002). Intracellular targets for DNA delivery: nuclei and mitochondria. Somat Cell Mol Genet, 27(1–6), 49–64.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P., Levchenko, T. S., Lukyanov, A. N., Khaw, B. A., Klibanov, A. L., Rammohan, R., et al. (2001). p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta, 1511(2), 397–411.

    CAS  PubMed  Google Scholar 

  • Torchilin, V. P., Levchenko, T. S., Rammohan, R., Volodina, N., Papahadjopoulos-Sternberg, B., & D'Souza, G. G. (2003). Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A, 100(4), 1972–1977.

    Google Scholar 

  • Torchilin, V. P., Narula, J., Halpern, E., & Khaw, B. A. (1996). Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta, 1279(1), 75–83.

    PubMed  Google Scholar 

  • Torchilin, V. P., Rammohan, R., Weissig, V., & Levchenko, T. S. (2001). TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA, 98(15), 8786–8791.

    Google Scholar 

  • Torchilin, V. P., Trubetskoy, V. S., Milshteyn, A. M., Canillo, J., Wolf, G. L., Papisov, M. I., et al. (1994). Targeted delivery of diagnostic agents by surface-modified liposomes. J. Controlled Release, 28, 45–58.

    CAS  Google Scholar 

  • Torchilin, V. P., & Weissig, V. (2000). Polymeric micelles for delivery of poorly soluble drugs. In K. Park & R. J. Mrsny (Eds.), Controlled drug delivery : designing technologies for the future (pp. 297–313). Washington, D.C: American Chemical Society.

    Google Scholar 

  • Torchilin, V. P., Zhou, F., & Huang, L. (1993). pH-Sensitive liposomes. J Liposome Res, 3, 201–255.

    CAS  Google Scholar 

  • Tseng, Y. L., Liu, J. J., & Hong, R. L. (2002). Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol, 62(4), 864–872.

    CAS  PubMed  Google Scholar 

  • Umezawa, F., Eto, Y., Tokoro, T., Ito, F., & Maekawa, K. (1985). Enzyme replacement with liposomes containing beta-galactosidase from Charonia lumpas in murine globoid cell leukodystrophy (twitcher). Biochem Biophys Res Commun, 127(2), 663–667.

    CAS  PubMed  Google Scholar 

  • Verlander, J. W., Madsen, K. M., Larsson, L., Cannon, J. K., & Tisher, C. C. (1989). Immunocytochemical localization of intracellular acidic compartments: rat proximal nephron. Am J Physiol, 257(3 Pt 2), F454–F462.

    CAS  PubMed  Google Scholar 

  • Vives, E., Brodin, P., & Lebleu, B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 272(25), 16010–16017.

    CAS  PubMed  Google Scholar 

  • Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 10(3), 310–315.

    CAS  PubMed  Google Scholar 

  • Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283(5407), 1482–1488.

    CAS  PubMed  Google Scholar 

  • Wang, J., Mongayt, D., & Torchilin, V. P. (2005). Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target, 13(1), 73–80.

    CAS  PubMed  Google Scholar 

  • Weissig, V., Lasch, J., Erdos, G., Meyer, H. W., Rowe, T. C., & Hughes, J. (1998). DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res, 15(2), 334–337.

    CAS  PubMed  Google Scholar 

  • Weissig, V., & Torchilin, V. P. (2000). Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol, 1(4), 325–346.

    CAS  PubMed  Google Scholar 

  • Weissig, V., & Torchilin, V. P. (2001). Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev, 49(1–2), 127–149.

    CAS  PubMed  Google Scholar 

  • Wu, G. Y., & Wu, C. H. (1987). Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 262(10), 4429–4432.

    CAS  PubMed  Google Scholar 

  • Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem, 13(2), 264–268.

    CAS  PubMed  Google Scholar 

  • Xu, Y., & Szoka, F. C., Jr. (1996). Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 35(18), 5616–5623.

    CAS  PubMed  Google Scholar 

  • Yessine, M. A., & Leroux, J. C. (2004). Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev, 56(7), 999–1021.

    CAS  PubMed  Google Scholar 

  • Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., et al. (1995). Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 55(17), 3752–3756.

    CAS  PubMed  Google Scholar 

  • Zalipsky, S., Qazen, M., Walker, J. A., 2nd, Mullah, N., Quinn, Y. P., & Huang, S. K. (1999). New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem, 10(5), 703–707.

    CAS  PubMed  Google Scholar 

  • Zhang, J. X., Zalipsky, S., Mullah, N., Pechar, M., & Allen, T. M. (2004). Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res, 49(2), 185–198.

    CAS  PubMed  Google Scholar 

  • Zhao, M., Kircher, M. F., Josephson, L., & Weissleder, R. (2002). Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem, 13(4), 840–844.

    CAS  PubMed  Google Scholar 

  • Zorko, M., & Langel, U. (2005). Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev, 57(4), 529–545.

    CAS  PubMed  Google Scholar 

  • Zuhorn, I. S., & Hoekstra, D. (2002). On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: is that the question? J Membr Biol, 189(3), 167–179.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Torchilin, V.P. (2009). Nanotechnology for Intracellular Delivery and Targeting. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_11

Download citation

Publish with us

Policies and ethics