Oil Crops pp 287-315 | Cite as


  • Barry L. Tillman
  • H. Thomas Stalker
Part of the Handbook of Plant Breeding book series (HBPB, volume 4)


Peanut is one of the world’s major sources of vegetable oil. According to United States Department of Agriculture (USDA) databases, peanut is fifth worldwide in vegetable oil production among nine major oilseed crops ( Although peanut is widely viewed as an oilseed crop, utilization of peanuts varies greatly from country to country. In some countries, the majority of production is crushed for oil, whereas in others such as the United States (US), peanuts are used primarily for food.

Peanut is grown on every continent, but the majority of production occurs in Asia, Africa, South America, and North America. During the five-year period 1996–2000, China, India, and the United States accounted for almost 70% of the total annual peanut production globally (Rovoredo and Fletcher 2002). By country, China accounted for about 39%, India about 25% and the US about 6% of total production. Average pod yield ranged from 0.43 t/ha in...


Leaf Spot Tomato Spotted Wilt Virus Peanut Seed Market Type Peanut Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, J.F., Hartzog, D.L. and Nelson, D.B. (1993) Supplemental calcium application on yield, grade, and seed quality of runner peanut. Agron. J. 85, 86–93.Google Scholar
  2. Anderson, W.F., Holbrook, C.C. and Culbreath, A.K. (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci. 23, 57–61.Google Scholar
  3. Baldwin, J. (1990) The Hull Scrape Method to Assess Peanut Maturity. Bulletin 958 – Cooperative Extension Service, University of Georgia, Athens, Georgia.Google Scholar
  4. Bhatnagar-Mathur, P., Devi, M.J., SrinivasReddy, D., Lavanya, M., Vadez, V., Serraj, R., Yamaguchi-Shinozaki, K. and Sharma, K.K. (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep. 2, 2071–2082.Google Scholar
  5. Black M.C. (1991) Effects of spotted wilt on selected peanut varieties. Proc. Am. Peanut Res. Educ. Soc., 23, 52 (abstr.).Google Scholar
  6. Branch, W.D. (1996) Registration of ‘Georgia Green’ peanut. Crop Sci. 36, 806.Google Scholar
  7. Brown, S.L., Culbreath, A.K., Todd, J.W., Gorbet, D.W., Baldwin, J.A. and Beasley, J.P. Jr. (2005) Development of a method of risk assessment to facilitate integrated management of spotted wilt of peanut. Plant Dis. 89, 348–356.Google Scholar
  8. Burks, W., Sampson, H.A. and Bannon, G. (1998) Peanut allergens. Allergy 53, 727–730.Google Scholar
  9. Burow, M.D., Simpson, C.E., Paterson, A.H. and Starr, J.L. (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol. Breed. 2, 369–379.Google Scholar
  10. Casanoves, F., Baldessari, J. and Balzarini, M. (2005) Evaluation of multienvironment trials of peanut cultivars. Crop Sci. 45, 18–26.Google Scholar
  11. Chen, H., Holbrook, C.C. and Guo, B.Z. (2006) Peanut seed transcriptome: construction of six peanut seed cDNA libraries from two peanut cultivars. Proc. Am. Peanut Res. Educ. Soc., 38, 73 (abstr.).Google Scholar
  12. Chen, M., Jerret, R.L., Li, Z., Xing, A. and Demski, J.W. (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep. 15, 653–657.Google Scholar
  13. Chenault, K.D. and Maas, A.L. (2006) Identification of a simple sequence repeat (SSR) marker in cultivated peanut (Arachis hypogaea L.) potentially associated with Sclerotinia blight resistance. Proc. Am. Peanut Res. Educ. Soc., 37, 24–25 (abstr.).Google Scholar
  14. Chiteka, Z.A., Gorbet, D.W., Knauft, D.A., Shokes, F.M. and Kucharek, T.A. (1988a) Components of resistance to late leaf spot in peanut. II. Correlations among components and their significance in breeding for resistance. Peanut Sci. 15, 76–81.Google Scholar
  15. Chiteka, Z.A., Gorbet, D.W, Shokes, F.M., Kucharek, T.A. and Knauft, D.A. (1988b) Components of resistance to late leaf spot in peanut. I. Levels and variability – implications for selection. Peanut Sci. 15, 25–30.Google Scholar
  16. Choi, K., Burow, M.D., Church, G., Burow, G., Paterson, A.M., Simpson, C.E. and Starr, J.L. (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J. Nematol. 31, 283–290.PubMedGoogle Scholar
  17. Cox, F.R., Adams, F. and Tucker, B.B. (1982) Liming, fertilization and mineral nutrition. In: H.E. Pattee and C.T. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, Texas, pp. 139–163.Google Scholar
  18. Culbreath, A.K., Todd, J.W. and Brown, S.L. (2003) Epidemiology and management of tomato spotted wilt in peanut. Ann. Rev. Phytopathol. 41, 53–75.Google Scholar
  19. Damicone, J.P., Jackson, K.E., Dashiell, K.E., Melouk, H.A. and Holbrook, C.C. (2003) Reaction of the peanut core to sclerotinia blight and pepperspot. Proc. Am. Peanut Res. Educ. Soc., 35, 55 (abstr.).Google Scholar
  20. Dar, W.D., Reddy, B.V.S., Gowda, C.L.L. and Ramesh, S. (2006) Genetic resources enhancement of ICRISAT-mandate crops. Current Sci. 91, 880–884.Google Scholar
  21. Davidson, J.I., Whitaker, T.B. and Dickens, J.W. (1982) Grading, cleaning, storage, shelling, and marketing of peanuts in the United States. In: H.E. Pattee and C.T. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, Texas, pp. 571–623.Google Scholar
  22. Dhillon, S.S., Rake, A.V. and Miksche, J.P. (1980) Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiol. 65, 1121–1127.PubMedGoogle Scholar
  23. Dwivedi, S.L., Bertioli, D.J., Crouch, J.H., Valls, J.F., Upadhyaya, H.D., Favero, A., Moretzsohn, M. and Paterson, A.H. (2007) Peanut. In: C. Kole (Ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 2, Oilseeds. Springer, Berlin, Germany, pp. 115–151.Google Scholar
  24. Dwivedi, S.L., Gurtu, S., Nigam, S.N., Ferguson, M.E. and Paterson, A.H. (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv. Agron. 80, 153–221.Google Scholar
  25. Egnin, M., Mora, A. and Prakash, C.S. (1998) Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cell Dev. Biol. Plant. 34, 310–318.PubMedGoogle Scholar
  26. Ferguson, M.E., Burow, M.D., Schulze, S.R., Bramel, P.J., Paterson, A.H., Kresovich, S. and Mitchell, S. (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor. Appl. Genet. 108, 1064–1070.PubMedGoogle Scholar
  27. Franke, N.D., Brenneman, T.B. and Holbrook, C.C. (1999) Identification of resistance to Rhizoctonia limb rot in a core collection of peanut germplasm. Plant Dis. 83, 944–948.Google Scholar
  28. Garcia, G.M., Stalker, H.T., Shroeder, E. and Kochert, G. (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii to A. hypogaea. Genome 39, 836–845.PubMedGoogle Scholar
  29. Garcia, G.M., Stalker, H.T., Schroeder, E., Lyerly, J.H. and Kochert, G. (2005) A RAPD-based linkage map of peanut based on a backcross population between the two diploid species Arachis stenosperma and A. cardenasii. Peanut Sci. 32, 1–8.Google Scholar
  30. Gimenes, M.A., Lopes, C.R. and Valls, J.F.M. (2002) Genetic relationships among Arachis species based on AFLP. Genet. Mol. Biol. 25, 349–353.Google Scholar
  31. Gobbi, A., Texeira, C., Moretzsohn, M., Guimarães, P., Bertioli, S.L., Bertioli, D., Lopes, C.R. and Gimenes, M. (2006) Development of a linkage map to species of B genome related to the peanut (Arachis hypogaea – AABB). Plant and Animal Genome, p. 679, (abstr.).
  32. Gomillion, M.W., Tillman, B.L. and Person, G. (2007) Effect of calcium on seed germination and grade factors of four runner cultivars. Proc. Am. Peanut Res. Educ. Soc., 39, 34–35.Google Scholar
  33. Gorbet, D.W. (1999) University of Florida peanut breeding program. Proc. Soil Crop Sci. Soc., Florida, 58, pp. 2–7.Google Scholar
  34. Gorbet, D.W. and Knauft, D.A. (1997) Registration of ‘SunOleic 95R’ peanut. Crop Sci. 37, 1392.Google Scholar
  35. Gorbet, D.W., Knauft, D.A. and Shokes, F.M. (1990) Response of peanut genotypes with differential levels of leaf spot resistance to fungicide treatments. Crop Sci. 30, 529–533.Google Scholar
  36. Gorbet, D.W., Norden, A.J., Shokes, F.M. and Knauft, D.A. (1987) Registration of ‘Southern Runner’ peanut. Crop Sci. 27, 817.Google Scholar
  37. Gregory, M.P. and Gregory, W.C. (1979) Exotic germplasm of Arachis L. interspecific hybrids. J. Hered. 70, 185–193.Google Scholar
  38. Gregory, W.C., Gregory, M.P., Krapovickas, A., Smith, B.W. and Yarbrough, J.A. (1973) Structures and genetic resources of peanuts. In: C.T. Wilson (Ed.), Peanuts – Culture and Uses. American Peanut Research and Education Society, Inc. Stillwater, Oklahoma, pp. 47–133.Google Scholar
  39. Gregory, W.C., Krapovickas, A. and Gregory, M.P. (1980) Structure, variation, evolution and classification in Arachis. In: R.J. Summerfield and A.H. Bunting (Eds.), Advances in Legume Sciences. Royal Botanic Gardens: Kew, United Kingdom, pp. 469–481.Google Scholar
  40. Guo, B., Luo, M., Dang, P., He, G. and Holbrook, C.C. (2004) Peanut expressed sequence tag (EST) project and the marker development for cultivated peanut (Arachis hypogaea). Proc. Int. Crop Sci. Cong.,2004. (abstr.).
  41. Guo, B.Z., Yu, J., Lee, R.D., Holbrook, C.C. and Lynch, R.E. (2003) Application of differential display RT-PCR and EST/microarray technologies to the analysis of gene expression in response to drought stress and elimination of aflatoxin contamination in corn and peanut. J. Toxicol. Toxin Rev. 22, 291–316.Google Scholar
  42. Halward, T.M., Stalker, H.T. and Kochert, G. (1993) Development of an RFLP linkage map in diploid peanut species. Theor. Appl. Genet. 87, 379–384.Google Scholar
  43. Halward, T.M., Stalker, H.T., LaRue, E. and Kochert, G. (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34, 1013–1020.Google Scholar
  44. Halward, T.M., Stalker, H.T., LaRue, E. and Kochert, G. (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18, 315–325.PubMedGoogle Scholar
  45. He, G.H., Meng, R., Gao, H., Guo, B., Gao, G., Newman, M., Pittman, R.N. and Prakash, C.S. (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142, 131–136.Google Scholar
  46. He, G.H., Meng, R., Newman, M., Gao, G., Pittman, R.N. and Prakash, C.S. (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 3, 3.
  47. He, G. and Prakash, C.S. (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97, 143–149.Google Scholar
  48. He, G. and Prakash, C.S. (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet. Res. Crop Evol. 48, 347–352.Google Scholar
  49. Herselman, L. (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133, 319–327.Google Scholar
  50. Herselman, L., Thwaites, R., Kimmins, F.M., Courtois, B., van der Merwe, P.J.A. and Seal, S.E. (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor. Appl. Genet. 109, 1426–1433.PubMedGoogle Scholar
  51. Higgins, C., Hall, R., Mitter, N., Cruickshank, A. and Dietzgen, R. (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res. 13, 59–67.PubMedGoogle Scholar
  52. Hilu, K. and Stalker, H.T. (1995) Genetic relationships between peanut and wild species of Arachis section Arachis (Fabaceae): evidence from RAPDs. Plant Syst. Evol. 188, 167–178.Google Scholar
  53. Holbrook, C.C. (2001) Status of the United States germplasm collection of peanut. Peanut Sci. 28, 84–89.Google Scholar
  54. Holbrook, C.C., Anderson, W.F. and Pittman, R.N. (1993) Selection of a core collection from the USA germplasm collection of peanut. Crop Sci. 33, 859–861.Google Scholar
  55. Holbrook, C.C. and Dong, W.B. (2003) Selection of a core of the core collection for peanut. Proc. Am. Peanut Res. Educ. Soc., 35, 29 (abstr.).Google Scholar
  56. Holbrook, C.C. and Noe, J.P. (1990) Resistance to Melodogyne arenaria in Arachis spp. and the implications on development of resistant peanut cultivars. Peanut Sci. 17, 35–38.Google Scholar
  57. Holbrook, C.C. and Noe, J.P. (1992) Resistance to the peanut root-knot nematode (Meloidogyne arenaria) in Arachis hypogaea. Peanut Sci. 19, 35–37.Google Scholar
  58. Holbrook, C.C. and Stalker H.T. (2003) Peanut breeding and genetic resources. Plant Breed. Rev. 22, 297–355.Google Scholar
  59. Holbrook, C.C., Timper, P., Dong, W., Kvien, C.K. and Culbreath, A.K. (2008) Development of high yielding, tomato spotted wilt resistant near isogenic peanut lines. Crop Sci. 48, 194–198.Google Scholar
  60. Holbrook, C.C., Wilson, D.M. and Matheron, M.E. (1998) Sources of resistance to preharvest aflatoxin contamination in peanut. Proc. Am. Peanut Res. Educ. Soc., 30, 54 (abstr.).Google Scholar
  61. Hopkins, M.S., Casa, A.M., Wang, T., Mitchell, S.E., Dean, R.E., Kochert, G.D. and Kresovich, S. (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 39, 1243–1247.Google Scholar
  62. Horn, M.E., Eikenberry, E.J., Romero, L.J.E. and Sutton, J.D. (1997) High stability peanut. United States Patent 5,684,232. November 4, 1997.Google Scholar
  63. IBPGR and ICRISAT (1992) Descriptors for groundnut. International Board Plant Genetic Resources, Rome, Italy, and Int. Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India.Google Scholar
  64. Isleib, T.G., Beute, M.K., Rice, P.W. and Hollowell, J.E. (1995) Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc. Am. Peanut Res. Educ. Soc., 27, 25 (abstr.).Google Scholar
  65. Isleib, T.G., Holbrook, C.C. and Gorbet, D.W. (2001) Use of Arachis spp. plant introductions in peanut cultivar development. Peanut Sci. 28, 96–113.Google Scholar
  66. Isleib, T.G., Milla, S.R., Copeland, S.C. and Graeber, J.B. (2006a) Effect of testing region, region of origin, and their interaction on composition and sensory traits in the uniform peanut performance test. Proc. Am. Peanut Res. Educ. Soc., 38, 26.Google Scholar
  67. Isleib, T.G., Pattee, H.E., Gorbet, D.W. and Giesbrecht, F.G. (2000) Genotypic variation in roasted peanut flavor quality across 60 years of breeding. Peanut Sci. 27, 92–98.Google Scholar
  68. Isleib, T.G., Rice, P.W., Mozingo, R.W., II, Copeland, S.C., Graeber, J.B., Novitzky, W.P., Pattee, H.E., Sanders, T.H., Mozingo, R.W. and Coker, D.L. (2006b) Registration of ‘Brantley’ peanut. Crop Sci. 46, 2309–2311.Google Scholar
  69. Isleib, T.G., Wilson, R.F. and Novitzky, W.P. (2006c) Partial dominance, pleiotropism, and epistasis in the inheritance of the high-oleate trait in peanut. Crop Sci. 46, 1331–1335.Google Scholar
  70. Isleib, T.G. and Wynne, J.C. (1992) Use of plant introductions in peanut improvement. In: H.L. Shands and L.E. Weisner (eds.), Use of Plant Introductions in Cultivar Development, Part 2. Crop Science Society of America Special Publication, Madison, Wisconsin, pp. 75–116.Google Scholar
  71. Jain, A.K., Basha, S.M. and Holbrook, C.C. (2001) Identification of drought – responsive transcripts in peanut (Arachis hypogaea L.). Electron. J. Biotechnol. 4, 2.
  72. Jayashree, B., Ferguson, M., Ilut, D., Doyle, J. and Crouch, J.H. (2005) Analysis of genomic sequences from peanut (Arachis hypogaea). Electron. J. Biotechnol. 8, 226–237.Google Scholar
  73. Knauft, D.A., Moore, K.M. and Gorbet, D.W. (1993) Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci. 20, 74–76.Google Scholar
  74. Knauft, D.A., Norden, A.J. and Gorbet, D.W. (1987) Peanut. In: W.A. Fehr (Ed.), Principles of Cultivar Development, Vol. 2. Macmillan, New York, pp. 346–384.Google Scholar
  75. Knauft, D.A. and Ozias-Akins, P. (1995) Recent methodologies for germplasm enhancement and breeding. In: H.E. Pattee and H.T. Stalker (Eds.), Advances in Peanut Science. American Peanut Research and Education Society, Stillwater, Oklahoma, pp. 54–94.Google Scholar
  76. Kochert, G., Halward, T., Branch, W.D. and Simpson, C.E. (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81, 565–570.Google Scholar
  77. Kochert, G., Stalker, H.T., Gimenes, M., Galgaro, L., Romero Lopes, C. and Moore, K. (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 83, 1282–1291.Google Scholar
  78. Kokalis-Burelle, N. and Rodriguez-Kabana, R. (1997) Root-knot nematodes. In: N. Kokalis-Burelle, D.M. Porter, R. Rodriquez-Kabana, D.H. Smith and P. Subrahmanyam (Eds.), Compendium of Peanut Diseases, 2nd Edition. APS Press, The American Phytopathological Society, St. Paul, Minnesota, pp. 45–48.Google Scholar
  79. Koppelman, S.J., Wensing, M., Ertmann, M., Knulst, A.C. and Knol, E.F. (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immoglobulin E Western blotting, basophile-histamine release and intracultaneous testing: Ara h2 is the most important peanut allergen. Clin. Exp. Allergy 34, 583–590.PubMedGoogle Scholar
  80. Krapovickas, A. (1969) The origin, variability and spread of the groundnut (Arachis hypogaea). In: P.J. Ucko and G.W. Dimbleby (Eds.), The Domestication and Exploration of Plants and Animals. Duckworth, London, pp. 427–441.Google Scholar
  81. Krapovickas, A. and Gregory, W.C. (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8, 1–186.Google Scholar
  82. Lavia, G.I. (2000) Chromosome studies in wild Arachis (Leguminosae). Caryologia 53, 277–281.Google Scholar
  83. Lin, Y.R., Draye, X., Qian, X., Ren, S., Zhu, L., Tomkins, J., Wing, R.A., Li, Z. and Paterson, A.H. (2000) Fine-scale mapping and sequence-ready contig assembly in highly-duplicated genomes, using the BAC-RF method. Nucl. Acids Res. 2823.
  84. Livingstone, D.M., Hampton, J.L., Stiles, A.R., Phipps, P.M. and Grabau, E.A. (2003) Genetic transformation of peanut for resistance to Sclerotinia minor. Proc. Am. Peanut Res. Educ. Soc., 35, 34 (abstr.).Google Scholar
  85. Lopez, Y. and Burow, M.D. (2004) Development and validation of CAPS markers for the high oleate trait in peanuts. Proc. Am. Peanut Res. Educ. Soc., 36, 25–26 (abstr.).Google Scholar
  86. Lopez, Y., Nadaf, H.L., Smith, O.D., Connell, J.P., Reddy, A.S. and Fritz, A.K. (2000) Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor. Appl. Genet. 101, 1131–1138.Google Scholar
  87. Lu, J. and Pickersgill, B. (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L. – Leguminosae). Theor. Appl. Genet. 85, 550–560.Google Scholar
  88. Luo, M., Dang, P., Guo, B.Z., He, G., Holbrook, C.C., Bausher, M.G. and Lee, R.D. (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci. 45, 346–353.Google Scholar
  89. Ma, W., Li, Y., Guo, B., Culbreath, A.K., Milla-Lewis, S., Tallury, S., Holbrook, C.C., Isleib, T., Stalker, H.T. and Knapp, S.J. (2007) Simple sequence repeat polymorphisms in peanut. Plant & Animal Genomes XV Conference, San Diego, California. (abstr.).
  90. Magbanua, Z., Wilde, H., Roberts, J., Chowdhury, K., Abad, J., Moyer, J., Wetzstein, H. and Parrott, W. (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol. Breed. 6, 227–236.Google Scholar
  91. Maguire, L.S., O’Sullivan, S.M., Galvin, K., O’Connor, T.P. and O’Brien, N.M. (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts, and the macadamia nut. Int. J. Food Sci. Nutr. 55, 171–178.PubMedGoogle Scholar
  92. McWatters K.H. and Cherry, J.P. (1982) Potential foods uses of peanut and peanut seed proteins. In: H.E. Pattee and C.T. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, Texas, pp. 689–736.Google Scholar
  93. Milla, S.R., Isleib, T.G. and Stalker, H.T. (2005a) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48, 1–11.PubMedGoogle Scholar
  94. Milla, S.R., Isleib, T.G. and Tallury, S.P. (2005b) Identification of AFLP markers linked to reduced aflatoxin accumulation in A. cardenasii-derived germplasm lines of peanut. Proc. Am. Peanut Res. Educ. Soc., 37, 90 (abstr.).Google Scholar
  95. Milla, S.R., Tallury, S.P., Stalker, H.T. and Isleib, T.G. (2004) Identification of molecular markers associated with tomato spotted wilt virus in a genetic linkage map of Arachis kuhlmannii x A. diogoi. Proc. Am. Peanut Res. Educ. Soc., 36, 27 (abstr.).Google Scholar
  96. Minton, N.A. and Hammons, R.O. (1975) Evaluation of peanut for resistance to the peanut root-knot nematode, Meloidogyne arenaria. Plant Dis. Rep. 59, 944–945.Google Scholar
  97. Moore, K.M. and Knauft, D.A. (1989) The inheritance of high oleic acid in peanut. J. Hered. 80, 252–253.Google Scholar
  98. Moretzsohn, M.C., Hopkins, M.S., Mitchell, S.E., Kresovich, S., Valls, J.F.M. and Ferreira, M.E. (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. Biomed. Central Plant Biol. 4, 11.
  99. Moretzsohn, M.C., Leoi, L., Proite, K., Guimarães, P.M., Leal-Bertioli, S.C.M., Gimenes, M.A., Martins, W.S., Valls, J.F.M., Grattapaglia, D. and Bertioli, D.J. (2005) A micro satellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor. Appl. Genet. 111, 1060–1071.PubMedGoogle Scholar
  100. Morton, B.R. (2007) Poor field emergence of late-maturing peanut cultivars (Arachis hypogaea L.) derived from PI 203396. Thesis (Ph.D.) University of Florida, Gainesville, Florida.Google Scholar
  101. Morton, B.R., Tillman, B.L., Gorbet, D.W. and Boote, K.J. (2006) Poor field emergence of late-maturing peanut cultivars (Arachis hypogaea L.). Annual Meetings Abstracts [CD-ROM]. ASA, CSSA, SSSA, Madison, Wisconsin. November 12–16, 2006.Google Scholar
  102. Mozingo, R.W., Coffelt, T.A. and Wynne, J.C. (1987) Genetic improvement in large-seeded Virginia-type peanut cultivars since 1944. Crop Sci. 27, 228–231.Google Scholar
  103. Mozingo, R.W., O’Keefe, S.F., Sanders, T.H. and Hendrix, K.W. (2004) Improving shelf life of roasted and salted inshell peanuts using high oleic fatty acid chemistry. Peanut Sci. 31, 40–45.Google Scholar
  104. Nelson, A., Samuel, D.M.¸ Tucker, J., Jackson, C. and Stahlecker-Roberson, A. (2006) Assessment of genetic diversity and sectional boundaries in tetraploid peanuts (Arachis). Peanut Sci. 33, 64–67.Google Scholar
  105. Nelson, S.C., Simpson, C.E. and Starr, J.L. (1989) Resistance to Melodogyne arenaria in Arachis spp. germplasm. Suppl. J. Nematol. 21, 654–660.Google Scholar
  106. Nelson, S.C., Simpson, C.E. and Starr, J.L. (1990) Expression of resistance to Meloidogyne arenaria in Arachis batizocoi and A. cardenasii. J. Nematol. 22, 423–425.PubMedGoogle Scholar
  107. Norden, A.J. (1973) Breeding the cultivated peanut (Arachis hypogaea L.). In: C.T. Wilson (Ed.), Peanuts – Culture and Uses. American Peanut Research and Education Association, Stillwater, Oklahoma, pp. 175–208.Google Scholar
  108. Norden, A.J. (1980) Peanut. In: W.R. Fehr and H.T. Hadley (Eds.), Hybridization of Crop Plants. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin, pp. 443–456.Google Scholar
  109. Norden, A.J., Lipscomb, R.W. and Carver, W.A. (1969) Florunner: A New Peanut Variety. Circular S-196, Florida Agricultural Experiment Station, University of Florida.Google Scholar
  110. Norden, A.J., Smith, O.D. and Gorbet, D.W. (1982) Breeding the cultivated peanut. In: H.E. Pattee and C.T. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, Texas, pp. 95–122.Google Scholar
  111. Norden, A.J., Young, C.T., Knauft, D.A. and Gorbet, D.W. (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 14, 7–11.Google Scholar
  112. O’Keefe, S.F., Knauft D.A. and Wiley, V.A. (1993) Comparison of oxidative stability of high and normal oleic peanut oils. J. Am. Oil Chem. Soc. 70, 489–492.Google Scholar
  113. Ozias-Akins, P. and Gill, R. (2001) Progress in the development of tissue culture and transformation methods applicable to the production of transgenic peanut. Peanut Sci. 28, 123–131.Google Scholar
  114. Ozias-Akins, P., Ramos, L. and Holbrook, C. (2006) TILLING for a reduced allergen peanut. Georgia Peanut Commission Research Report Summaries on 2005 projects.
  115. Ozias-Akins, P., Schnall, J.A., Anderson, W.F., Singsit, C., Clemente, T.E., Adang, M.J. and Weissinger, A.K. (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci. 93, 185–194.Google Scholar
  116. Paik-Ro, O.G., Smith, R.L. and Knauft, D.A. (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor. Appl. Genet. 84, 201–208.Google Scholar
  117. Paterson, A.H., Stalker, H.T., Gallo-Meagher, M., Burow, M.D., Dwivedi, S.L., Crouch, J.H. and Mace, E.S. (2004) Genomics and genetic enhancement of peanut. In: R.F. Wilson, H.T. Stalker and C.E. Brummer (Eds.), Genomics for Legume Crops. American Oil Chemists Society Press, Champaign, IL, pp. 97–109.Google Scholar
  118. Pattee, H.E., Giesbrecht, F.G. and Mozingo, R.W. (1993) A note on broad-sense heritability of selected sensory descriptors in Virginia-type Arachis hypogaea L. Peanut Sci. 20, 24–26.Google Scholar
  119. Pattee, H.E., Isleib, T.G., Sanders, T.H., Dean, L.O. and Hendrix, K.W. (2007) Virginia market-type breeding lines with flavor profiles equivalent to the runner-type standard, Florunner. Proc. Am. Peanut Res. Educ. Soc., 39, 65–66.Google Scholar
  120. Pittman, R.N. (1995) United States Peanut Descriptors. ARS-132,USDA-ARS.Google Scholar
  121. Rovoredo, C.L. and Fletcher, S.M. (2002, May) World Peanut Market: An Overview of the Past 30 Years. Research Bulletin 437. The University of Georgia Agricultural Experiment Station, Athens, Georgia.Google Scholar
  122. Sanders, T.H., Schubert, A.M. and Pattee, H.E. (1982) Maturity methodology and postharvest physiology. In: H.E. Pattee and C.T. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, Texas, pp. 624–654.Google Scholar
  123. Savage, G.P. and Keenen, J.L. (1994) The composition and nutritive value of groundnut kernels. In: J. Smart (Ed.), The Groundnut Crop: A Scientific Basis of Improvement. Chapman and Hall, London, pp. 173–213.Google Scholar
  124. Sharma, K.K. and Anjaiah, V.V. (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci. 159, 7–19.PubMedGoogle Scholar
  125. Shokes, F.M. and Culbreath, A.K. (1997) Early and late leafspots. In: N. Kokalis-Burelle, D.M. Porter, R. Rodriquez-Kabana, D.H. Smith and P. Subrahmanyam (Eds.), Compendium of Peanut Diseases, 2nd Edition. APS Press, The American Phytopathological Society, St. Paul, Minnesota, pp. 17–20.Google Scholar
  126. Simpson, C.E., Baring, M.R., Schubert, A.M., Melouk, H.A, Lopez, Y. and Kirby, J.S. (2003a) Registration of ‘OLin’ peanut. Crop Sci. 43, 1880–1881.Google Scholar
  127. Simpson, C.E. and Coffelt, T.A. (1997) Taxonomy of the genus Arachis. In: N. Kokalis-Burelle, D.M. Porter, R. Rodriquez-Kabana, D.H. Smith and P. Subrahmanyam (Eds.), Compendium of Peanut Diseases, 2nd Edition. APS Press, The American Phytopathological Society, St. Paul, Minnesota, pp. 2–3.Google Scholar
  128. Simpson, C.E. and Starr, J.L. (2001) Registration of ’COAN’ peanut. Crop Sci. 41, 918.Google Scholar
  129. Simpson, C.E., Starr, J.L., Church, G.T., Burow, M.D. and Paterson, A.H. (2003b) Registration of ‘NemaTAM’ peanut. Crop Sci. 43, 1561.Google Scholar
  130. Singh, A.K. and Simpson, C.E. (1994) Biosystemics and genetic resources. In: J. Smartt (Ed.), The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, pp. 96–137.Google Scholar
  131. Singh, K.P., Raina, S.N. and Singh, A.K. (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39, 890–897.PubMedGoogle Scholar
  132. Smartt, J. and Stalker, H.T. (1982) Speciation and cytogenetics in Arachis. In: H.E. Pattee and C.E. Young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society, Yoakum, TX, pp. 21–49.Google Scholar
  133. Stalker, H.T. (1991) A new species in section Arachis of peanuts with a D genome. Am. J. Bot. 78, 630–637.Google Scholar
  134. Stalker, H.T., Beute, M.K., Shew, B.B. and Barker, K.R. (2002a) Registration of two root-knot nematode-resistant peanut germplasm lines. Crop Sci. 42, 312–313.PubMedGoogle Scholar
  135. Stalker, H.T., Beute, M.K., Shew, B.B. and Isleib T.G. (2002b) Registration of five leaf spot resistant peanut germplasm lines. Crop Sci. 42, 314–316.PubMedGoogle Scholar
  136. Stalker, H.T. and Dalmacio, R.D. (1986) Karyotype analysis and relationships among varieties of Arachis hypogaea L. Cytologia 58, 617–629.Google Scholar
  137. Stalker, H.T., Dhesi, J.S., Parry, D.C. and Hahn, J.H. (1991) Cytological and interfertility relationships of Arachis section Arachis. Am. J. Bot. 78, 238–246.Google Scholar
  138. Stalker, H.T., Ferguson, M.E., Valls, J.F.M., Pittman, R.N., Simpson, C.E. and Bramel-Cox, P. (2002c) Catalog of Arachis Germplasm Collection. Web version.
  139. Stalker, H.T., Kochert, G.D. and Dhesi, J.S. (1995) Variation within the species A. duranensis, a possible progenitor of the cultivated peanut. Genome 38, 1201–1212.PubMedGoogle Scholar
  140. Stalker, H.T. and Moss, J.P. (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv. Agron. 41, 1–40.Google Scholar
  141. Stalker, H.T. and Mozingo, L.G. (2001) Molecular markers of Arachis and marker- assisted selection. Peanut Sci. 28, 17–123.Google Scholar
  142. Stalker, H.T., Phillips, T.G., Murphy, J.P. and Jones, T.M. (1994) Diversity of isozyme patterns in Arachis species. Theor. Appl. Genet. 87, 746–755.Google Scholar
  143. Stalker, H.T. and Simpson, C.E. (1995) Genetic resources in Arachis. In: H.E. Pattee and H.T. Stalker (Eds.), Advances in Peanut Science. American Peanut Research and Education Society, Stillwater, Oklahoma, 14–53.Google Scholar
  144. Starr, J.L., Schuster, G.L. and Simpson, C.E. (1990) Characteristics of the resistance to Meloidogyne arenaria in an interspecific Arachis spp. hybrid. Peanut Sci. 17, 106–108.Google Scholar
  145. Starr, J.L., Simpson, C.E. and Lee, T.A. (1995) Resistance to Meloidogyne arenaria in advanced breeding lines of peanut. Peanut Sci. 22, 59–61.Google Scholar
  146. Temsch, E.M. and Greilhuber, J. (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43, 449–451.PubMedGoogle Scholar
  147. Temsch, E.M. and Greilhuber, J. (2001) Genome size in Arachis duranensis: a critical study. Genome 44, 826–830.PubMedGoogle Scholar
  148. Treadwell, K., Young, C.T. and Wynne, J.C. (1983) Evaluation of fatty acid content of forty peanut cultivars. Oléagineux 38, 381–386.Google Scholar
  149. Upadhyaya, H.D., Bramel, P.J., Ortiz, R. and Singh, S. (2002) Developing a mini-core of peanut for utilization of genetic resources. Crop Sci. 42, 599–600.Google Scholar
  150. Upadhyaya, H.D., Ferguson, M.E. and Bramel, P.J. (2001) Status of the Arachis germplasm collection at ICRISAT. Peanut Sci. 28, 89–96.Google Scholar
  151. Upadhyaya, H.D., Mallikarjuna Swamy, B.P., Goudar, P.V.K., Kullaiswaym, B.Y. and Singh, S. (2005) Identification of diverse accessions of groundnut through multienvironmental evaluation of core collection for Asia. Field Crops Res. 93, 293–299.Google Scholar
  152. Upadhyaya, H.D., Ortiz, R., Bramel, P.J. and Singh, S. (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet. Res. Crop Evol. 50, 139–148.Google Scholar
  153. Upadhyaya, H.D., Reddy, L.J., Gowda, C.L.L. and Singh, S. (2006) Identification of diverse groundnut germplasm: sources of early maturity in a core collection. Field Crop Res. 97, 261–267.Google Scholar
  154. Valls, J.F.M. and Simpson, C.E. (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay, and Bolivia. Bonplandia 14, 35–64.Google Scholar
  155. Viquez, O.M., Konan, K.N. and Dodo, H.W. (2003) Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol. Immunology 40, 565–571.Google Scholar
  156. Viquez, O.M., Konan, K.N. and Dodo, H.W. (2004) Genomic organization of peanut allergen gene, Ara h 3. Mol. Immunology 41, 1235–1240.Google Scholar
  157. Walker, M.E., Keisling, T.C. and Drexler, J.S. (1976) Responses of three peanut cultivars to gypsum. Agron. J. 68, 527–528.Google Scholar
  158. White, P.J. (2000) Fatty acids in oilseeds (vegetable oils). In: C.K. Chow (Ed.), Fatty Acids in Foods and Their Health Implications. Marcel Dekker, New York, 209–238.Google Scholar
  159. Wilson, R.F. (2006)
  160. Worthington, R.E. and Hammons, R.O. (1977) Variability in fatty acid composition among Arachis genotypes: a potential source of product improvement. J. Am. Oil Chem. Soc. 54, 105A–108A.PubMedGoogle Scholar
  161. Xue, H.Q. and Isleib, T.G. (2002) Genetic relationships among peanut cultivars and breeding lines in Shandong Province, PRC. Peanut Sci. 29, 95–101.Google Scholar
  162. Yang, H., Ozias-Akins, P., Culbreath, A.K., Gorbet, D.W., Weeks, J.R., Mandal, B. and Pappu, H.R. (2004) Field evaluation of tomato spotted wilt virus resistance in transgenic peanut (Arachis hypogaea). Plant Dis. 88, 259–264.Google Scholar
  163. Yüksel, B., Estill, J.C., Schulze, S.R. and Paterson, A.H. (2005) Organization and evolution of resistance gene analogs in peanut. Mol. Genet. Genomics 274, 248–263.PubMedGoogle Scholar
  164. Yüksel, B. and Paterson, A.H. (2005) Construction and characterization of peanut HindIII BAC library. Theor. Appl. Genet. 111, 630–639.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Agronomy DepartmentUniversity of Florida, North Florida RECMariannaUSA
  2. 2.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations