Physicochemical Principles of Nanosized Drug Delivery Systems

  • Daniel P. Otto
  • Melgardt M. de Villiers
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume X)


Glass Transition Temperature Cohesive Energy Critical Radius Specific Free Energy Critical Nucleus Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aizpurua, J., Hanarp, P., Sutherland, D.S., Käll, M., Bryant, G.W. & De Abajo, F.J.G. (2003). Optical properties of gold nanorings. Physical Review Letters, 90, 057401-1–057401-5.CrossRefGoogle Scholar
  2. Alba, C., Busse, L.E., List, D.J. & Angell, C.A. (1990). Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons. Journal of Chemical Physics, 92, 617–624.CrossRefGoogle Scholar
  3. Amidon, G.L., Yalkowsky, S.H. & Leung, S. (1974). Solubility of nonelectrolytes in polar solvents II: solubility of aliphatic alcohols in water. Journal of Pharmaceutical Sciences, 63, 1858–1866.CrossRefPubMedGoogle Scholar
  4. Baird, J.C. & Walz, J.Y. (2007). The effects of added nanoparticles on aqueous kaolinite suspensions II. Rheological effects. Journal of Colloid and Interface Science, 306, 411–420.CrossRefPubMedGoogle Scholar
  5. Balandin, A.A. (2005). Nanophononics: Phonon engineering in nanostructures and nanodevices. Journal of Nanoscience and Nanotechnology, 5, 1015–1022.CrossRefPubMedGoogle Scholar
  6. Balzani, V. (2005). Nanoscience and nanotechnology: a personal view of a chemist. Small, 1, 278–283.CrossRefPubMedGoogle Scholar
  7. Bares, J. (1975). Glass transition of the polymer microphase. Macromolecules, 8, 244–246.CrossRefGoogle Scholar
  8. Barnes, H.A. (1994). Rheology of emulsions – a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91, 89–95.CrossRefGoogle Scholar
  9. Beregese, P., Colombo, I., Gervasoni, D & Depero, L.E. (2004). Melting of nanostructured drugs embedded into a polymeric matrix. Journal of Physical Chemistry B, 108, 15488–15493.CrossRefGoogle Scholar
  10. Brasseur, F., Couvreur, Kante, B., Deckers-Passau, L., Roland, M., Deckers, C. & Speisers, P. (1980). Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor. European Journal of Cancer, 16, 1441–1445.Google Scholar
  11. Buffat, Ph. & Borel, J.-P. (1976). Size effect on the melting temperature of gold particles. Physical Review A, 13, 2287–2298.CrossRefGoogle Scholar
  12. Burns, A, Ow, H. & Wiesner, U. (2006). Fluorescent core-shell nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chemical Society Reviews, 35, 1028–1042.CrossRefPubMedGoogle Scholar
  13. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R & Phillpot, S.R. (2003). Nanoscale thermal transport. Journal of Applied Physics, 93, 793–818.CrossRefGoogle Scholar
  14. Cenian, A. & Gabriel, H. (2001). Ballistic energy transfer in dielectric Ar crystals. Journal of Physics: Condensed Matter, 13, 4323–4339.CrossRefGoogle Scholar
  15. Chen, G. (2002). Ballistic-diffusive equations for transient heat conduction from nano to macroscales. Journal of Heat Transfer, 124, 320–328.CrossRefGoogle Scholar
  16. Chen, G. (1996). Nonclonal and nonequiilibrium heat conduction in the vicinity of nanoparticles. Journal of Heat Transfer, 118, 539–545.Google Scholar
  17. Chen, G. (2000). Particularities of heat conduction in nanostructures. Journal of Nanoparticle Research, 2, 199–204.CrossRefGoogle Scholar
  18. Dalnoki-Veress, K., Forrest, J.A., Murray, C., Cigault, C. & Dutcher, J.R. (2001). Molecular weight dependence of of reductions in the glass transition temperature of thin, freely standing polymer films. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 63, 031801-1–031801-10.CrossRefGoogle Scholar
  19. Dosch, H. (2001). Some general aspects of confinement in nanomaterials. Applied Surface Science, 82, 192–195.CrossRefGoogle Scholar
  20. El-Egakey, M.A., Bentele, V. & Kreuter, J. (1983). Molecular weights of polycyanoacrylate nanoparticles. International Journal of Pharmaceutics, 13, 349–352.CrossRefGoogle Scholar
  21. Finsy, R. (2004). On the critical radius in Ostwald ripening. Langmuir, 20, 2975–2976.CrossRefPubMedGoogle Scholar
  22. Fox, T.G. Jr. & Flory, P.J. (1950). Second-order transition temperatures and related properties of polystyrene. I. Influence of the molecular weight. Journal of Applied Physics, 21, 581–591.CrossRefGoogle Scholar
  23. Galvin, K.P. (2005). A conceptually simple derivation of the Kelvin equation. Chemical Engineering Science, 60, 4659–4660.CrossRefGoogle Scholar
  24. Gobin, A.M., O’Neal, D.P., Watkins, D.M., Halas, N.J., Drezek, R.A. & West, J.L. (2006). Near infrared laser-tissue welding using nanoshells as exogenous absorber. Lasers in Surgery and Medicine, 37, 123–129.CrossRefGoogle Scholar
  25. Gomes, C.J., Madrid, M., Goicochea, J.V., Amon, C.H. (2006). In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics. Journal of Heat Transfer, 128, 1114–1121.CrossRefGoogle Scholar
  26. Guinea, F., Rose, J.R., Smith, J.R. & Ferrante, J. (1984). Scaling relations in the equation of state, thermal expansion, and melting of metals. Applied Physics Letters, 44, 53–55.CrossRefGoogle Scholar
  27. Guisbiers, G. & Wautelet, M. (2006). Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology, 17, 2008–2011.CrossRefGoogle Scholar
  28. Guisbiers, G., Shirinyan, A.S. & Wautelet, M. (2005). The physics of macro-, micro- and nanomaterials. Physicalia Magazine, 27, 131–141.Google Scholar
  29. Ha, J.-M., Hillmyer, M.A. & Ward, M.D. (2005). Properties of organic nanocrystals embedded in ultrasmall crystallization chambers. Journal of Physical Chemistry B, 109, 1392–1399.CrossRefGoogle Scholar
  30. Ha, J.-M., Wolf, J.H., Hillmyer & Ward, M.A. (2004). Polymorph selection under nanoscopic confinement. Journal of the American Chemical Society, 126, 3382–3383.Google Scholar
  31. Hatta, I. (2002). Thermal characteristics in a nanometer scale. Journal of Thermal Analysis and Calorimetry, 69, 717–725.CrossRefGoogle Scholar
  32. He, Y.Q., Liu, S.P., Kong, L. & Liu, Z.F. (2005). A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2861–2866.CrossRefGoogle Scholar
  33. Hildebrandt, J.H. (1929). Solubility. XII. Regular solutions. Journal of the American Chemical Society, 51, 66–80.CrossRefGoogle Scholar
  34. Hirsch, L.R., Gobon, A.M., Lowery, A.R., Tam, F., Drezek, R.A., Halas, N.J. & West, J.L. (2006). Metal nanoshells. Annals of Biomedical Engineering, 34, 15–22.CrossRefPubMedGoogle Scholar
  35. Hoekstra, H., Vermant, J., Mewis, J. & Narayanan. (2002). Rheology and structure of suspensions in liquid crystalline solutions. Langmuir, 18, 5695–5703.CrossRefGoogle Scholar
  36. Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G.V., Li, X., Marquez, M. & Xia, Y. (2006). Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35, 1084–1094.CrossRefPubMedGoogle Scholar
  37. Hutter, E. & Fendler, J.H. (2004). Exploitation of localized surface plasmon resonance. Advanced Materials, 16, 1685–1706.CrossRefGoogle Scholar
  38. Jackson, C.L. & McKenna, G.B. (1990). The melting behavior of organic materials confined in porous solids. Journal of Chemical Physics, ). 93, 9002–9011.CrossRefGoogle Scholar
  39. Jackson, C.L. & McKenna, G.B. (1996). Vitrification and crystallization of organic liquids confined to nanoscale pores. Chemistry of Materials, 8, 2128–2137.CrossRefGoogle Scholar
  40. Jiang, Q., Aya, N & Shi, F.G. (1997). Nanotube size-dependent melting of single crystals in carbon nanotubes. Applied Physics A, 64, 627–629.CrossRefGoogle Scholar
  41. Jiang, Q., Shi, H.X. & Li, J.C. (1999). Finite size effect on glass transition temperatures. Thin Solid Films, 354, 283–286.CrossRefGoogle Scholar
  42. Jiang, Q., Shi, H.X. & Zhao, M. (1999). Melting thermodynamics of organic nanocrystals. Journal of Chemical Physics, 111, 2176–2180.CrossRefGoogle Scholar
  43. Jiang, Q., Yang, C.C. & Li, J.C. (2002). Melting enthalpy depression of nanocrystals. Materials Letters, 56, 1019–1021.CrossRefGoogle Scholar
  44. Jortner, J. & Rao, C.N.R. (2002). Nanostructured advanced materials. Perspectives and directions. Pure and Applied Chemistry, 74, 1491–1506.CrossRefGoogle Scholar
  45. Ju, Y.S. & Goodson, K.E. (1999). Phonon scattering in silicon films with thickness of order 100 nm. Applied Physics Letters, 74, 3005–3007.CrossRefGoogle Scholar
  46. Keddie, J,L. & Jones, R.A. (1995). Glass transition behavior in ultrathin polystyrene films. Israel Journal of Chemistry, 35, 21–26.Google Scholar
  47. Khanna, S.C. & Speiser, P. (1969). Epoxy resin beads as pharmaceutical dosage form I: methods of preparation. Journal of Pharmaceutical Science, 58, 1114–1117.CrossRefGoogle Scholar
  48. Kim, W., Wang, R. & Majumdar, A. (2007). Nanostructuring expands thermal limits. NanoToday, 2, 40–47.Google Scholar
  49. Kipp, J.E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-slouble drugs. International Journal of Pharmaceutics, 284, 109–122.CrossRefPubMedGoogle Scholar
  50. Koh, Y.P., McKenna, G.B. & Simon, S.L. (2006). Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. Journal of Polymer Science: Part B: Polymer Physics, 44, 3518–3527.CrossRefGoogle Scholar
  51. Krause, H.-J., Schwarz, A. & Rohdewald, P. (1985). Polylactic acid nanoparticles, a colloidal delivery system for lipophilic drugs. International Journal of Pharmaceutics, 27, 145–155.CrossRefGoogle Scholar
  52. Lee, Y.S. & Wagner, N.J. (2006). Rheological properties and small-angle neutron scattering of shear thickening, nanoparticle dispersion at high shear rates. Industrial and Engineering Chemistry Research, 45, 715–7024.Google Scholar
  53. Lepri, S., Livi, R. & Politi, A. (2003). Thermal conduction in classical low-dimensional lattices. Physics Reports, 377, 1–80.CrossRefGoogle Scholar
  54. Li, N., Kommireddy, D.S., Lvov, Y., Liebenberg, W., Tiedt, L. & De Villiers, M.M. (2006). Nanoparticle multilayers: surface modification of photosensitive drug microparticles for increased stability and in vitro bioavailability. Journal of Nanoscience and Nanotechnology, 6, 3252–3260.CrossRefPubMedGoogle Scholar
  55. Liang, L.H., Zhao, M. & Jiang, Q. (2002). Melting enthalpy depression of nanocrystals based on surface effect. Journal of Materials Science Letters, 21, 1843–1845.CrossRefGoogle Scholar
  56. Liao, H., Nehl, C.L. & Hafner, J.H. (2006). Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201–208.CrossRefPubMedGoogle Scholar
  57. Lin, A.W.H., Lewinski, N.A., West, J.L., Halas, N. & Drezek, R.A. (2005). Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. Journal of Biomedical Optics, 10, 064035-1–064035-10.CrossRefGoogle Scholar
  58. Liu, J. & Lu, Y. (2004). Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. Journal of Fluoresence, 14, 343–354.CrossRefGoogle Scholar
  59. Loo, C., Lowery, A., Halas, West, J. & Drezek, R. (2005). Immunotargeted nanoshells for integrated caner imaging and therapy. Nano Letters, 5, 709–711.CrossRefPubMedGoogle Scholar
  60. MacFarlane, D.R. & Angell, C.A. (1982). An emulsion technique for the study of marginal glass formation in molecular liquids. Journal of Physical Chemistry, 86, 1927–1930.CrossRefGoogle Scholar
  61. Marriott, C. (1988). Rheology and the flow of liquids. In M.E. Aulton (Ed.), Pharmaceutics – The science of dosage form design (pp. 17–37). New York: Churchill Livingstone.Google Scholar
  62. Mason, T.G. (1999). New fundamental concepts in emulsion rheology. Current Opinion in Colloid & Interfcae Science, 4,23–238.Google Scholar
  63. Mary, B., Dubois, C., Carreau, P.J. & Brousseau, P. (2006).Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheologica Acta, 45, 561–573.CrossRefGoogle Scholar
  64. McNeil. S.E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78, 585–594.CrossRefPubMedGoogle Scholar
  65. Michel, M., Gemmer, J. & Mahler, G. (2006). Microscopic quantum mechanical foundation of Fouriers’s Law. International Journal of Modern Physics B, 1, 1–30.Google Scholar
  66. Mihranyan, A. & Strømme, M. (2007). Solubility of fractal nanoparticles. Surface Science, 601, 315–319.CrossRefGoogle Scholar
  67. Mottet, C., Rossi, G., Baletto, F. & Ferrando, R. (2005). Single impurity effect on the melting of nanoclusters. Physical Review Letters, 95, 035501-1–035501-4.CrossRefGoogle Scholar
  68. Nanda. K.K., Maisels, A., Kruis, F.E., Fissan, H. & Stappert, S. (2003). Higher surface energy of free nanoparticles. Physical Review Letters, 91, 106102-1–106102-4.Google Scholar
  69. Navrotsky, A. (2007). Calorimetry of nanoparticles, surfaces, interfaces, thin films, and multilayers. Journal of Chemical Thermodynamics, 39, 2–9.CrossRefGoogle Scholar
  70. NNI. National Nanotechnology Initiative. 2007. (February 6, 2007);
  71. Nobile, C., Kudera, S., Fiore, A., Carbone, L., Chilla, G., Kipp, T., Heitmann, D., Cingolani, R., Manna, L. & Krahne, R. (2007). Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy. Physica Status Solidi A: Applications and Materials Science, 204, 483–486.CrossRefGoogle Scholar
  72. Novikov, V.N., Rössler, E., Malinovsky, V.K. & Surovtsev, N.V. (1996). Strong and fragile liquids in percolation approach to the glass transition. Europhysics Letters, 35, 289–294.CrossRefGoogle Scholar
  73. Ouyang, G, Tan, X., Wang, C.X. & Yang, G.W. (2006). Solid solubility limit in alloying nanoparticles. Nanotechnology, 17, 4257–4262.CrossRefGoogle Scholar
  74. Oxtoby, D.W. (1998). Nucleation of first-order phase transitions. Accounts of Chemical Research, 31, 91–97.CrossRefGoogle Scholar
  75. Perugini, P., Simeoni, S., Scalia, S., Genta, I., Modena, T., Conti, B. & Pavanetto, F. (2002). Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. International Journal of Pharmaceutics, 246, 37–45.CrossRefPubMedGoogle Scholar
  76. Probstein, R.F., Sengun, M.Z. & Tseng, T.-C. (1994). Bimodal of concentrated suspension viscosity for distributed particle sizes. Journal of Rheology, 38, 811–829.CrossRefGoogle Scholar
  77. Qi, W.H. (2005). Size effect on melting temperature of nanosolids. Physica B, 368, 46–50.CrossRefGoogle Scholar
  78. Rao, C.N.R. & Cheetham, A.K. (2001). Science and technology of nanomaterials: current status and features. Journal of Materials Chemistry, 11, 2887–2894.CrossRefGoogle Scholar
  79. Rao, C.N.R., Kulkarni, G.U., Thomas, P.J. & Edwards, P.P. (2002). Size-dependent chemistry: properties of nanocrystals. Chemistry – A European Journal, 8, 28–35.CrossRefGoogle Scholar
  80. Rhodes, S.K. & Lewis, J.A. (2006). Phase behavior, 3-D structure, amd rheology of colloidal microsphere-nanoparticle suspension. Journal of the American Ceramic Society, 89, 1840–1846.CrossRefGoogle Scholar
  81. Rieger, J. & Horn, D. Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angewandte Chemie, International Edition (Weinheim, Germany), 40, 4330–4361.Google Scholar
  82. Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical Society Reviews, 35, 583–592.CrossRefPubMedGoogle Scholar
  83. Sarvestani, A.S. & Jabbari, E. (2006). Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites. Biomacromolecules, 7, 1573–1580.CrossRefPubMedGoogle Scholar
  84. Schofield, C.L., Field, R.A. & Russell, D.A. (2007). Glyconanoparticles for the colorimetric detection of cholera toxin. Analytical Chemistry, 79, 1356–1361.CrossRefPubMedGoogle Scholar
  85. Shakouri, A. (2006). Nanoscale thermal transport and microrefrigerators on a chip. Proceedings of The IEEE, 94, 1613–1638.CrossRefGoogle Scholar
  86. Shirinyna, A.S., Gusak, A.M. & Wautelet, M. (2005). Phase diagram versus diagram of solubility: What is the difference for nanosystems. Acta Materialia, 53, 5025–5032.CrossRefGoogle Scholar
  87. Shirinyan, A.S. & Wautelet, M. (2004). Phase separation in nanoparticles. Nanotechnology, 15, 1720–1731.CrossRefGoogle Scholar
  88. Shrivastava, K.N. (2002). Melting temperature, Brillouin shift, and density of states of states of nanocrystals. Nano Letters, 2, 519–523.CrossRefGoogle Scholar
  89. Smolen, V.F. & Kildsig, D.O. (1967). Vapor pressure and solubility of small particles. American Journal of Pharmaceutical Education, 31, 512–514.Google Scholar
  90. Studart, A.R., Amstad, E., Antoni, M. & Gauckler, L.J. (2006). Rheology of concentrated suspension containing weakly attractive alumina nanoparticles. Journal of the American Ceramic Society, 89, 2418–2425.CrossRefGoogle Scholar
  91. Sun, C.Q., Li, C.M., Bai, H.L. & Jiang, E.Y. (2005). Melting point oscillation of a solid over the whole range of sizes. Nanotechnology, 16, 1290–1293.CrossRefGoogle Scholar
  92. Sun, Y. & Xia, Y. (2003). Gold and silver nanoparticles: A class of chromophores with colors tunable in the range form 400 to 750 nm. Analyst, 128, 686–691.CrossRefPubMedGoogle Scholar
  93. Suzuki, D. & Kawaguchi, H. (2006). Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir, 22, 3818–3822.CrossRefPubMedGoogle Scholar
  94. Tien, C.L. & Chen, G. (1994). Challenges in microscale conductive and radiative heat transfer. Journal of Heat Transfer, 116, 799–807.CrossRefGoogle Scholar
  95. Tuteja, A. & MacKay, M.E. (2005). Effects of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules, 38, 8000–8011.CrossRefGoogle Scholar
  96. Wang, X.W., Fei, G.T., Zheng, K., Jin, Z. & Zhang, L.D. (2006). Size-dependent melting behavior of Zn nanowire arrays. Applied Physics Letters, 88, 173114-1–173114-3.Google Scholar
  97. Wautelet, M. (1998). On the shape dependence of the melting temperature of small particles. Physics Letters A, 246, 341–342.CrossRefGoogle Scholar
  98. Wautelet, M., Dauchot, J.P. & Hecq, M. (2003). Size effects on the phase diagrams of nanoparticles of various shapes. Materials Science and Engineering C, 23, 187–190.CrossRefGoogle Scholar
  99. Wu, T., Sun, Y., Li, N., De Villiers, M.M. & Yu, L. (2007). Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir, 23, 5148–5153..CrossRefPubMedGoogle Scholar
  100. Xu, X. & Cortie, M.B. (2006). Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Advanced Functional Materials, 16, 2170–2176.CrossRefGoogle Scholar
  101. Xue, Y., Zhao, Q. & Luan, C. (2001). The thermodynamic relations between the melting point and the size of crystals. Journal of Colloid and Interface Science, 243, 388–390.CrossRefGoogle Scholar
  102. Yalkowsky, S.H. & Valvani, S.C. (1980). Solubility and partitioning I: solubility of nonelectrolytes in water. Journal of Pharmaceutical Sciences, 69, 912–922.CrossRefPubMedGoogle Scholar
  103. Zhang, Z., Li, J.C. & Jiang, Q. (2000). Modelling for size-dependent and dimension-dependent melting of nanocrystals. Journal of Physics D: Applied Physics, 33, 2653–2656.CrossRefGoogle Scholar
  104. Zhang, Z., Zhao, M. & Jiang, Q. (2001). Glass transition thermodynamics of organic nanoparticles. Physica B, 293, 232–236.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Daniel P. Otto
    • 1
  • Melgardt M. de Villiers
    • 1
  1. 1.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations