Advertisement

Controlled Release and Nanotechnology

  • Tania Betancourt
  • Amber Doiron
  • Kimberly A. Homan
  • Lisa Brannon-Peppas
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)

Introduction

Nanosized controlled release systems for drug delivery are segregated into several categories including polymeric nanoparticles, liposomes, solid lipid nanoparticles, polymeric micelles, and dendrimers. This topic is extensive and as such is only briefly reviewed here. More detailed information may be found in more focused chapters of this book. With this in mind, this chapter will provide an overview of nanoparticulate systems, followed by some of the more interesting opportunities and applications of nanotechnology in controlled release: metal–organic systems, nanotubes, responsive systems, and personal care products.

The use of a drug as a therapeutic agent is often a delicate balance between therapeutic efficacy and detrimental side effects including toxicity. The control of the amount of drug delivered over time and the spatial localization of that delivery are paramount in overcoming the challenges of providing optimal therapy. This challenge drives the design of...

Keywords

Drug Release Lower Critical Solution Temperature Polymeric Micelle Personal Care Product PLGA Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abo El Ola, S. M., R. Kotek, et al. (2004). “Studies on poly(trimethylene terephthalate) filaments containing silver.” J Biomater Sci Polym Ed 15(12): 1545–59.PubMedGoogle Scholar
  2. Agnihotri, S. A., N. N. Mallikarjuna, et al. (2004). “Recent advances on chitosan-based micro- and nanoparticles in drug delivery.” J Control Release 100(1): 5–28.PubMedGoogle Scholar
  3. Balogh, L., D. R. Swanson, et al. (2001). “Dendrimer-silver complexes and nanocomposites as antimicrobial agents.” Nano Lett 1(1): 18–21.Google Scholar
  4. Beyond Skin Science (2007). Corona, CA (March 20, 2007); http://www.beyondskinscience.com
  5. Bhabak, K. P. and G. Mugesh (2007). “Synthesis, characterization, and antioxidant activity of some ebselen analogues.” Chem A Eur J 13(16): 4594–4601.Google Scholar
  6. Bhadra, D., S. Bhadra, et al. (2003). “A PEGylated dendritic nanoparticulate carrier of fluorouracil.” Int J Pharm 257: 111–124.PubMedGoogle Scholar
  7. Bhattacharya, S. and A. Bajaj (2005). “Recent advances in lipid molecular design.” Curr Opin Chem Biol 9(6): 647–655.PubMedGoogle Scholar
  8. Bontha, S., A. V. Kabanov, et al. (2006). “Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs.” J Control Release 114(2): 163–74.PubMedGoogle Scholar
  9. Borgia, S. L., Regehly, M., Sivaramakrishnan, R., Mehnert, W., Korting, H. C., Danker, K., Röder, B., Kramer, K. D. and Schäfer-Korting, M. (2005). “Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy.” J Control Release, 110: 151–163.Google Scholar
  10. Brannon-Peppas, L. (1995). “Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery.” Int J Pharm 116: 1–9.Google Scholar
  11. Brannon-Peppas, L. and J. O. Blanchette (2004). “Nanoparticle and targeted systems for cancer therapy.” Adv Drug Del Rev 56: 1649–1659.Google Scholar
  12. Brett, D. W. (2006). “A discussion of silver as an antimicrobial agent: alleviating the confusion.” Ostomy Wound Manage 52(1): 34–41.PubMedGoogle Scholar
  13. Bromberg, L. E., D. K. Buxton, et al. (2001). “Novel periodontal drug delivery system for treatment of periodontitis.” J Control Release 71(3): 251–9.PubMedGoogle Scholar
  14. Boutelet, K. and D. Candau (2006). Photoprotective/cosmetic compositions comprising sulfonic/hydrophobic amphiphilic polymers, USA, L' Oreal, Patent 7,045,120.Google Scholar
  15. Calvo, P., J. L. VilaJato, et al. (1996). “Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers.” J Pharm Sci 85(5): 530–536.PubMedGoogle Scholar
  16. Caves, J. M. and E. L. Chaikof (2006). “The evolving impact of microfabrication and nanotechnology on stent design.” J Vasc Surg 44(6): 1363–1368.PubMedGoogle Scholar
  17. Cengiz, E., Wissing, S. A., Müller, R. H. and Yazan, Y. (2006). Sunblocking efficiency of various ti)2-loaded solid lipid nanoparticle formulations. Int J Cosm Sci 28: 371–378.Google Scholar
  18. Chen, H., Chang, X., Du, D., Liu, W., Liu, J., Weng, T., Yang, Y., Xu, H. and Yang, X. (2006). Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release, 110: 296–306.PubMedGoogle Scholar
  19. D'Emanuele, A. and D. Attwood (2005). “Dendrimer-drug interactions.” Adv Drug Del Rev 57(15): 2147–2162.Google Scholar
  20. Devalapally, H., D. Shenoy, et al. (2007). “Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.” Cancer Chemo Pharmacol 59(4): 477–484.Google Scholar
  21. Duprey Cosmetics (2007). (March 10, 2007); St. Pete Beach, Fl.; http://www.dupreycosmetics.com/ nano_dulcine.html
  22. Edelman, E. R., L. Brown, et al. (1987). “In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields.” J Biomed Mater Res 21(3): 339–53.PubMedGoogle Scholar
  23. Edelman, E. R., A. Fiorino, et al. (1992). “Mechanical deformation of polymer matrix controlled release devices modulates drug release.” J Biomed Mater Res 26(12): 1619–31.PubMedGoogle Scholar
  24. Environmental Working Group (2006). Washington, DC (October 10, 2006); http://www.ewg.org/issues/cosmetics/20061010/table2.php
  25. Fonseca, C., S. Simões, et al. (2002). “Paclitaxel-loaded PLGA nanoparticles: preparation, physiochemical characterization and in vitro anti-tumoral activity.” J Control Release 83: 273–286.PubMedGoogle Scholar
  26. Fresta, M., G. Puglisi, et al. (1995). “Pefloxacine mesilate-loaded and ofloxacin-loaded polyethylcyanoacrylate nanoparticles- Characterization of the colloidal drug carrier formulations.” J Pharm Sci 84(7): 895–902.PubMedGoogle Scholar
  27. Fu, J., X. Li, et al. (2002). “Encapsulation of phthalocyanines in biodegradable poly(sebacic anhydride) nanoparticles.” Langmuir 18(10): 3843–3847.Google Scholar
  28. Gaponik, N., I. L. Radtchenko, et al. (2004). “Luminescent polymer microcapsules addressable by a magnetic field.” Langmuir 20(4): 1449–52.PubMedGoogle Scholar
  29. Georgakilas, V., K. Kordatos, et al. (2002). “Organic functionalization of carbon nanotubes.” J Am Chem Soc 124(5): 760–761.PubMedGoogle Scholar
  30. Georgakilas, V., N. Tagmatarchis, et al. (2002). “Amino acid functionalization of water soluble carbon nanotubes.” Chem Communs 24: 3050–4051.Google Scholar
  31. Guo, Z. and P. Sadler (1999). “Metals in medicine.” Angewandte Chemie-International Edition 38(11): 1513–1531.Google Scholar
  32. Guzman, L. A., V. Labhasetwar, et al. (1996). “Local intraluminal infusion of biodegradable polymeric nanoparticles – A novel approach for prolonged drug delivery after balloon angioplasty.” Circulation 94(6): 1441–1448.PubMedGoogle Scholar
  33. Handjani, R.-M. and Ribier, A. (2001). Compositions for the cosmetic and/or pharmaceutical treatment of the epidermis by topical application to the skin, and corresponding preparation process, USA, L' Oreal, Patent 6,203,802.Google Scholar
  34. Hansenne, I. and Rick, D. W. (2002). High SPF nontacky/nongreasy uv-photoprotecting compositions comprising particulates of MMA crosspolymers, USA, L' Oreal, Patent 6,432,389.Google Scholar
  35. Heller, J., J. Barr, et al. (2002). “Poly(ortho esters): synthesis, characterization, properties and uses.” Adv Drug Del Rev 54(7): 1015–1039.Google Scholar
  36. Hirsch, L. R., A. M. Gobin, et al. (2006). “Metal nanoshells.” Ann Biomed Eng 34(1): 15–22.PubMedGoogle Scholar
  37. Horcajada, P., C. Marquez-Alvarez, et al. (2006). “Controlled release of ibuprofen from dealuminated faujasites ” Solid State Sciences 8(12): 1459–1465Google Scholar
  38. Horcajada, P., C. Serre, et al. (2006). “Metal-organic frameworks as efficient materials for drug delivery.” Angew Chem Int Ed Engl 45(36): 5974–8.PubMedGoogle Scholar
  39. Hu, Y. X., J. Chang, et al. (2005). Preparation and evaluation of 5-FU/PLGA/gene nanoparticles. Asbm6: Advanced Biomaterials Vi. Zurich-Uetikon, Trans Tech Publications Ltd: 147–150.Google Scholar
  40. Huth, S., J. Lausier, et al. (2004). “Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer.” J Gene Med 6(8): 923–36.PubMedGoogle Scholar
  41. Isab, A. A. and M. I. Wazeer (2007). “Synthesis and characterization of thiolate-Ag(I) complexes by solid-state and solution NMR and their antimicrobial activity.” Spectrochim Acta A Mol Biomol Spectrosc 66(2): 364–370.Google Scholar
  42. Jain, R. A. (2000). “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.” Biomaterials 21(23): 2475–2490.PubMedGoogle Scholar
  43. Jee, J.-P., Lim, S.-J., Park, J.-S. and Kim, C.-K. (2006). “Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles.” Eur J Pharm Biopharm, 63: 134–139.PubMedGoogle Scholar
  44. Jenning, V., Gysler, A., Schäfer-Korting, M. and Gohla, S. H. (2000). “Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting in the upper skin.” Eur J Pharm Biopharm, 49: 211–218.PubMedGoogle Scholar
  45. Kam, N. W. and H. Dai (2005). “Carbon nanotubes as intracellular protein transporters: generally and biological functionality.” J Am Chem Soc 127(16): 6021–6026.PubMedGoogle Scholar
  46. Karlov, A. V., I. A. Khlusov, et al. (2002). “Adhesion of Staphylococcus aureus to implants with different physicochemical characteristics.” Bull Exp Biol Med 134(3): 277–80.PubMedGoogle Scholar
  47. Kost, J., R. Noecker, et al. (1985). “Magnetically controlled release systems: effect of polymer composition.” J Biomed Mater Res 19(8): 935–40.PubMedGoogle Scholar
  48. Kost, J., J. Wolfrum, et al. (1987). “Magnetically enhanced insulin release in diabetic rats.” J Biomed Mater Res 21(12): 1367–73.PubMedGoogle Scholar
  49. Kumar, R., S. Howdle, et al. (2005). “Polyamide/silver antimicrobials: effect of filler types on the silver ion release.” J Biomed Mater Res B Appl Biomater 75(2): 311–9.PubMedGoogle Scholar
  50. Labhasetwar, V., C. X. Song, et al. (1998). “Arterial uptake of biodegradable nanoparticles: Effect of surface modifications.” J Pharm Sci 87(10): 1229–1234.PubMedGoogle Scholar
  51. Lanza, G. M., X. Yu, et al. (2002). “Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent implications for rational therapy of restenosis.” Circulation 106(22): 2842–2847.PubMedGoogle Scholar
  52. Li, Y.-Y., X.-Z. Zhang, et al. (2006). “Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery.” Biomacromolecules 7(11): 2956–2960.PubMedGoogle Scholar
  53. Lin, A. W., N. A. Lewinski, et al. (2005). “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.” J Biomed Opt 10(6): 064035.PubMedGoogle Scholar
  54. Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H. and Yang, X. (2007). “Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery.” Int J Pharm, 328: 191–195.PubMedGoogle Scholar
  55. Liu, M. J., K. Kono, et al. (2000). “Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents.” J Control Release 65(1–2): 121–131.PubMedGoogle Scholar
  56. Lu, Z., J. Z. Bei, et al. (1999). “A method for the preparation of polymeric nanocapsules without stabilizer.” J Control Release 61(1–2): 107–112.PubMedGoogle Scholar
  57. MacLachlan, M., I. Manners, et al. (2000). “New (inter)faces: Polymers and inorganic materials ” Adv Materials 12(9): 675–681.Google Scholar
  58. Mainardes, R. M. and L. P. Silva (2004). “Drug delivery systems: Past, present, and future.” Curr Drug Targets 5(5): 449–455.PubMedGoogle Scholar
  59. Mitra, S., U. Gaur, et al. (2001). “Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier.” J Control Release 74: 317–323.PubMedGoogle Scholar
  60. Muller, R. H., K. Mader, et al. (2000). “Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art.” Eur J Pharm Biopharm 50(1): 161–177.PubMedGoogle Scholar
  61. Müller, R. H., Radtke, M. and Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Del Rev, 54: S131–S155.Google Scholar
  62. Nakayama, M., T. Okano, et al. (2006). “Molecular design of biodegradable polymeric micelles for temperature-responsive drug release.” J Control Release 115(1): 46–56.PubMedGoogle Scholar
  63. Napoli, A., M. Valentini, et al. (2005). “Oxidation-responsive polymeric vesicles.” Nature Biomaterials 3(3): 183–189.Google Scholar
  64. Niwa, T., H. Takeuchi, et al. (1993). “Preparation of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior.” J Control Release 25: 89–93.Google Scholar
  65. O'Reilly, R. K., C. J. Hawker, et al. (2006). “Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility.” Chemical Society Reviews 35(11): 1068–1083.PubMedGoogle Scholar
  66. Oh, K. T., T. K. Bronich, et al. (2006). “Block ionomer complexes as prospective nanocontainers for drug delivery.” J Control Release 115(1): 9–17.PubMedGoogle Scholar
  67. Owens III, D. and N. Peppas (2006). “Integration of thermally responsive nanosphere hydrogels with gold nanoparticles for intelligent therapeutic applications.” Trans Soc Biomater 31: 150–151.Google Scholar
  68. Panyam, J., W.-Z. Zhou, et al. (2002). “Rapid endo-lysosomal escape of poly(D,L-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.” FASEB 16(10): 1217–1226.Google Scholar
  69. Pastorin, G., W. Wu, et al. (2006). “Double functionalization of carbon nanotubes for multimodal delivery.” Chem Commun 11: 1182–1184.Google Scholar
  70. Patton, J. N. and A. F. Palmer (2005). “Engineering temperature-sensitive hydrogel nanoparticles entrapping hemoglobin as a novel type of oxygen carrier.” Biomacromolecules 6(4): 2204–2212.PubMedGoogle Scholar
  71. Plank, C., F. Scherer, et al. (2003). “Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields.” J Liposome Res 13(1): 29–32.PubMedGoogle Scholar
  72. Plank, C., U. Schillinger, et al. (2003). “The magnetofection method: using magnetic force to enhance gene delivery.” Biol Chem 384(5): 737–47.PubMedGoogle Scholar
  73. Potineni, A., D. M. Lynn, et al. (2003). “Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery.” J Control Release 86(2–3): 223–234.PubMedGoogle Scholar
  74. Radwan, M. A. (1995). “In-vitro evaluation of polyisobutylcyanoacrylate nanoparticles as a controlled drug carrier for theophylline.” Drug Dev Ind Pharm 21(20): 2371–2375.Google Scholar
  75. Rehor, A., J. A. Hubbell, et al. (2005). “Oxidation-sensitive polymeric nanoparticles.” Langmuir 21(1): 411–417.PubMedGoogle Scholar
  76. Rhim, J. W., S. I. Hong, et al. (2006). “Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity.” J Agric Food Chem 54(16): 5814–22.PubMedGoogle Scholar
  77. Roskos, K. V., B. K. Fritzinger, et al. (1995). “Development of a drug-delivery system for the treatment of periodontal-disease based on bioerodible poly(ortho esters).” Biomaterials 16(4): 313–317.PubMedGoogle Scholar
  78. Sajeesh, S. and C. P. Sharma (2005). “Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.” J Biomat Mater Res B: Appl Biomat 76B(2): 298–305.Google Scholar
  79. Sakurai, H., A. Katoh, et al. (2006). “Chemistry and biochemistry of insulin-mimetic vanadium and zinc complexes. Trial for treatment of diabetes mellitus.” Bull. Chem. Soc. Jpn. 79(11): 1645–1664Google Scholar
  80. Sambhy, V., M. M. MacBride, et al. (2006). “Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials.” J Am Chem Soc 128(30): 9798–808.PubMedGoogle Scholar
  81. Sawant, R. M., J. P. Hurley, et al. (2006). ““SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers.” Bioconjug Chem 17(4): 943–949.PubMedGoogle Scholar
  82. Schierholz, J. M., L. J. Lucas, et al. (1998). “Efficacy of silver-coated medical devices.” J Hosp Infect 40(4): 257–62.PubMedGoogle Scholar
  83. Schmaljohann, D. (2006). “Thermo- and pH-responsive polymers in drug delivery.” Adv Drug Del Rev 58(15): 1655–1670.Google Scholar
  84. Sershen, S. R., S. L. Westcott, et al. (2000). “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery.” J Biomed Mater Res 51(3): 293–8.PubMedGoogle Scholar
  85. Seymour, L. W., R. Duncan, et al. (1994). “Poly(ortho ester) matrices for controlled release of the antitumor agent 5-fluorouracil.” J Control Release 31: 201–206.Google Scholar
  86. Shenoy, D., S. Little, et al. (2005). “Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. Part 1 In vitro evaluations.” Mol Pharmacy 2(5): 357–366.Google Scholar
  87. Shenoy, D., S. Little, et al. (2005). “Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies.” Pharm Res 22(12): 2107–2114.PubMedGoogle Scholar
  88. Shikata, F., H. Tokumitsu, et al. (2002). “In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.” Eur. J. Pharm Biopharm. 53: 57–63.PubMedGoogle Scholar
  89. Simonnet, J.-T. and Richart, P. (2002). Nanocapsules based on dendritic polymers, USA, L' Oreal, Patent 6,379,683.Google Scholar
  90. Simonnet, J.-T., Richart, P. and Biatry, B. (2003). Nanocapsules based on poly(alkylene adipate), process for their preparation and cosmetic or dermatological compositions containing them, USA, L' Oreal, Patent 6,565,886.Google Scholar
  91. Singh, R., D. Pantarotto, et al. (2006). “Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers.” PNAS 103(9): 3357–3362.PubMedGoogle Scholar
  92. Smaihi, M., E. Gavilan, et al. (2004). “Colloidal functionalized calcined zeolite nanocrystals ” J Mater Chem 14(8): 1347–1351.Google Scholar
  93. Song, C. and Liu, S. (2005). “A new healthy sunscreen system for humans: Solid lipid nanoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding vitamin E.” Int J Bio Macromol, 36: 116–119.Google Scholar
  94. Soppimath, K. S. and T. M. Aminabhavi (2002). “Ethyl acetate as a dispersing solvent in the production of poly(DL-lactide-co-glycolide) microspheres: effect of process parameters and polymer type.” J Microencapsulation 19(3): 281–292.PubMedGoogle Scholar
  95. Soppimath, K. S., T. M. Aminabhavi, et al. (2001). “Biodegradable polymeric nanoparticles as drug delivery devices.” J Controlled Release 70(1–2): 1–20.Google Scholar
  96. Soppimath, K. S., D. C.-W. Tan, et al. (2005). “pH-Triggered thermally responsive polymer core-shell nanoparticles for drug delivery.” Adv Mater 17(3): 318–323.Google Scholar
  97. Steinbrink, J., H. Wabnitz, et al. (2001). “Determining changes in NIR absorption using a layered model of the human head.” Phys Med Biol 46(3): 879–896.PubMedGoogle Scholar
  98. Taha, E. I., Samy, A. M., Kassem, A. A. and Khan, M. A. (2005). Response surface methodology for the development of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Pharm Dev Tech, 10: 363–370.Google Scholar
  99. Tirelli, N. (2006). “(Bio)responsive nanoparticles.” Curr Opin Colloidal & Interface Sci 11(4): 210–216.Google Scholar
  100. Tokumitsu, H., H. Ichikawa, et al. (1999). “Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization.” Pharm Res 16(12): 1830–1835.PubMedGoogle Scholar
  101. Uhrich, K. E., S. M. Cannizzaro, et al. (1999). “Polymeric systems for controlled drug release.” Chem Rev 99(11): 3181–3198.PubMedGoogle Scholar
  102. van Zutphen, S. and J. Reedijk (2005). “Targeting platinum anti-tumour drugs: Overview of strategies employed to reduce systemic toxicity.” Coordination Chem Rev 249(24): 2845–2853.Google Scholar
  103. Vaupel, P., F. Kallinowski, et al. (1989). “Blood flow, oxygen and nutrient supply and metabolic microenvironment of human tumors: a review.” Cancer Res 49(23): 6449–6465.PubMedGoogle Scholar
  104. Verma, A. K., K. Sachin, et al. (2005). “Release kinetics from bio-polymeric nanoparticles encapsulating protein synthesis inhibitor - Cycloheximide, for possible therapeutic applications.” Curr Pharm Biotechnol 6(2): 121–130.PubMedGoogle Scholar
  105. Wei, H., X.-Z. Zhang, et al. (2006). “Self-assembled thermo- and pH-responsive micelles of poly(10-undecenoic acid-b-N-isopropylacrylamide) for drug delivery.” J Control Release 116(3): 266–274.PubMedGoogle Scholar
  106. Wike-Hooley, J. A., J. Haveman, et al. (1984). “The relevance of tumor pH to the treatment of malignant disease.” Radiother Oncol 2(4): 343–366.PubMedGoogle Scholar
  107. Wissing, S. A. and Müller, R. H. (2003). “Cosmetic applications for solid lipid nanoparticles (SLN).” Int J Pharm, 254, 65–68.PubMedGoogle Scholar
  108. Wojtowicz, H., K. Kloc, et al. (2004). “Azaanalogues of ebselen as antimicrobial and antiviral agents: synthesis and properties.” Farmaco 59(11): 863–8.PubMedGoogle Scholar
  109. Wu, W., S. Wieckowski, et al. (2005). “Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes.” Angew. Chem. Int. Ed. 44(39): 6358–6362.Google Scholar
  110. Xu, P., E. A. Van Kirk, et al. (2006). “Anticancer Efficacies of Cisplatin-Releasing pH-Responsive Nanoparticles.” Biomacromolecules 7(3): 829–835.PubMedGoogle Scholar
  111. Yoo, H. S., K. H. Lee, et al. (2000). “In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates.” J Control Release 68(3): 419–431.PubMedGoogle Scholar
  112. Zhang, H., Y. Kim, et al. (2006). “Controlled release of paraquat from surface-modified zeolite Y.” Microporous and Mesoporous Materials 88(1–3): 312–318Google Scholar
  113. Zwiorek, K., J. Kloeckner, et al. (2004). “Gelatin nanoparticles as a new and simple gene delivery system.” J Pharm Pharmac Sci 7(4): 22–28.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Tania Betancourt
    • 1
  • Amber Doiron
    • 1
  • Kimberly A. Homan
    • 1
  • Lisa Brannon-Peppas
    • 1
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations