Oil Crops pp 91-126 | Cite as

Oilseed Rape

  • Wolfgang Friedt
  • Rod Snowdon
Part of the Handbook of Plant Breeding book series (HBPB, volume 4)


Oilseed rape, or canola ( Brassica napus ssp. napus; genome AACC, 2 n = 38) is today the world’s third-leading source of both vegetable oil and oil extraction meal. Total world consumption of vegetable oil amounts to approx. 97 million metric tons (2003), of which 27.9 Mt is soybean oil, 27.8 Mt palm oil, 12.1 Mt rapeseed oil, 8.0 Mt sunflower oil, 5.8 Mt peanut oil, and 4.9 Mt cottonseed oil. Due to its favourable seed oil composition, low-erucic acid rapeseed or canola oil is a valuable source of nutritional oils and fats (salad oil, margarine). For example, from the total rapeseed oil produced and processed in Germany (approx. 2.5 Mio. t) about 0.5 Mio. t are used for nutritional purposes. The majority, however, is used for producing transportation fuel; around 1.5 Mio. t are processed into biodiesel (rapeseed oil methyl ester, RME) while some 0.5 Mio. t of processed oil are directly used in diesel engines of tractors or lorries (Thywissen, personal communication). The...


Male Sterility Double Haploid Cytoplasmic Male Sterility Oilseed Rape Erucic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackman, R.G. (1990) Canola fatty acids – an ideal mixture for health, nutrition, and food use. In: F. Shahidi (Ed.) Canola and Rapeseed – Production, Chemistry, Nutrition and Processing Technology. Van Nostrand Reinhold, New York, pp. 81–98.Google Scholar
  2. Anjou, K., Lönnerdal, B., Uppström, B. and Åman, P. (1977) Composition of seeds from some Brassica cultivars. Swedish J. Agric. Res. 7, 169–178.Google Scholar
  3. Appelqvist, L.-Å. and Ohlson, R. (1972) Rapeseed – Cultivation, Composition, Processing and Utilization. Elsevier, Amsterdam, The Netherlands.Google Scholar
  4. The Arabidopsis Genome Initiative. (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.Google Scholar
  5. Arnholdt, B. and Schuster, W. (1981) Durch Umwelt und Genotyp bedingte Variabilität des Rohprotein- und Rohfettgehaltes in Rapssamen. Fette Seifen Anstrichm. 83, 49–54.Google Scholar
  6. Badani, A.G., Snowdon, R.J., Baetzel, R., Lipsa, F.D., Wittkop, B., Horn, R., De Haro, A., Font, R., Lühs, W. and Friedt, W. (2006) Co-localisation of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49, 1499–1509.PubMedGoogle Scholar
  7. Banga, S.S., Banga, S.K. and Sandha, G.S. (1995) Development and characterization of tournefortii CMS system in Brassica napus L. Proc. 9th Int. Rapeseed Congr., Cambridge, UK, Vol. 1, pp. 55–57.Google Scholar
  8. Bannerot, T., Boulidard, L., Cauderon, Y. and Tempe, J. (1974) Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proc. Eucarpia Meeting on Cruciferae, Dundee, Scotland, pp. 52–54.Google Scholar
  9. Bartkowiak-Broda, I., Poplawska, W. and Gorska-Paukszt, M. (1991) Transfer of CMS juncea to double low winter rape (Brassica napus L.). Proc. 8th Int. Rapeseed Congr., Saskatoon, Saskatchewan, Canada, Vol. 5, pp. 1502–1505.Google Scholar
  10. Basunanda, P., Spiller, T.H., Hasan, M., Gehringer, A., Schondelmaier, J., Lühs, W., Friedt, W. and Snowdon, R.J. (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed. 126, 581–587.Google Scholar
  11. Biermann, U., Friedt, W., Lang, S., Lühs, W., Machmüller, G., Metzger, J.O., Rüsch, gen. Klaas M., Schäfer, H.J. and Schneider, M.P. (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. 39, 2206–2224.Google Scholar
  12. Brandle, J.E. and McVetty, P.B.E. (1989) Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop. Sci. 29, 1191–1195.Google Scholar
  13. Brandle, J.E. and McVetty, P.B.E. (1990) Geographical diversity, parental selection and heterosis in oilseed rape. Can. J. Plant Sci. 70, 935–940.Google Scholar
  14. Budewig, S. and Léon, J. (2003) Higher yield stability for oilseed rape hybrids? Proc. 11th Int. Rapeseed Congr., 6–10 July 2003, Copenhagen, Denmark, Vol. 1, pp. 347–349.Google Scholar
  15. Bundessortenamt. (2008) Beschreibende Sortenliste 2008: Getreide, Mais, Ölfruchte, Leguminosen (großkörnig), Hackfrüchte (außer Kartoffeln). Deutscher Landwirtschaftsverlag, Hannover, Germany.Google Scholar
  16. Canvin, D.T. (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can. J. Bot. 43, 63–69.Google Scholar
  17. Cargeeg, L.A. and Thurling, N. (1980) Contribution of host-pathogen interactions to the expression of the blackleg disease of spring rape (Brassica napus L.) caused by Leptosphaeria maculans (Desm.) Ces. et De Not. Euphytica 29, 465–476.Google Scholar
  18. Chen, B.Y., Haneen, W.K. and Jonsson, R. (1988) Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed color. Plant Breed. 101, 52–59.Google Scholar
  19. Chen, W., Zhang, Y., Liu, X.P., Chen, B.Y., Tu, J.X. and Fu, T.D. (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor. Appl. Genet. 115, 849–858.PubMedGoogle Scholar
  20. Chèvre, A.M., Eber, F., This, P., Barret, P., Tanguy, X., Brun, H., Delseny, M. and Renard, M. (1996) Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napusB. nigra addition lines. Plant Breed. 115, 113–118.Google Scholar
  21. Christen, O. and Friedt, W. (2007) Winterraps: Das Handbuch für Profis. DLG-Verlag, Frankfurt, Germany.Google Scholar
  22. Delourme, R., Falentin, C., Huteau, V., Clouet, V., Horvais, R., Gandon, B., Specel, S., Hanneton, L., Dheu, J.E., Deschamps, M., Margale, E., Vincourt, P. and Renard, M. (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 113, 1331–1345.PubMedGoogle Scholar
  23. Delourme, R., Foisset, N., Horvais, R., Barret, P., Champagne, G., Cheung, W.Y., Landry, B.S. and Renard, M. (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor. Appl. Genet. 97, 129–134.Google Scholar
  24. Demirbas, A. (2007) Importance of biodiesel as transportation fuel. Energy Policy 35, 4661–4670.Google Scholar
  25. Diederichsen, E. and Sacristan, M.D. (1996) Disease response of resynthesized Brassica napus L. lines carrying different contributions of resistance to Plasmodiophora brassicae Wor. Plant Breed. 115, 5–10.Google Scholar
  26. Diepenbrock, W. (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res. 67, 35–49.Google Scholar
  27. Dixelius, C. (1999) Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus. Plant Breed. 118, 151–156.Google Scholar
  28. Downey, R.K. (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can. J. Plant Sci. 44, 295–297.Google Scholar
  29. Downey, R.K. (1990) Brassica oilseed breeding: achievements and opportunities. Plant Breed. Abstr. 60, 1165–1170.Google Scholar
  30. Downey, R.K. and Bell, J.M. (1990) New developments in canola research. In: F. Shahidi (Ed.) Canola and Rapeseed – Production, Chemistry, Nutrition and Processing Technology. Van Nostrand Reinhold, New York, pp. 37–46.Google Scholar
  31. Downey, R.K. and Rakow, G.F.W. (1987) Rapeseed and mustard. In: W.R. Fehr (Ed.) Principles of Cultivar Development – Crop Species 2. Macmillan, New York, pp. 437–486.Google Scholar
  32. Downey, R.K. and Röbbelen, G. (1989) Brassica species. In: G. Röbbelen, R. Downey and A. Ashri (Eds.) Oil Crops of the World. McGraw-Hill, New York, pp. 339–382.Google Scholar
  33. Frauen, M. and Paulmann, W. (1999) Breeding of hybrid varieties of winter oilseed rape based on the MSL-system. Proc. 10th GCIRC Rapeseed Congr., Saskatoon, Canada.Google Scholar
  34. Friedt, W., Leckband, G. and Frauen, M. (2004) NAPUS 2000 – Research for an overall improvement in rapeseed. INFORM 15, 295–297.Google Scholar
  35. Friedt, W. and Lühs, W. (1998) Recent developments and perspectives of industrial rapeseed breeding. Fett/Lipid 100, 219–226.Google Scholar
  36. Friedt, W., Lühs, W., Müller, M. and Ordon, F. (2003) Utility of winter oilseed rape (Brassica napus L.) cultivars and new breeding lines for low-input cropping systems. German J. Agron. 7, 49–55.Google Scholar
  37. Fu, F.Y., Liu, L.Z., Chai, Y.R., Chen, L., Yang, T., Jin, M.Y., Ma, A.F., Yan, X.Y., Zhang, Z.S. and Li, J.N. (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50, 840–854.PubMedGoogle Scholar
  38. Gehringer, A., Spiller, T., Basunanda, P., Snowdon, R.J. and Friedt, W. (2007) New oilseed rape (Brassica napus) hybrids with high levels of heterosis for seed yield under marginal conditions. Breed. Sci. 57, 315–320.Google Scholar
  39. Grami, B., Baker, R.J. and Stefansson, B.R. (1977) Genetics of protein and oil content in summer rape: heritability, number of effective factors, and correlations. Can. J. Plant Sci. 57, 937–943.Google Scholar
  40. Grant, I. and Beversdorf, W.E. (1985) Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Can. J. Genet. Cytol. 27, 472–478.Google Scholar
  41. Happstadius, I., Ljungberg, A., Kristiansson, B. and Dixelius, C. (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed. 122, 30–34.Google Scholar
  42. Hasan, M., Friedt, W., Freitag, N.M., Link, K., Pons-Kühnemann, J. and Snowdon, R.J. (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor. Appl. Genet. 116, 1035–1049.PubMedGoogle Scholar
  43. Hasan, M., Seyis, F., Badani, A.G., Pons-Kuhnemann, J., Lühs, W., Friedt, W. and Snowdon, R.J. (2006) Surveying genetic diversity in the Brassica napus gene pool using SSR markers. Genet. Res. Crop. Evol. 53, 793–802.Google Scholar
  44. He, J., Ke, L., Hong, D., Xie, Y., Wang, G., Liu, P. and Yang, G. (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor. Appl. Genet. 117, 11–18.PubMedGoogle Scholar
  45. Hong, D.F., Liu, J., Yang, G.S. and He, Q.B. (2008) Development and characterization of SCAR markers associated with a dominant genic male sterility in rapeseed. Plant Breed. 127, 69–73.Google Scholar
  46. Huang, Z., Chen, Y.F., Yi, B., Xiao, L., Ma, C.Z., Tu, J.X. and Fu, T.D. (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor. Appl. Genet. 115, 113–118.Google Scholar
  47. Kim, S.Y., Park, B.S., Kwon, S.J., Kim, J., Lim, M.H., Park, Y.D., Kim, D.Y., Suh, S.C., Jin, Y.M., Ahn, J.H. and Lee, Y.H. (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep. 26, 327–336.PubMedGoogle Scholar
  48. Kimber, D. and McGregor, D.I. (Eds.) (1995) Brassica Oilseeds: Production and Utilisation. CAB, Wallingford, UK.Google Scholar
  49. Klewer, A., Scheunemann, R. and Sacristan, M.D. (2003) Incorporation of blackspot resistance from different origins into oilseed rape. Proc. 11th Int. Rapeseed Congr., Copenhagen, Denmark, Vol. 1, pp. 65–67.Google Scholar
  50. Kroll, H. (1994) Ein archäologischer Rapsfund des 16. Jahrhunderts, entdeckt in Heide in Holstein, Norddeutschland. J. Agron. Crop. Sci. 173, 17–21.Google Scholar
  51. Kuswinanti, T., Koopmann, B. and Hoppe, H.H. (1999) Virulence pattern of aggressive isolates of Leptosphaeria maculans on an extended set of Brassica differentials. J. Plant Dis. Prot. 106, 12–20.Google Scholar
  52. Landry, B.S., Hubert, N., Etoh, T., Harada, J.J. and Lincoln, S.E. (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34, 543–552.Google Scholar
  53. Leckband, G., Frauen, M. and Friedt, W. (2002) NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition. Food Res. Int. 35, 273–278.Google Scholar
  54. Lefort-Buson, M., Guillot-Lemoine, B. and Dattée, Y. (1987) Heterosis and genetic distance in rapeseed (Brassica napus L.): crosses between European and Asiatic selfed lines. Genome 29, 413–418.Google Scholar
  55. Lei, S.L., Yao, X.Q., Bin, Y., Chen, W., Ma, C.Z., Tu, J.X. and Fu, T.D. (2007) Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor. Appl. Genet. 115, 643–651.PubMedGoogle Scholar
  56. Li, M., Chen, X. and Meng, J. (2006) Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and C c from Brassica carinata. Crop. Sci. 46, 234–242.Google Scholar
  57. Liu, H.L. (1983) Studies on the breeding of yellow seeded Brassica napus L. Proc. 6th Int. Rapeseed Congr., Paris, Vol. 1, pp. 637–641.Google Scholar
  58. Liu, X.P., Tu, J.X., Chen, B.Y. and Fu, T.D. (2005) Identification and inheritance of a partially dominant gene for yellow seed colour in Brassica napus. Plant Breed. 124, 9–12.Google Scholar
  59. Lou, P., Zhao, J., Kim, J.S., Shen, S., Del Carpio, D.P., Song, X., Jin, M., Vreugdenhil, D., Wang, X., Koornneef, M. and Bonnema, G. (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J. Exp. Bot. 58, 4005–4016.PubMedGoogle Scholar
  60. Lühs, W. and Friedt, W. (1994) Non-food uses of vegetable oils and fatty acids. In: D.J. Murphy (Ed.) Designer Oil Crops. VCH, Weinheim, Germany, pp. 73–130.Google Scholar
  61. Lühs, W., Seyis, F., Frauen, M., Busch, H., Frese, L., Willner, E., Friedt, W., Gustafsson, M. and Poulsen, G. (2003) Development and evaluation of a Brassica napus core collection. In: H. Knüpffer and J. Ochsmann (Eds.) Rudolf Mansfeld and Plant Genetic Resources. Proceedings of a symposium dedicated to the 100th birthday of Rudolf Mansfeld. Gatersleben, Germany, 8–9 October 2001. Schriften zu Genetischen Ressourcen. ZADI/IBV, Bonn, Vol. 19, pp. 284–289 (
  62. Marquard, R. and Schuster, W. (1981) Veränderungen von Sameninhaltsstoffen verschiedener Rapssorten unter kontrollierten Bedingungen. Fette Seifen Anstrichm. 83, 99–106.Google Scholar
  63. Marsic, V., Yodice, R. and Orthoefer, F. (1992) The dietary role of monounsaturates. INFORM 3, 681–686.Google Scholar
  64. Mayerhofer, R., Wilde, K., Mayerhofer, M., Lydiate, D., Bansal, V., Good, A. and Parkin, I. (2005) Complexities of chromosome landing in a highly duplicated genome: towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171, 1977–1988.PubMedGoogle Scholar
  65. Meng, J.L., Shi, S.W., Gan, L., Li, Z.Y. and Qu, X.S. (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103, 329–333.Google Scholar
  66. Mensink, R.P. and Katan, M.B. (1993) Trans monounsaturated fatty acids in nutrition and their impact on serum lipoprotein level in man. Prog. Lipid Res. 32, 111–122.PubMedGoogle Scholar
  67. Mithen, R.F. and Magrath, R. (1992) Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica species. Plant Breed. 108, 60–68.Google Scholar
  68. Oelck, M.M., MacDonald, R., Belyk, M., Ripley, V., Weston, B., Bennett, C., Dormann, M., Eckes, P., Schulz, A., Schneider, R. and Gadsby, M. (1995) Registration, safety assessment and agronomic performance of transgenic canola cv. ‘Innovator’ in Canada. Proc. 9th Int. Rapeseed Congr., Cambridge, UK, Vol. 4, pp. 1430–1432.Google Scholar
  69. Ogura, H. (1968) Studies on the new male-sterility in Japanese radish with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 6, 39–78.Google Scholar
  70. Okazaki, K., Sakamoto, K., Kikuchi, R., Saito, A., Togashi, E., Kuginuki, Y., Matsumoto, S. and Hirai, M. (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 114, 595–608.PubMedGoogle Scholar
  71. Parkin, I.A., Gulden, S.M., Sharpe, A.G., Lukens, L., Trick, M., Osborn, T.C. and Lydiate, D.J. (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171, 765–781.PubMedGoogle Scholar
  72. Piotrowska, A., Krzymanski, J., Bartkowiak-Broda, I. and Krotka, K. (2003) Characteristic of yellow-seeded lines of winter oilseed rape. Proc. 11th Int. Rapeseed Congr., Copenhagen, Denmark, Vol. 1, pp. 247–249.Google Scholar
  73. Pires, J.C., Zhao, J., Schranz, M.E., Leon, E.J., Quijada, P.A., Lukens, L.N. and Osborn, T.C. (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol. J. Linn. Soc. 82, 675–688.Google Scholar
  74. Pleines, S. and Friedt, W. (1988) Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci. Technol. 90, 167–171.Google Scholar
  75. Pleines, S. and Friedt, W. (1989) Genetic control of linolenic acid concentration in seed oil of rapeseed (Brassica napus L.). Theor. Appl. Genet. 78, 793–797.Google Scholar
  76. Plieske, J., Struss, D. and Röbbelen, G. (1998) Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor. Appl. Genet. 97, 929–936.Google Scholar
  77. Poulsen, G., Busch, H., Frauen, M., Frese, L., Friedt, W., Gustafsson, M., Ottosson, F., Seyis, F., Stemann, G., Ulber, B., Willner, E. and Lühs, W. (2004) The European Brassica napus core collection – Characterisation, evaluation and establishment. Cruciferae Newsl. 25, 115–116.Google Scholar
  78. Purwantara, A., Salisbury, P.A., Burton, W.A. and Howlett, B.J. (1998) Reaction of Brassica juncea (Indian mustard) lines to Australian isolates of Leptosphaeria maculans under glasshouse and field conditions. Eur. J. Plant Pathol. 104, 895–902.Google Scholar
  79. Radoev, M., Becker, H.C. and Ecke, W. (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179, 1547–1558.PubMedGoogle Scholar
  80. Rahman, M.H. (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed. 120, 463–472.Google Scholar
  81. Rahman, M.H. (2003) Yellow-seeded Brassica napus from interspecific crosses. Proc. 11th Int. Rapeseed Congr., Copenhagen, Denmark, Vol. 1, pp. 199–201.Google Scholar
  82. Rakow, G. (1973) Selektion auf Linol- und Linolensäuregehalt in Rapssamen nach mutagener Behandlung. Z. Pflanzenzüchtg. 69, 62–82.Google Scholar
  83. Rakow, G., Stringam, G.R. and McGregor, D.I. (1987) Breeding Brassica napus L. canola with improved fatty acid composition, high oil content and high seed yield. Proc. 7th Int. Rapeseed Congr., Poznan, Poland, Vol. 2, pp. 27–32.Google Scholar
  84. Rashid, A., Rakow, G. and Downey, R.K. (1994) Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed. 112, 127–134.Google Scholar
  85. Razi, H., Howell, E.C., Newbury, H.J. and Kearsey, M.J. (2008) Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor. Appl. Genet. 116, 179–192.PubMedGoogle Scholar
  86. Rimmer, S.R. (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can. J. Plant Pathol. 28, S288–S297.Google Scholar
  87. Rimmer, S.R. and van den Berg, C.G.J. (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can. J. Plant Pathol. 14, 56–66.Google Scholar
  88. Röbbelen, G. (1975) Totale Sortenumstellung bei Körnerraps. Bericht über die Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter. Gumpenstein, Austria, pp. 119–146.Google Scholar
  89. Röbbelen, G. (1990) Mutation breeding for quality improvement – A case study for oilseed crops. Mut. Breed. Rev. 6, 1–44.Google Scholar
  90. Röbbelen, G. and Nitsch, A. (1975) Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed, Brassica napus L. I. Selection and description of new mutants. Z. Pflanzenzüchtg. 75, 93–105.Google Scholar
  91. Röbbelen, G. and Thies, W. (1980) Biosynthesis of seed oil and breeding for improved oil quality of rapeseed. In: S. Tsunoda, K. Hinata and C. Gómez-Campo (Eds.) Brassica Crops and Wild Allies. Japan Scientific Society Press, Tokyo, Japan, pp. 253–283.Google Scholar
  92. Roy, N.N. (1978) A study on disease variation in the populations of an interspecific cross of Brassica juncea L. x B. napus L. Euphytica 27, 145–149.Google Scholar
  93. Rutz, H.-W. (2004) Sorten- und Saatgut-Recht, 10. Auflage. Agrimedia Verlag, Clenze, Germany.Google Scholar
  94. Rygulla, W., Seyis, F., Lühs, W., Eynck, C., von Tiedemann, A., Friedt, W. and Snowdon, R.J. (2007a) Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesised rapeseed (Brassica napus) lines. Plant Breed. 126, 596–602.Google Scholar
  95. Rygulla, W., Snowdon, R.J., Eynck, C., Koopmann, B., von Tiedemann, A., Lühs, W. and Friedt, W. (2007b) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridisation. Phytopathology 97, 1391–1396.PubMedGoogle Scholar
  96. Rygulla, W., Snowdon, R.J., Friedt, W., Happstadius, I., Cheung, W.Y. and Chen, D. (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus L.). Phytopathology 98, 215–221.PubMedGoogle Scholar
  97. Sacristán, M.D. and Gerdemann, M. (1986) Different behavior of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Z. Pflanzenzüchtg. 97, 304–314.Google Scholar
  98. Salunkhe, D.K., Chavan, J.K., Adsule, R.N. and Kadam, S.S. (1992) World Oilseeds. Chemistry, Technology and Utilization. Van Nostrand Reinhold, New York.Google Scholar
  99. Scarth, R., McVetty, P.B.E., Rimmer, S.R. and Stefansson, B.R. (1988) Stellar low linolenic-high linoleic acid summer rape. Can. J. Plant Sci. 68, 509–511.Google Scholar
  100. Schuster, W. (1969) Vergleich von zwei Zuchtverfahren in der Erhaltungszüchtung bei Winterraps. Z. Pflanzenzüchtg. 62, 47–62.Google Scholar
  101. Schuster, W. (1987) Die Entwicklung des Anbaues und der Züchtung von Ölpflanzen in Mitteleuropa. Fat Sci. Technol. 89, 15–27.Google Scholar
  102. Schwetka, A. (1981) Samenfarbe bei Kohl und Rübsen und deren Einfluss auf die Samenfarbe synthetischer Rapsformen. Dissertation, Georg-August-Universität Göttingen, Germany.Google Scholar
  103. Shahidi, F. (1990) Canola and Rapeseed – Production, Chemistry, Nutrition and Processing Technology. Van Nostrand Reinhold, New York.Google Scholar
  104. Shiga, T. and Baba, S. (1973) Cytoplasmic male sterility in oilseed rape (Brassica napus L.) and its utilization to breeding. Jpn. J. Breed. 23, 187–197.Google Scholar
  105. Shirzagedan, M. and Röbbelen, G. (1985) Influence of seed colour and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm. 87, 235–237.Google Scholar
  106. Sjödin, C. and Glimelius, K. (1989) Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection. Theor. Appl. Genet. 78, 513–520.Google Scholar
  107. Slominski, B.A., Campbell, L.D. and Guenter, W. (1994) Carbohydrates and dietary fibre components of yellow and brown-seeded canola. J. Agric. Food Chem. 42, 704–707.Google Scholar
  108. Slominski, B.A., Simbaya, J., Campbell, L.D., Rakow, G. and Guenter, W. (1999) Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Anim. Feed Sci. Technol. 78, 249–262.Google Scholar
  109. Snowdon, R.J., Lühs, W. and Friedt, W. (2006) Oilseed rape. In: C. Kole (Ed.) Genome Mapping and Molecular Breeding, Vol. 2: Oilseeds. Springer, Heidelberg, pp. 55–114.Google Scholar
  110. Snowdon, R.J., Winter, H., Diestel, A. and Sacristan, M.D. (2000) Development and characterisation of Brassica napusSinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor. Appl. Genet. 101, 1008–1014.Google Scholar
  111. Staal, J., Kaliff, M., Bohman, S. and Dixelius, C. (2006) Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 46, 218–230.PubMedGoogle Scholar
  112. Stefansson, B.R. (1983) The development of improved rapeseed cultivars. In: J.K.G. Kramer, F.D. Sauer and W.J. Pigden (Eds.) High and Low Erucic Acid Rapeseed Oils. Academic Press, New York, pp. 143–159.Google Scholar
  113. Stefansson, B.R. and Hougen, F.W. (1964) Selection of rape plants (Brassica napus) with seed oil practically free of erucic acid. Can. J. Plant Sci. 44, 359–364.Google Scholar
  114. Stiewe, G., Sodhi, Y.S. and Röbbelen, G. (1995a) Establishment of a new CMS-system in Brassica napus. Proc. 9th Int. Rapeseed Congr., Cambridge, UK, Vol. 1, pp. 49–51.Google Scholar
  115. Stiewe, G., Witt, U., Hansen, S., Theis, R., Abel, W.O. and Röbbelen, G. (1995b) Natural and experimental evolution of CMS for rapeseed breeding. Genetic mechanisms for hybrid breeding. Adv. Plant Breed. 18, 59–76.Google Scholar
  116. Sun, S., Wang, Z., Tu, J., Zhang, J., Yu, F., McVetty, P.B.E. and Li, G. (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor. Appl. Genet. 114, 1305–1317.PubMedGoogle Scholar
  117. Theander, O., Aman, P., Miksche, G.E. and Yasuda, S. (1977) Carbohydrates, polyphenols, and lignin in seed hulls of different colors from turnip rapeseed. J. Agric. Food Chem. 25, 270–273.Google Scholar
  118. Thierfelder, A. and Friedt, W. (1995) Development of novel rapeseed (Brassica napus) varieties resistant against beet cyst nematodes (Heterodera schachtii). Proc. 9th Int. Rapeseed Congr., Cambridge, UK, Vol. 4, pp. 1208–1210.Google Scholar
  119. Thies, W. (1991) Determination of the phytic acid and sinapic acid esters in seeds of rapeseed and selection of genotypes with reduced concentrations of these compounds. Fat Sci. Technol. 93, 49–52.Google Scholar
  120. Thompson, K.F. (1972) Cytoplasmic male sterility in oilseed rape. Heredity 29, 253–257.Google Scholar
  121. Thompson, K.F. (1983) Breeding winter oilseed rapeseed Brassica napus. Adv. Appl. Biol. 7, 1–104.Google Scholar
  122. Tokumasu, S. (1951) Male sterility in Japanese radish (Raphanus sativus L.). Sci. Bull. Fac. Agric. Kyushu Univ. 13, 83–89.Google Scholar
  123. Trautwein, E.A. (1997) Food quality of rapeseed oil – aspects from a nutritional point of view. GCIRC Bull. 14, 123–128.Google Scholar
  124. Van Soest, L.J.M., Boukema, I.W. and Bas, N. (2004) The achievements of the EU GENRES CT99 109 project Brassica, including B. carinata. Cruciferae Newsl. 25, 117–118.Google Scholar
  125. Voss, A., Snowdon, R.J., Lühs, W. and Friedt, W. (2000) Intergeneric transfer of nematode resistance from Raphanus sativus into the Brassica napus genome. Acta Hort. 539, 129–134.Google Scholar
  126. Weber, S., Ünker, F. and Friedt, W. (2005) Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed. 124, 511–513.Google Scholar
  127. Werner, S., Diederichsen, E., Frauen, M., Schondelmaier, J. and Jung, C. (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor. Appl. Genet. 116, 363–372.PubMedGoogle Scholar
  128. Whetten, R.W., Mackay, J.J. and Sederoff, R. (1998) Recent advances in understanding lignin biosynthesis. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 49, 585–609.Google Scholar
  129. Winter, H., Diestel, A., Gärtig, S., Krone, N., Sterenberg, K. and Sacristan, M.D. (2003) Transfer of new blackleg resistances into oilseed rape. Proc. 11th Int. Rapeseed Congr., Copenhagen, Denmark, Vol. 1, pp. 19–21.Google Scholar
  130. Wu, J., Shen, J., Mao, X., Liu, K., Wie, L., Liu, P. and Yan, G. (2007) Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) Brassica napus L. using subtractive PCR and cDNA microarray. Plant Sci. 172, 204–211.Google Scholar
  131. Xiao, D. and Liu, H.L. (1982) Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agron. Sin. 8, 24–27.Google Scholar
  132. Xiao, L. (2008) Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica 164, 377–384.Google Scholar
  133. Xiao, S., Xu, J., Li, Y., Zhang, L., Shi, S., Wu, J. and Liu, K. (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50, 611–618.PubMedGoogle Scholar
  134. Xie, Y.Z., Hong, D.F., Xu, Z.H., Liu, P.W. and Yang, G.S. (2008) Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed. 127, 145–149.Google Scholar
  135. Yi, B., Chen, Y.N., Lei, S.L., Tu, J.X. and Fu, T.D. (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor. Appl. Genet. 113, 643–650.Google Scholar
  136. Zhao, J.W. and Meng, J.L. (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet. 106, 759–764.PubMedGoogle Scholar
  137. Zhao, J., Wang, J., An, L., Doerge, R.W., Chen, Z.J., Grau, C.R., Meng, J. and Osborn, T.C. (2007) Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 227, 13–24.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant BreedingJustus-Liebig-University of GiessenGiessenGermany

Personalised recommendations