Nanotechnology for Intracellular Delivery and Targeting

  • Vladimir P. Torchilin
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)

Intracellular Drug Delivery and Pharmaceutical Nanocarriers

Intracellular transport of biologically active molecules with therapeutic properties is one of the key problems in drug delivery in general. Many pharmaceutical agents need to be delivered intracellularly to exert their therapeutic action inside cytoplasm or onto the nucleus or other individual organelles, such as lysosomes, mitochondria, or endoplasmic reticulum. Among such agents we can find preparations for gene and antisense therapy, which have to reach cell nuclei; pro-apoptotic drugs, which target mitochondria; lysosomal enzymes, which have to reach lysosomal compartment; and some others (see Figure 11.1). Namely intracellular drug delivery can overcome certain important limitations for drug action, such as multidrug resistance in cancer chemotherapy. However, the very nature of cell membranes prevents proteins, peptides, and nanoparticulate drug carriers from entering cells unless there is an active transport...


Polymeric Micelle Cationic Lipid Intracellular Delivery Endosomal Membrane Endosomal Escape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aalto-Setala, K., & Vuorio, E. (1997). Gene Therapy of single-gene disorders: preface to the special section. Ann Med, 29, 549–551.PubMedGoogle Scholar
  2. Allen, T. M., Newman, M. S., Woodle, M. C., Mayhew, E., & Uster, P. S. (1995). Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer, 62(2), 199–204.PubMedGoogle Scholar
  3. Arnheiter, H., & Haller, O. (1988). Antiviral sTATe against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. Embo J, 7(5), 1315–1320.PubMedGoogle Scholar
  4. Asin-Cayuela, J., Manas, A. R., James, A. M., Smith, R. A., & Murphy, M. P. (2004). Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett, 571(1–3), 9–16.PubMedGoogle Scholar
  5. Asokan, A., & Cho, M. J. (2002). Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci, 91(4), 903–913.PubMedGoogle Scholar
  6. Asokan, A., & Cho, M. J. (2003). Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim Biophys Acta, 1611(1–2), 151–160.PubMedGoogle Scholar
  7. Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., & Kataoka, K. (2005). Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem, 16(1), 122–130.PubMedGoogle Scholar
  8. Bathori, G., Cervenak, L., & Karadi, I. (2004). Caveolae – an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst, 21(2), 67–95.PubMedGoogle Scholar
  9. Becker, M. L., Bailey, L. O., & Wooley, K. L. (2004). Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation. Bioconjug Chem, 15(4), 710–717.PubMedGoogle Scholar
  10. Becker, M. L., Remsen, E. E., Pan, D., & Wooley, K. L. (2004). Peptide-derivatized shell-cross-linked nanoparticles. 1. Synthesis and characterization. Bioconjug Chem, 15(4), 699–709.PubMedGoogle Scholar
  11. Belchetz, P. E., Crawley, J. C., Braidman, I. P., & Gregoriadis, G. (1977). Treatment of Gaucher's disease with liposome-entrapped glucocerebroside: beta-glucosidase. Lancet, 2(8029), 116–117.PubMedGoogle Scholar
  12. Boddapati, S. V., Tongcharoensirikul, P., Hanson, R. N., D'Souza, G. G., Torchilin, V. P., & Weissig, V. (2005). Mitochondriotropic liposomes. J Liposome Res, 15(1–2), 49–58.PubMedGoogle Scholar
  13. Boomer, J. A., & Thompson, D. H. (1999). Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem Phys Lipids, 99(2), 145–153.PubMedGoogle Scholar
  14. Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 92(16), 7297–7301.Google Scholar
  15. Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R., & Dekaban, A. S. (1974). Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher's disease. N Engl J Med, 291(19), 989–993.PubMedGoogle Scholar
  16. Brady, R. O., Tallman, J. F., Johnson, W. G., Gal, A. E., Leahy, W. R., Quirk, J. M., et al. (1973). Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry's disease. N Engl J Med, 289(1), 9–14.PubMedGoogle Scholar
  17. Branden, L. J., Mohamed, A. J., & Smith, C. I. (1999). A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol, 17(8), 784–787.PubMedGoogle Scholar
  18. Burns, R. J., & Murphy, M. P. (1997). Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch Biochem Biophys, 339, 33–39.PubMedGoogle Scholar
  19. Burns, R. J., Smith, R. A. J., & Murphy, M. P. (1995). Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys, 322, 60–68.PubMedGoogle Scholar
  20. Chakrabarti, R., Wylie, D. E., & Schuster, S. M. (1989). Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem, 264(26), 15494–15500.PubMedGoogle Scholar
  21. Chen, G., & Hoffman, A. S. (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 373(6509), 49–52.PubMedGoogle Scholar
  22. Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernal, S. D., & Lampidis, T. J. (1982a). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol, 46 Pt 1, 141–155.Google Scholar
  23. Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernal, S. D., & Lampidis, T. J. (1982b). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol, 46, 141–155.Google Scholar
  24. Colley, C. M., & Ryman, B. E. (1976). The use of a liposomally entrapped enzyme in the treatment of an artificial storage condition. Biochim Biophys Acta, 451(2), 417–425.PubMedGoogle Scholar
  25. Costantini, P., Jacotot, E., Decaudin, D., & Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst, 92(13), 1042–1053.PubMedGoogle Scholar
  26. Costin, G. E., Trif, M., Nichita, N., Dwek, R. A., & Petrescu, S. M. (2002). pH-sensitive liposomes are efficient carriers for endoplasmic reticulum-targeted drugs in mouse melanoma cells. Biochem Biophys Res Commun, 293(3), 918–923.PubMedGoogle Scholar
  27. Coulter, C. V., Smith, R. A. J., & Murphy, M. P. (2001). Synthesis, characterization, and biological properties of a fullerene triphenylphosphonium salt. Fullerene Science and Technology, 9, 339–350.Google Scholar
  28. Csermely, P., Schnaider, T., & Szanto, I. (1995). Signaling and transport through the nuclear membrane. Biochim Biophys Acta, 1241, 425–452.PubMedGoogle Scholar
  29. D'Souza, G. G., Rammohan, R., Cheng, S. M., Torchilin, V. P., & Weissig, V. (2003). DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release, 92(1–2), 189–197.PubMedGoogle Scholar
  30. Das, P. K., Murray, G. J., Zirzow, G. C., Brady, R. O., & Barranger, J. A. (1985). Lectin-specific targeting of beta-glucocerebrosidase to different liver cells via glycosylated liposomes. Biochem Med, 33(1), 124–131.PubMedGoogle Scholar
  31. Daugelavicius, R., Cvirkaite, V., Gaidelyte, A., Bakiene, E., Gabrenaite-Verkhovskaya, R., & Bamford, D. H. (2005). Penetration of enveloped double-stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol, 79(8), 5017–5026.PubMedGoogle Scholar
  32. de la Fuente, J. M., & Berry, C. C. (2005). Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem, 16(5), 1176–1180.PubMedGoogle Scholar
  33. Del Gaizo, V., MacKenzie, J. A., & Payne, R. M. (2003). Targeting proteins to mitochondria using TAT. Mol Genet Metab, 80(1–2), 170–180.PubMedGoogle Scholar
  34. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem, 271(30), 18188–18193.PubMedGoogle Scholar
  35. Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 269(14), 10444–10450.PubMedGoogle Scholar
  36. Desnick, R. J., Thorpe, S. R., & Fiddler, M. B. (1976). Toward enzyme therapy for lysosomal storage diseases. Physiol Rev, 56(1), 57–99.PubMedGoogle Scholar
  37. Dodd, C. H., Hsu, H. C., Chu, W. J., Yang, P., Zhang, H. G., Mountz, J. D., Jr., et al. (2001). Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods, 256(1–2), 89–105.PubMedGoogle Scholar
  38. Egleton, R. D., & Davis, T. P. (1997). Bioavailability and transport of peptides and peptide drugs into the brain. Peptides, 18(9), 1431–1439.PubMedGoogle Scholar
  39. Elliott, G., & O'Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88(2), 223–233.PubMedGoogle Scholar
  40. Elmquist, A., Lindgren, M., Bartfai, T., & Langel, U. (2001). VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res, 269(2), 237–244.PubMedGoogle Scholar
  41. Elouahabi, A., & Ruysschaert, J. M. (2005). Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Therv, 11(3), 336–347.Google Scholar
  42. Espinola, L. G., Wider, E. A., Stella, A. M., & Batlle, A. M. D. C. (1983). Enzyme replacement therapy in porphyrias—II: Entrapment of δ-aminolaevulinate dehydratase in liposomes. Int J Biochem, 15(3), 439–445.Google Scholar
  43. Farhood, H., Serbina, N., & Huang, L. (1995). The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta, 1235(2), 289–295.PubMedGoogle Scholar
  44. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., et al. (1994). TAT-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA, 91(2), 664–668.Google Scholar
  45. Felgner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., et al. (1994). Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem, 269(4), 2550–2561.PubMedGoogle Scholar
  46. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA, 84(21), 7413–7417.Google Scholar
  47. Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., & Beltram, F. (2003). Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther, 8(2), 284–294.PubMedGoogle Scholar
  48. Filion, M. C., & Phillips, N. C. (1997). Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta, 1329(2), 345–356.PubMedGoogle Scholar
  49. Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., et al. (2003). Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem, 278(36), 34141–34149.PubMedGoogle Scholar
  50. Fonseca, M. J., Jagtenberg, J. C., Haisma, H. J., & Storm, G. (2003). Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm Res, 20(3), 423–428.PubMedGoogle Scholar
  51. Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189–1193.PubMedGoogle Scholar
  52. Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 276(8), 5836–5840.PubMedGoogle Scholar
  53. Gaspar, M. M., Perez-Soler, R., & Cruz, M. E. (1996). Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother Pharmacol, 38(4), 373–377.PubMedGoogle Scholar
  54. Geisert, E. E., Jr., Del Mar, N. A., Owens, J. L., & Holmberg, E. G. (1995). Transfecting neurons and glia in the rat using pH-sensitive immunoliposomes. Neurosci Lettv, 184(1), 40–43.Google Scholar
  55. Grabowsky, G. A., & Desnick, R. J. (1981). Enzyme replacement in genetic diseases. In J. S. Holcenberg & J. Roberts (Eds.), Enzymes as drugs (pp. 167). New York: Wiley.Google Scholar
  56. Green, M., & Loewenstein, P. M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55(6), 1179–1188.PubMedGoogle Scholar
  57. Gregoriadis, G. (1978). Liposomes in the therapy of lysosomal storage diseases. Nature, 275(5682), 695–696.PubMedGoogle Scholar
  58. Gregoriadis, G., & Dean, M. F. (1979). Enzyme therapy in genetic diseases. Nature, 278(5705), 603–604.PubMedGoogle Scholar
  59. Gregoriadis, G., Putman, D., Louis, L., & Neerunjun, D. (1974). Comparative effect and fate of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem J, 140(2), 323–330.PubMedGoogle Scholar
  60. Gregoriadis, G., & Ryman, B. E. (1972). Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J, 129(1), 123–133.PubMedGoogle Scholar
  61. Guo, X., & Szoka, F. C., Jr. (2001). Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate Chem, 12(2), 291–300.Google Scholar
  62. Gupta, B., Levchenko, T. S., & Torchilin, V. P. (2005). Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57(4), 637–651.PubMedGoogle Scholar
  63. Hafez, I. M., Maurer, N., & Cullis, P. R. (2001). On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther, 8(15), 1188–1196.PubMedGoogle Scholar
  64. Harding, A. E. (1991). Neurological disease and mitochondrial genes. Trends Neurosci, 14(4), 132–138.PubMedGoogle Scholar
  65. Heeremans, J. L., Prevost, R., Bekkers, M. E., Los, P., Emeis, J. J., Kluft, C., et al. (1995). Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost, 73(3), 488–494.PubMedGoogle Scholar
  66. Helms, J. B., & Zurzolo, C. (2004). Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic, 5(4), 247–254.PubMedGoogle Scholar
  67. Hirota, Y., Masuyama, N., Kuronita, T., Fujita, H., Himeno, M., & Tanaka, Y. (2004). Analysis of post-lysosomal compartments. Biochem Biophys Res Commun, 314(2), 306–312.PubMedGoogle Scholar
  68. Hoekstra, D., de Boer, T., Klappe, K., & Wilschut, J. (1984). Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry, 23(24), 5675–5681.PubMedGoogle Scholar
  69. Hoekstra, D., & Klappe, K. (1986). Use of a fluorescence assay to monitor the kinetics of fusion between erythrocyte ghosts, as induced by Sendai virus. Biosci Rep, 6(11), 953–960.PubMedGoogle Scholar
  70. Holt, I. J., Harding, A. E., & Morgan-Hughes, J. A. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331(6158), 717–719.PubMedGoogle Scholar
  71. Horobin, R. W. (2002). Xanthenes. In R. W. Horobin, Kiernan, J.A. (Ed.), Conn's Biological Stains, 10th Edition (pp. 237). Oxford, UK: BIOS Scientific Publishers.Google Scholar
  72. Horobin, R. W., & Kiernan, J.A. (eds). (2002). Conn's Biological Stains (10th ed.). Oxford, UK: BIOS Scientific Publishers.Google Scholar
  73. Huth, U., Wieschollek, A., Garini, Y., Schubert, R., & Peschka-Suss, R. (2004). Fourier transformed spectral bio-imaging for studying the intracellular fate of liposomes. Cytometry A, 57(1), 10–21.PubMedGoogle Scholar
  74. Inoue, M., Yoshida, H., & Akisaka, T. (1999). Visualization of acidic compartments in cultured osteoclasts by use of an acidotrophic amine as a marker for low pH. Cell Tissue Res, 298(3), 527–537.PubMedGoogle Scholar
  75. James, A. M., Blaikie, F. H., Smith, R. A., Lightowlers, R. N., Smith, P. M., & Murphy, M. P. (2003). Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiaze pin-5-on-8-oxy)butyl]-triphenylphosphonium iodide. Eur J Biochem, 270(13), 2827–2836.PubMedGoogle Scholar
  76. Jeang, K. T., Xiao, H., & Rich, E. A. (1999). Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem, 274(41), 28837–28840.PubMedGoogle Scholar
  77. Jeong, J. H., Kim, S. W., & Park, T. G. (2003). Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem, 14(2), 473–479.PubMedGoogle Scholar
  78. Johnson, W. G., Desnick, R. J., Long, D. M., Sharp, H. L., Krivit, W., Brady, B., et al. (1973). Intravenous injection of purified hexosaminidase A into a patient with Tay-Sachs disease. Birth Defects Orig Artic Ser, 9(2), 120–124.PubMedGoogle Scholar
  79. Joliot, A., Pernelle, C., Deagostini-Bazin, H., & Prochiantz, A. (1991). Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 88(5), 1864–1868.Google Scholar
  80. Josephson, L., Tung, C. H., Moore, A., & Weissleder, R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem, 10(2), 186–191.PubMedGoogle Scholar
  81. Kamata, H., Yagisawa, H., Takahashi, S., & Hirata, H. (1994). Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection. Nucleic Acids Res, 22(3), 536–537.PubMedGoogle Scholar
  82. Kaufman, C. L., Williams, M., Ryle, L. M., Smith, T. L., Tanner, M., & Ho, C. (2003). Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation, 76(7), 1043–1046.PubMedGoogle Scholar
  83. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., et al. (2001). Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem, 276(7), 4588–4596.PubMedGoogle Scholar
  84. Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., et al. (2002). Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann NY Acad Sci, 959, 263–274.PubMedGoogle Scholar
  85. Khaw, B. A., daSilva, J., Vural, I., Narula, J., & Torchilin, V. P. (2001). Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release, 75(1–2), 199–210.PubMedGoogle Scholar
  86. Khaw, B. A., Fallon, J. T., Beller, G. A., & Haber, E. (1979). Specificity of localization of myosin-specific antibody fragments in experimental myocardial infarction. Histologic, histochemical, autoradiographic and scintigraphic studies. Circulation, 60(7), 1527–1531.PubMedGoogle Scholar
  87. Khaw, B. A., Scott, J., Fallon, J. T., Cahill, S. L., Haber, E., & Homcy, C. (1982). Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres. Science, 217(4564), 1050–1053.PubMedGoogle Scholar
  88. Khaw, B. A., Torchilin, V. P., Vural, I., & Narula, J. (1995). Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat Med, 1(11), 1195–1198.PubMedGoogle Scholar
  89. Khaw, B. A., Vural, I., DaSilva, J., & Torchilin, V. P. (2000). Use of cytoskeleton-specific immunoliposomes for preservation of cell viability and gene delivery. S.T.P, Pharma Sci, 10, 279–283.Google Scholar
  90. Kisel, M. A., Kulik, L. N., Tsybovsky, I. S., Vlasov, A. P., Vorob'yov, M. S., Kholodova, E. A., et al. (2001). Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. Int J Pharm, 216(1–2), 105–114.PubMedGoogle Scholar
  91. Koch, A. M., Reynolds, F., Merkle, H. P., Weissleder, R., & Josephson, L. (2005). Transport of surface-modified nanoparticles through cell monolayers. Chembiochem, 6(2), 337–345.PubMedGoogle Scholar
  92. Koltover, I., Salditt, T., Radler, J. O., & Safinya, C. R. (1998). An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 281(5373), 78–81.PubMedGoogle Scholar
  93. Kratz, F., Beyer, U., & Schutte, M. T. (1999). Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug Carrier Syst, 16(3), 245–288.PubMedGoogle Scholar
  94. Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., et al. (2003). Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release, 89(1), 113–125.PubMedGoogle Scholar
  95. Kuwana, T., Mullock, B. M., & Luzio, J. P. (1995). Identification of a lysosomal protein causing lipid transfer, using a fluorescence assay designed to monitor membrane fusion between rat liver endosomes and lysosomes. Biochem J, 308 (Pt 3), 937–946.PubMedGoogle Scholar
  96. Kwon, G. S., & Kataoka, K. (1995). Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev, 16, 295–309.Google Scholar
  97. Labat-Moleur, F., Steffan, A. M., Brisson, C., Perron, H., Feugeas, O., Furstenberger, P., et al. (1996). An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther, 3(11), 1010–1017.PubMedGoogle Scholar
  98. Lackey, C. A., Press, O. W., Hoffman, A. S., & Stayton, P. S. (2002). A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug Chem, 13(5), 996–1001.PubMedGoogle Scholar
  99. Larsson, L., Clapp, W. L., 3rd, Park, C. H., Cannon, J. K., & Tisher, C. C. (1987). Ultrastructural localization of acidic compartments in cells of isolated rabbit PCT. Am J Physiol, 253(1 Pt 2), F95–F103.PubMedGoogle Scholar
  100. Lasch, J., Meye, A., Taubert, H., Koelsch, R., Mansa-ard, J., & Weissig, V. (1999). Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem, 380(6), 647–652.PubMedGoogle Scholar
  101. Lasic, D. D. (1993). Liposomes : from physics to applications. Amsterdam ; New York: Elsevier.Google Scholar
  102. Lasic, D. D., & Martin, F. J. (1995). Stealth liposomes. Boca Raton: CRC Press.Google Scholar
  103. Lee, E. S., Na, K., & Bae, Y. H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release, 91(1–2), 103–113.PubMedGoogle Scholar
  104. Lee, E. S., Shin, H. J., Na, K., & Bae, Y. H. (2003). Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release, 90(3), 363–374.PubMedGoogle Scholar
  105. Leroux, J., Roux, E., Le Garrec, D., Hong, K., & Drummond, D. C. (2001). N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release, 72(1–3), 71–84.PubMedGoogle Scholar
  106. Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., et al. (2000). TAT peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 18(4), 410–414.PubMedGoogle Scholar
  107. Lin, T. K., Hughes, G., Muratovska, A., Blaikie, F. H., Brookes, P. S., Darley-Usmar, V., et al. (2002). Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem, 277(19), 17048–17056.PubMedGoogle Scholar
  108. Lindgren, M., Hallbrink, M., Prochiantz, A., & Langel, U. (2000). Cell-penetrating peptides. Trends Pharmacol Sci, 21(3), 99–103.PubMedGoogle Scholar
  109. Lisziewicz, J., Sun, D., Lisziewicz, A., & Gallo, R. C. (1995). Antitat gene therapy: a candidate for late-stage AIDS patients. Gene Ther, 2(3), 218–222.PubMedGoogle Scholar
  110. Liu, J., Zhang, Q., Remsen, E. E., & Wooley, K. L. (2001). Nanostructured materials designed for cell binding and transduction. Biomacromolecules, 2(2), 362–368.PubMedGoogle Scholar
  111. Lloyd, J. B. (2000). Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev, 41(2), 189–200.PubMedGoogle Scholar
  112. Lo, Y. L., Tsai, J. C., & Kuo, J. H. (2004). Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release, 94(2–3), 259–272.PubMedGoogle Scholar
  113. Lukyanov, A. N., Hartner, W. C., & Torchilin, V. P. (2004). Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release, 94(1), 187–193.PubMedGoogle Scholar
  114. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Releasev, 65(1–2), 271–284.Google Scholar
  115. Marty, C., Meylan, C., Schott, H., Ballmer-Hofer, K., & Schwendener, R. A. (2004). Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell Mol Life Sci, 61(14), 1785–1794.PubMedGoogle Scholar
  116. Mastrobattista, E., Koning, G. A., van Bloois, L., Filipe, A. C., Jiskoot, W., & Storm, G. (2002). Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem, 277(30), 27135–27143.PubMedGoogle Scholar
  117. Midoux, P., Kichler, A., Boutin, V., Maurizot, J. C., & Monsigny, M. (1998). Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug Chem, 9(2), 260–267.PubMedGoogle Scholar
  118. Minier, C., & Moore, M. N. (1996). Rhodamine B accumulation and MXR protein expression in mussel blood cells: effects of exposure to vincristine. Marine Ecology – Progress Series, 142, 165–173.Google Scholar
  119. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res, 25(14), 2730–2736.PubMedGoogle Scholar
  120. Moyer, B. D., & Balch, W. E. (2001). A new frontier in pharmacology: the endoplasmic reticulum as a regulated export pathway in health and disease. Expert Opin Ther Targets, 5(2), 165–176.PubMedGoogle Scholar
  121. Murphy, M. P. (1989). Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta, 977(2), 123–141.PubMedGoogle Scholar
  122. Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., et al. (1998). Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta, 1414(1–2), 127–139.PubMedGoogle Scholar
  123. Ogris, M., Steinlein, P., Carotta, S., Brunner, S., & Wagner, E. (2001). DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci, 3(3), E21.PubMedGoogle Scholar
  124. Ohashi, M., Miwako, I., Nakamura, K., Yamamoto, A., Murata, M., Ohnishi, S., et al. (1999). An arrested late endosome-lysosome intermediate aggregate observed in a Chinese hamster ovary cell mutant isolated by novel three-step screening. J Cell Sci, 112(Pt 8), 1125–1138.PubMedGoogle Scholar
  125. Ohashi, M., Murata, M., & Ohnishi, S. (1992). A novel fluorescence method to monitor the lysosomal disintegration of low density lipoprotein. Eur J Cell Biol, 59(1), 116–126.PubMedGoogle Scholar
  126. Park, J. W., Kirpotin, D. B., Hong, K., Shalaby, R., Shao, Y., Nielsen, U. B., et al. (2001). Tumor targeting using anti-her2 immunoliposomes. J Control Release, 74(1–3), 95–113.PubMedGoogle Scholar
  127. Patel, H. M., & Ryman, B. E. (1974). α-Mannosidase in zinc-deficient rats. Possibility of liposomal therapy in mannosidosis. Biochem Soc Transv, 2, 1014–1017.Google Scholar
  128. Pollard, H., Remy, J. S., Loussouarn, G., Demolombe, S., Behr, J. P., & Escande, D. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem, 273(13), 7507–7511.PubMedGoogle Scholar
  129. Pollard, H., Toumaniantz, G., Amos, J. L., Avet-Loiseau, H., Guihard, G., Behr, J. P., et al. (2001). Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med, 3(2), 153–164.PubMedGoogle Scholar
  130. Pooga, M., Hallbrink, M., Zorko, M., & Langel, U. (1998). Cell penetration by transportan. Faseb J, 12(1), 67–77.PubMedGoogle Scholar
  131. Pozzi, D., Lisi, A., De Ros, I., Ferroni, L., Giuliani, A., Ravagnan, G., et al. (1993). Use of octadecylrhodamine fluorescence dequenching to study vesicular stomatitis virus fusion with human aged red blood cells. Photochem Photobiol, 57(3), 426–430.PubMedGoogle Scholar
  132. Preston, T. J., Abadi, A., Wilson, L., & Singh, G. (2001). Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev, 49(1–2), 45–61.PubMedGoogle Scholar
  133. Ragin, A. D., Morgan, R.A., & Chmielewski, J. (2002). Cellular import mediated by nuclear localization signal Peptide sequences. Chem Biol, 9(8), 943–948.PubMedGoogle Scholar
  134. Reynolds, G. C., Baker, H. J., & Reynolds, R. H. (1978). Enzyme replacement using liposome carriers in feline Gm1 gangliosidosis fibroblasts. Nature, 275(5682), 754–755.PubMedGoogle Scholar
  135. Rideout, D., Bustamante, A., & Patel, J. (1994). Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int J Cancer, 57(2), 247–253.PubMedGoogle Scholar
  136. Rojas, M., Donahue, J. P., Tan, Z., & Lin, Y. Z. (1998). Genetic engineering of proteins with cell membrane permeability. Nat Biotechnol, 16(4), 370–375.PubMedGoogle Scholar
  137. Ross, M. F., Filipovska, A., Smith, R. A., Gait, M. J., & Murphy, M. P. (2004). Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochem J, 383(pt 3), 457–458.Google Scholar
  138. Roth, J. A., Swisher, S. G., Merritt, J. A., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1998). Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin Oncol, 25(3 Suppl 8), 33–37.PubMedGoogle Scholar
  139. Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A., & Wender, P. A. (2004). Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc, 126(31), 9506–9507.PubMedGoogle Scholar
  140. Rothbard, J. B., Jessop, T. C., & Wender, P. A. (2005). Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev, 57(4), 495–504.PubMedGoogle Scholar
  141. Roux, E., Francis, M., Winnik, F. M., & Leroux, J. C. (2002). Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs. Int J Pharm, 242(1–2), 25–36.PubMedGoogle Scholar
  142. Roux, E., Passirani, C., Scheffold, S., Benoit, J. P., & Leroux, J. C. (2004). Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release, 94(2–3), 447–451.PubMedGoogle Scholar
  143. Roux, E., Stomp, R., Giasson, S., Pezolet, M., Moreau, P., & Leroux, J. C. (2002). Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J Pharm Sci, 91(8), 1795–1802.PubMedGoogle Scholar
  144. Rubas, W., Supersaxo, A., Weder, H. G., Hartmann, H. R., Hengartner, H., Schott, H., et al. (1986). Treatment of murine L1210 lymphoid leukemia and melanoma B16 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int J Cancer, 37(1), 149–154.PubMedGoogle Scholar
  145. Rudolph, C., Schillinger, U., Ortiz, A., Tabatt, K., Plank, C., Muller, R. H., et al. (2004). Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res, 21(9), 1662–1669.PubMedGoogle Scholar
  146. Sakurai, F., Inoue, R., Nishino, Y., Okuda, A., Matsumoto, O., Taga, T., et al. (2000). Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Control Release, 66(2–3), 255–269.PubMedGoogle Scholar
  147. Salem, A. K., Searson, P. C., & Leong, K. W. (2003). Multifunctional nanorods for gene delivery. Nat Mater, 2(10), 668–671.PubMedGoogle Scholar
  148. Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., et al. (2006). “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem, 17(4), 943–949.PubMedGoogle Scholar
  149. Scheule, R. K., St George, J. A., Bagley, R. G., Marshall, J., Kaplan, J. M., Akita, G. Y., et al. (1997). Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther, 8(6), 689–707.PubMedGoogle Scholar
  150. Schwarze, S. R., & Dowdy, S. F. (2000). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 21(2), 45–48.PubMedGoogle Scholar
  151. Schwarze, S. R., Hruska, K. A., & Dowdy, S. F. (2000). Protein transduction: unrestricted delivery into all cells? Trends Cell Biol, 10(7), 290–295.PubMedGoogle Scholar
  152. Senior, J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst, 3(2), 123–193.PubMedGoogle Scholar
  153. Shalaev, E. Y., & Steponkus, P. L. (1999). Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Biochim Biophys Acta, 1419(2), 229–247.PubMedGoogle Scholar
  154. Sheff, D. (2004). Endosomes as a route for drug delivery in the real world. Adv Drug Deliv Rev, 56(7), 927–930.PubMedGoogle Scholar
  155. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N., & de Lima, M. C. (2004). On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev, 56(7), 947–965.PubMedGoogle Scholar
  156. Smith, R. A., Porteous, C. M., Coulter, C. V., & Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. Eur J Biochem, 263(3), 709–716.PubMedGoogle Scholar
  157. Smith, R. A., Porteous, C. M., Gane, A. M., & Murphy, M. P. (2003). Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA, 100(9), 5407–5412.Google Scholar
  158. Sperl, W. (1997). [Diagnosis and therapy of mitochondriopathies]. Wien Klin Wochenschr, 109(3), 93–99.PubMedGoogle Scholar
  159. Stanimirovic, D. B., Markovic, M., Micic, D. V., Spatz, M., & Mrsulja, B. B. (1994). Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion ‘oxidative stress’ in gerbil brain. Neurochem Res, 19(12), 1473–1478.PubMedGoogle Scholar
  160. Steger, L. D., & Desnick, R. J. (1977). Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim Biophys Acta, 464(3), 530–546.PubMedGoogle Scholar
  161. Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med, 11(6), 678–682.PubMedGoogle Scholar
  162. Sudimack, J. J., Guo, W., Tjarks, W., & Lee, R. J. (2002). A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, 1564(1), 31–37.PubMedGoogle Scholar
  163. Tager, J. M., Daems, W. T., & Hooghwinkel, G. J. M. (1974). Enzyme therapy in lysosomal storage diseases. Proceedings of the Workshop on Cell Biological and Enzymological Aspects of the Therapy of Lysosomal Storage Diseases, Leiden, The Netherlands, April 2–3, 1974 and Papers presented at a Boerhaave Advanced Course on Lysosomal Enzymopathies, Leiden, The Netherlands, April 4–5, 1974. Amsterdam: North-Holland Pub. Co., New York American Elsevier Pub. CO.Google Scholar
  164. Tang, F., & Hughes, J. A. (1999). Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro. Bioconjug Chem, 10(5), 791–796.PubMedGoogle Scholar
  165. Tkachenko, A. G., Xie, H., Liu, Y., Coleman, D., Ryan, J., Glomm, W. R., et al. (2004). Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 15(3), 482–490.PubMedGoogle Scholar
  166. Torchilin, V. P. (1985). Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst, 2(1), 65–115.PubMedGoogle Scholar
  167. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 4(2), 145–160.PubMedGoogle Scholar
  168. Torchilin, V. P. (Ed.). (1991). Immobilized enzymes in medicine. Berlin, New York: Springer-Verlag.Google Scholar
  169. Torchilin, V. P., Khaw, B. A., & Weissig, V. (2002). Intracellular targets for DNA delivery: nuclei and mitochondria. Somat Cell Mol Genet, 27(1–6), 49–64.PubMedGoogle Scholar
  170. Torchilin, V. P., Levchenko, T. S., Lukyanov, A. N., Khaw, B. A., Klibanov, A. L., Rammohan, R., et al. (2001). p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta, 1511(2), 397–411.PubMedGoogle Scholar
  171. Torchilin, V. P., Levchenko, T. S., Rammohan, R., Volodina, N., Papahadjopoulos-Sternberg, B., & D'Souza, G. G. (2003). Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A, 100(4), 1972–1977.Google Scholar
  172. Torchilin, V. P., Narula, J., Halpern, E., & Khaw, B. A. (1996). Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta, 1279(1), 75–83.PubMedGoogle Scholar
  173. Torchilin, V. P., Rammohan, R., Weissig, V., & Levchenko, T. S. (2001). TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA, 98(15), 8786–8791.Google Scholar
  174. Torchilin, V. P., Trubetskoy, V. S., Milshteyn, A. M., Canillo, J., Wolf, G. L., Papisov, M. I., et al. (1994). Targeted delivery of diagnostic agents by surface-modified liposomes. J. Controlled Release, 28, 45–58.Google Scholar
  175. Torchilin, V. P., & Weissig, V. (2000). Polymeric micelles for delivery of poorly soluble drugs. In K. Park & R. J. Mrsny (Eds.), Controlled drug delivery : designing technologies for the future (pp. 297–313). Washington, D.C: American Chemical Society.Google Scholar
  176. Torchilin, V. P., Zhou, F., & Huang, L. (1993). pH-Sensitive liposomes. J Liposome Res, 3, 201–255.Google Scholar
  177. Tseng, Y. L., Liu, J. J., & Hong, R. L. (2002). Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol, 62(4), 864–872.PubMedGoogle Scholar
  178. Umezawa, F., Eto, Y., Tokoro, T., Ito, F., & Maekawa, K. (1985). Enzyme replacement with liposomes containing beta-galactosidase from Charonia lumpas in murine globoid cell leukodystrophy (twitcher). Biochem Biophys Res Commun, 127(2), 663–667.PubMedGoogle Scholar
  179. Verlander, J. W., Madsen, K. M., Larsson, L., Cannon, J. K., & Tisher, C. C. (1989). Immunocytochemical localization of intracellular acidic compartments: rat proximal nephron. Am J Physiol, 257(3 Pt 2), F454–F462.PubMedGoogle Scholar
  180. Vives, E., Brodin, P., & Lebleu, B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 272(25), 16010–16017.PubMedGoogle Scholar
  181. Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 10(3), 310–315.PubMedGoogle Scholar
  182. Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283(5407), 1482–1488.PubMedGoogle Scholar
  183. Wang, J., Mongayt, D., & Torchilin, V. P. (2005). Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target, 13(1), 73–80.PubMedGoogle Scholar
  184. Weissig, V., Lasch, J., Erdos, G., Meyer, H. W., Rowe, T. C., & Hughes, J. (1998). DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res, 15(2), 334–337.PubMedGoogle Scholar
  185. Weissig, V., & Torchilin, V. P. (2000). Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol, 1(4), 325–346.PubMedGoogle Scholar
  186. Weissig, V., & Torchilin, V. P. (2001). Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev, 49(1–2), 127–149.PubMedGoogle Scholar
  187. Wu, G. Y., & Wu, C. H. (1987). Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 262(10), 4429–4432.PubMedGoogle Scholar
  188. Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem, 13(2), 264–268.PubMedGoogle Scholar
  189. Xu, Y., & Szoka, F. C., Jr. (1996). Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 35(18), 5616–5623.PubMedGoogle Scholar
  190. Yessine, M. A., & Leroux, J. C. (2004). Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev, 56(7), 999–1021.PubMedGoogle Scholar
  191. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., et al. (1995). Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 55(17), 3752–3756.PubMedGoogle Scholar
  192. Zalipsky, S., Qazen, M., Walker, J. A., 2nd, Mullah, N., Quinn, Y. P., & Huang, S. K. (1999). New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem, 10(5), 703–707.PubMedGoogle Scholar
  193. Zhang, J. X., Zalipsky, S., Mullah, N., Pechar, M., & Allen, T. M. (2004). Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res, 49(2), 185–198.PubMedGoogle Scholar
  194. Zhao, M., Kircher, M. F., Josephson, L., & Weissleder, R. (2002). Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem, 13(4), 840–844.PubMedGoogle Scholar
  195. Zorko, M., & Langel, U. (2005). Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev, 57(4), 529–545.PubMedGoogle Scholar
  196. Zuhorn, I. S., & Hoekstra, D. (2002). On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: is that the question? J Membr Biol, 189(3), 167–179.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Vladimir P. Torchilin
    • 1
  1. 1.Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBostonUSA

Personalised recommendations