Oil Crops pp 57-90 | Cite as


  • Elroy R. Cober
  • Silvia R. Cianzio
  • Vincent R. Pantalone
  • Istvan Rajcan
Part of the Handbook of Plant Breeding book series (HBPB, volume 4)


Quantitative Trait Locus Soybean Cultivar Germplasm Line Soybean Cyst Nematode Single Seed Descent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe, J., Xu, D.H., Suzuki, Y., Kanazawa, A. and Shimamoto, Y. (2003) Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor. Appl. Genet. 106, 445–453.PubMedGoogle Scholar
  2. Al-Tawaha, A.M. and Seguin, P. (2006) Effects of seeding date, row spacing and weeds on soybean isoflavone concentrations and other seed characteristics. Can. J. Plant Sci. 86, 1079–1082.Google Scholar
  3. Bharadwaj, C., Tara Satyavathi, C., Husain, S.M., Chauhan, G.S. and Srivastava, R.N. (2007) Divergence studies in early-maturing soybean (Glycine max (L.) Merrill) germplasm accessions in India. Plant Genet. Resour. Newsl. 149, 17–21.Google Scholar
  4. Bilyeu, K.D., Palavalli, L., Sleper, D.A. and Beuselinck, P.R. (2003) Three microsomal omega-3 fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci. 43, 1833–1838.CrossRefGoogle Scholar
  5. Boerma, H.R. (1979) Comparison of past and recently developed soybean cultivars in maturity groups I, II, and III. Crop Sci. 19, 611–613.CrossRefGoogle Scholar
  6. Boerma, H.R. and Specht, J.E. (2004) (Eds.) Soybeans: Improvement, Production, and Uses, Third Edition. Agron. Monogr. 16, ASA, CSSA, SSSA, Madison, WI, USA.Google Scholar
  7. Burnham, K.D., Dorrance, A.E., Francis, D.M., Fioritto, R.J. and St. Martin, S.K. (2003) Rps8, a new locus in soybean for resistance to Phytophthora sojae. Crop Sci. 43, 101–105.CrossRefGoogle Scholar
  8. Burton, J.W. (1987) Quantitative genetics: Results relevant to soybean breeding. In: Wilcox, J.R. (Ed.), Soybeans: Improvement, Production and Uses, Second Edition. American Society of Agronomy, Madison, WI, USA, pp. 211–247.Google Scholar
  9. Burton, J.W., Wilson, R.F., Brim, C.A. and Rinne, R.W. (1989) Registration of soybean germplasm lines with modified fatty acid composition of seed oil. Crop Sci. 29, 1583.CrossRefGoogle Scholar
  10. Burton, J.W., Wilson, R.F. and Brim, C.A. (1994) Registration of N79-2077-12 and N87-2122-4, two soybean germplasm lines with reduced palmitic acid in seed oil. Crop Sci. 34, 313.Google Scholar
  11. Burton, J.W., Pantalone, V.R. and Rebetzke, G.J. (2006) Registration of N98-4445A mid-oleic soybean germplasm. Crop Sci. 46, 1010–1012.CrossRefGoogle Scholar
  12. Byron, D.F. and Orf, J.H. (1991) Comparison of three selection procedures for development of early-maturing soybean lines. Crop Sci. 31, 656–660.CrossRefGoogle Scholar
  13. Cardinal, A.J. (2008) Molecular genetics and breeding for fatty acid manipulation in soybean. Plant Breed. Rev. 30, 259–294.CrossRefGoogle Scholar
  14. Cardinal, A.J., Burton, J.W., Camacho-Roger, A.M., Yang, J.H., Wilson, R.F. and Dewey, R.E. (2007) Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci. 47, 304–310.CrossRefGoogle Scholar
  15. Carter, T.E. Jr., Hymowitz, T. and Nelson, R. (2005) Biogeography, local adaptation, Vavilov, and genetic diversity in soybean. In: Werner, D. (Ed.), Biological Resources and Migration. Proceed. OECD Conference, Springer, Berlin, pp. 47–59.Google Scholar
  16. Carter, T.E. Jr., Nelson, R.L., Sneller, C.H. and Cui, Z. (2004) Genetic diversity in soybean. In: Boerma, H.R. and Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses, Third Edition. ASA, CSSA, SSSA, Madison, WI, USA. pp. 303–416.Google Scholar
  17. Chen, Y. and Nelson, R.L. (2005) Relationship between origin and genetic diversity in Chinese soybean germplasm. Crop Sci. 45, 1645–1651.CrossRefGoogle Scholar
  18. Choi, I.Y., Hyten, D.L., Matukumalli, L.K., Song, Q., Chaky, J.M., Quigley, C.V., Chase, K., Lark, K.G., Reiter, R.S., Yoon, M.S., Hwag, E.Y., Yi, S.I., Young, N.D., Shoemaker, R.C., van Tassell, C.P., Specht, J.E. and Cregan, P.B. (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176, 685–696.CrossRefGoogle Scholar
  19. Cianzio, S.R. (1985) Off-season nurseries enhance soybean breeding and genetics programs. In: Shibles, R.M. (Ed.), Proc. World Soybean Research Conference III. Westview Press, Boulder, CO, pp. 329–336.Google Scholar
  20. Cianzio, S.R., Arelli, P., Diers, B., Knapp, H., Lundeen, P., Rivera-Velez, N. and Gebhart, G. (2007a) Soybean germplasm lines AR4SCN, AR5SCN, AR6SCN, AR7SCN, and AR8SCN. ISURF # Iowa State University, Ames, IA, USA.Google Scholar
  21. Cianzio, S.R., Girma, T., Bronson, C., Lundeen, P., Gebhart, G. and Rivera-Velez, N. (2007b) Soybean germplasm line AR9BSR. ISURF # 03577, Iowa State University, Ames, IA, USA.Google Scholar
  22. Cianzio, S.R., Arelli, P., Uphoff, M., Mansur, L., Schultz, S. and Ruff, R. (2002) Soybean line A95-684043. ISURF #02975, Iowa State University, Ames, IA, USA.Google Scholar
  23. Cianzio, S.R., Lightfoot, D.A., Niblack, T.L., Rivera-Velez, N., Lundeen, P. and Gebhart, G. (2006a) Soybean line AR1. ISURF #03376, Iowa State University, Ames, IA, USA.Google Scholar
  24. Cianzio, S.R., Shoemaker, R.C., Charlson, D., Gebhart, G., Lundeen, P. and Rivera-Velez, N. (2006b) Soybean line AR2. ISURF #03381, Iowa State University, Ames. IA, USA.Google Scholar
  25. Cianzio, S.R., Shoemaker, R.C., Charlson, D., Gebhart, G., Lundeen, P. and Rivera-Velez, N. (2006c) Soybean line AR3. ISURF #03380, Iowa State University, Ames, IA, USA.Google Scholar
  26. Cober, E.R., Morrison, M.J., Ma, B. and Butler, G. (2005) Genetic improvement rates of short-season soybean increase with plant population. Crop Sci. 45, 1029–1034.CrossRefGoogle Scholar
  27. Committee on Genetic Vulnerability of Major Crops (1972) Genetic vulnerability of major crops. Nat. Acad. of Sci. Washington, DC, USA.Google Scholar
  28. Cui, S.Y. and Yu, D.Y. (2005) Estimates of relative contribution of biomass, harvest index and yield components to soybean yield improvements in China. Plant Breed. 124, 473–476.CrossRefGoogle Scholar
  29. Cui, Z., Carter, T.E. and Burton, J. (2000) Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. Crop Sci. 40, 1470–1481.CrossRefGoogle Scholar
  30. Destro, D., Bizeti, H.S., Garcia, L.A., de Batista Fonseca, I.C., Montalvan, R. and Miglioranza, E. (2003) Comparison between the SPD and the SPDS methods for segregating generation advancement in soybean. Braz. Arch. Biol. Technol. 46, 545–551.CrossRefGoogle Scholar
  31. Dong, Y.S., Zhuang, B.C., Zhao, L.M., Sun, H. and He, M.Y. (2001) The genetic diversity of annual wild soybeans grown in China. Theor. Appl. Genet. 103, 99–103.CrossRefGoogle Scholar
  32. Dong, Y.S., Zhao, L.M., Liu, B., Wang, Z.W., Jin, Z.Q. and Sun, H. (2004) The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet. 108, 931–936.PubMedCrossRefGoogle Scholar
  33. Dupont, J., White, P.J. and Feldman, E.B. (1991) Saturated and hydrogenated fats in foods in relation to health. J. Am. Coll. Nutr. 10, 577–592.PubMedGoogle Scholar
  34. Egli, D.B. (2008) Soybean yield trends from 1972 to 2003 in mid-western USA. Field Crops Res. 106, 53–59.CrossRefGoogle Scholar
  35. FAOSTAT (2008) Production, Crops, Soybean. Food and Agriculture Organization. http://faostat.fao.org/, verified on October 2, 2008.
  36. Fasoula, V.A. and Boerma, H.R. (2007) Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars. Crop Sci. 47, 367–373.CrossRefGoogle Scholar
  37. Fasoula, V.A. and Boerma, H.R. (2005) Divergent selection at ultra-low plant density for seed protein and oil content within soybean cultivars. Field Crops Res. 91, 217–229.CrossRefGoogle Scholar
  38. Fehr, W.R. and Hammond, E.G. (1998) Soybeans having low linolenic acid and elevated stearic acid contents. United States Patent Number 5,714,668.Google Scholar
  39. Fehr, W.R. and Hammond, E.G. (1996) Soybeans having low linolenic acid content and method of production. United States Patent Number 5534425.Google Scholar
  40. Fehr, W.R., Welke, G.A., Hammond, E.G., Duvick, D.N. and Cianzio, S.R. (1992) Inheritance of reduced linolenic acid content in soybean genotypes A16 and A17. Crop Sci. 32, 903–906.CrossRefGoogle Scholar
  41. Fischer, A., Pallauf, J., Gohil, K., Weber, S.U., Packer, L. and Rimbach, G. (2001) Effect of selenium and vitamin E deficiency on differential gene expression in rat liver. Biochem. Biophys. Res. Commun. 285, 470–475.PubMedCrossRefGoogle Scholar
  42. Frey, K.J. (1996) National plant breeding study – I. Human and financial resources devoted to plant breeding research and development in the United States in 1994. Iowa Agric. Home Econ. Spec. Rep. 98, Iowa State University, Ames, IA, USA.Google Scholar
  43. Gizlice, Z, Carter, T.E. Jr. and Burton, J.W. (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci. 34, 1143–1151.CrossRefGoogle Scholar
  44. Goldblatt, P. (1981) Cytology and the phylogeny of Leguminosae. In: R.M. Polhill and P.H. Raven (Eds.), Advances in legume systematic, Part 2. Royal Botanic Garden, Kew, UK, pp. 427–463.Google Scholar
  45. Graef, G.L., Fehr, W.R. and Hammond, E.G. (1985) Inheritance of three stearic acid mutants of soybean. Crop Sci. 25, 1076–1079.CrossRefGoogle Scholar
  46. Guzman, P.S., Diers, B.W., Neece, D.J., Martin, S.K.S., Leroy, A.R., Grau, C.R., Hughes, T.J. and Nelson, R.L. (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci 47, 111–122.CrossRefGoogle Scholar
  47. Hammond, E.G. and Fehr, W.R. (1983) Registration of A5 germplasm line of soybean. Crop Sci. 23, 192.Google Scholar
  48. Harlan, J.R. and de Wet, J.J.M. (1971) Toward a rational classification of cultivated plants. Taxon 20, 509–517.CrossRefGoogle Scholar
  49. Hawkins, S.E., Fehr, W.R. and Hammond, E.G. (1983) Resource allocation in breeding for fatty acid composition of soybean oil. Crop Sci. 23, 900–904.CrossRefGoogle Scholar
  50. Hegstad, J.M., Bollero, G. and Nickell, C.D. (1999) Potential of using plant row yield trials to predict soybean yield. Crop Sci. 39, 1671–1675.CrossRefGoogle Scholar
  51. Helms, T.C., Orf, J.H. and Scott, R.A. (1995) Nearest neighbour-adjusted means as a selection criterion within two soybean populations. Can. J. Plant Sci. 75, 857–863.Google Scholar
  52. Helms, T.C., Orf, J.H. and Terpstra, J.T. (2002) Resource allocation to select for yield in soybean. Crop Sci. 42, 1493–1497.CrossRefGoogle Scholar
  53. Hitz, W.D., Yadav, N.S., Reiter, R.S., Mauvais, C.J. and Kinney, A.J. (1995) Reducing polyunsaturation in oils of transgenic canola and soybean. In: Kader, J.C. (Ed.), Plant Lipid Metabolism. Kluwer, Dordrecht, The Netherlands, pp. 506–508.Google Scholar
  54. Huffman, W.E. (2004) Production, identity preservation, and labeling in a marketplace with genetically modified and non-genetically modified foods. Plant Physiol. 134, 3–10.PubMedCrossRefGoogle Scholar
  55. Hymowitz, T. (2004) Speciation and cytogenetics. In: Boerma, H.R. and Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses, Third Edition. ASA, CSSA, SSSA, Madison, WI, USA. pp. 97–136.Google Scholar
  56. Hyten, D.L., Song, Q., Zhu, Y., Choi, I., Nelson, R.L. Costa, J.W., Specht, J.E., Shoemaker, R.C. and Cregan, P.B. (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 103, 16666–16671.PubMedCrossRefGoogle Scholar
  57. Kabelka, E.A., Diers, B.W., Fehr, W.R., LeRoy, A.R., Baianu, I.C., You, T., Neece, D.J. and Nelson, R.L. (2004) Putative Alleles for Increased Yield from Soybean Plant Introductions. Crop Sci. 44, 784–791.Google Scholar
  58. Karmakar, P.G. and Bhatnagar, P.S. (1996) Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica 90, 95–103.Google Scholar
  59. Kornegay, J., Beltrán, J.A. and Ashby, J. (1996) Farmer selections within segregating populations of common bean in Colombia. In: Eyzaguiree, P. and Iwanaga, M. (Eds.), Workshop on participatory plant breeding, Wageningen, Netherlands. 26–26 July 1995. International Plant Genetics Resources Institute (IPGRI), Rome, Italy.Google Scholar
  60. Kris-Etherton, P.M. and Yu, S. (1997) Individual fatty acid effects on plasma lipids and lipoproteins: human studies. Am. J. Clin. Nutr. 65, 1628S–1644S.PubMedGoogle Scholar
  61. Kucharik, C.J. (2008) Contribution of planting date trends to increased maize yields in the central United States. Agron. J. 100, 328–336.CrossRefGoogle Scholar
  62. Kumudini, S., Hume, D.J. and Chu, G. (2001) Genetic improvement in short season soybeans: I. Dry matter accumulation, partitioning, and leaf area duration. Crop Sci. 41, 391–398.CrossRefGoogle Scholar
  63. Li, Z. and Nelson, R.L. (2001) RAPD marker diversity among soybean and wild soybean accessions from four Chinese provinces. Crop Sci. 41, 1337–1347.CrossRefGoogle Scholar
  64. Li, Z. and Nelson, R.L. (2002) RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci. 42, 1737–1744.CrossRefGoogle Scholar
  65. Li, Z., Qiu, L., Thompson, J.A., Welsh, M.M. and Nelson, R.L. (2001) Molecular genetic analysis of U.S. and Chinese soybean ancestral lines. Crop Sci. 41, 1330–1336.CrossRefGoogle Scholar
  66. List, G.R., Pelloso, T., Orthoefer, F., Chrysam, M. and Mounts, T.L. (1995) Preparation and properties of zero trans soybean oil margarines. J. Am. Oil Chem. Soc. 72, 383–384.CrossRefGoogle Scholar
  67. Lu, P., Shannon, J.G., Sleeper, D.A., Nguyen, H.T., Cianzio, S.R. and Arelli, P.R. (2006) Genetics of cyst nematode resistance in soybean PIs 467312 and 507354. Euphytica 149, 259–265.CrossRefGoogle Scholar
  68. Luedders, D. (1977) Genetic improvement in yield of soybeans. Crop Sci. 17, 971–972.CrossRefGoogle Scholar
  69. Ma, B.L., Dwyer, L.M., Costa, C., Cober, E.R. and Morrison, M.J. (2001) Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 93, 1227–1234.CrossRefGoogle Scholar
  70. Macchiavelli, R. and Beaver, J.S. (2001) Effect of number of seed bulked and population size on genetic variability when using the multiple-seed procedure of SSD. Crop Sci. 41, 1513–1516.CrossRefGoogle Scholar
  71. Mansur, L.M., Orf, J.H., Chase, K., Jarvik, T., Cregan, P.B. and Lark, K.G. (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci. 36, 1327–1336.CrossRefGoogle Scholar
  72. Meksem, K., Njiti, V.N., Banz, W.J., Iqbal, M.J., Kassem, M.M., Hyten, D.L., Yuang, J., Winters, T.A. and Lightfoot, D.A. (2001) Genomic regions that underlie soybean seed isoflavone content. J. Biomed. Biotechnol. 1, 38–44.PubMedCrossRefGoogle Scholar
  73. Morrison, M.J., Voldeng, H.D. and Cober, E.R. (1999) Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 91, 685–689.CrossRefGoogle Scholar
  74. Morrison, M.J., Voldeng, H.D. and Cober, E.R. (2000) Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 92, 780–784.CrossRefGoogle Scholar
  75. Neff, W.E., List, G.R. and Byrdwell, W.C. (1999) Effect of triacylglycerol composition on functionality of margarine base stocks. Lebensm. Wiss. Technol. 32, 416–424.CrossRefGoogle Scholar
  76. Nelson, R.L., Amdor, P.J., Orf, J.H., Lambert, J.W., Cavins, J.F., Kleiman, R., Laviolette, F.A. and Athow, K.A. (1987) Evaluation of the USDA soybean germplasm collection: Maturity groups 000 to IV (PI 273.483 to PI 427.107). USDA Tech. Bull. 1718.Google Scholar
  77. Njiti, V., Meksem, K., Lightfoot, D.A., Banz, W.J. and Winters, T.A. (1999) Molecular markers of phytoestrogen content in soybeans. J. Med. Food 2, 165–167.CrossRefGoogle Scholar
  78. Orf, J.H., Chase, K., Jarvik, T., Mansur, L.M., Cregan, P.B., Adler, F.R. and Lark, K.G. (1999a) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci. 39, 1642–1651.CrossRefGoogle Scholar
  79. Orf, J.H., Chase, K., Adler, F.R., Mansur, L.M. and Lark, K.G. (1999b) Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci. 39, 1652–1657.CrossRefGoogle Scholar
  80. Palmer, R.G. and Hymowitz, T. (2004) Soybean: Germplasm, breeding, and genetics. In: Wrigley, C., Corke, H. and Walker, C. (Eds.), Encyclopedia of Grain Science. Elsevier, London, UK, pp. 136–146.CrossRefGoogle Scholar
  81. Palmer, R.G., Gai, J., Sun, H. and Burton, J.W. (2001) Production and evaluation of hybrid soybean. Plant Breed. Rev. 21, 263–307.Google Scholar
  82. Pantalone, V.R., Rebetzke, G.J., Burton, J.W. and Wilson, R.F. (1997a) Genetic regulation of linolenic acid concentration in wild soybean (Glycine soja) accessions. J. Am. Oil Chem. Soc. 74, 159–163.CrossRefGoogle Scholar
  83. Pantalone, V.R., Rebetzke, G.J., Wilson, R.F. and Burton, J.W. (1997b) Relationship between seed mass and linolenic acid in progeny of crosses between cultivated and wild soybean. J. Am. Oil Chem. Soc. 74, 563–568.CrossRefGoogle Scholar
  84. Pantalone, V.R., Walker, D.R., Dewey, R.E. and Rajcan, I. (2004) DNA marker-assisted selection for improvement of soybean oil concentration and quality. In: Wilson, R.F., Stalker, H.T. and Brummer, R.C. (Eds.), Genomics for Legume Crops. pp. 283–311.Google Scholar
  85. Pantalone, V.R., Wilson, R.F., Novitzky, W.P. and Burton, J.W. (2002) Genetic regulation of elevated stearic acid concentration in soybean oil. J. Am. Oil Chem. Soc. 79, 549–553.CrossRefGoogle Scholar
  86. Panthee, D.R., Pantalone, V.R., Sams, C.E., Saxton, A.M., West, D.R., Orf, J.H. and Killam, A.S. (2006) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor. Appl. Genet. 112, 546–553.PubMedCrossRefGoogle Scholar
  87. Parrot, W.A. and Clemente, T.E. (2004) Transgenic soybean. In: Boerma, H.R. and Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses, Third Edition. ASA, CSSA, SSSA, Madison, WI, USA, pp. 265–302.Google Scholar
  88. Primomo, V.S., Poysa, V., Ablett, G.R., Jackson, C.-J. and Rajcan, I. (2005a) Agronomic performance of recombinant inbred line populations segregating for isoflavone content in soybean seeds. Crop Sci. 45, 2203–2211.CrossRefGoogle Scholar
  89. Primomo, V.S., Poysa, V., Ablett, G.R., Jackson, C.-J., Gijzen, M. and Rajcan, I. (2005b) Mapping QTL for individual and total isoflavone content in soybean. Crop Sci. 45, 2454–2464.CrossRefGoogle Scholar
  90. Quintero, V.P., Maldonado Hernández, L., Maldonado Moreno, N., Simpson, J., Martínez de la Vega, O. and Gil Vega, K. del C. (2005) Genetic diversity in soybean of the humid tropics of Mexico determined by AFLP markers. Revista Fitotécnica Mexicana 28, 63–69.Google Scholar
  91. Rahman, S.M., Takagi, Y. and Kinoshita, T. (1997) Genetic control of high stearic acid content in seed oil of two soybean mutants. Theor. Appl. Genet. 95, 772–776.CrossRefGoogle Scholar
  92. Rajcan, I., Hou, G. and Weir, A.D. (2005) Advances in breeding of seed quality traits in soybean. J. Crop Improv. 14, 145–174.CrossRefGoogle Scholar
  93. Rasmusson, D.C. and Phillips, R.L. (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci. 37, 303–310.CrossRefGoogle Scholar
  94. Rebetzke, G.J., Pantalone, V.R., Burton, J.W., Carter Jr., T.E. and Wilson, R.F. (1997) Genotypic variation for fatty acid content in selected Glycine max x Glycine soja populations. Crop Sci. 37, 1636–1640.CrossRefGoogle Scholar
  95. Ross, A.J., Fehr, W.R., Welke, G.A. and Cianzio, S.R. (2000) Agronomic and seed traits of 1%-linolenate soybean genotypes. Crop Sci. 40, 383–386.CrossRefGoogle Scholar
  96. Ru, Z., Zhou, C., Weifeng, L. and Baorong, L. (2006) Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chin. Sci. Bull. 51, 1219–1227.CrossRefGoogle Scholar
  97. Sandhu, D., Schallock, K.G., Rivera-Velez, N., Lundeen, P., Cianzio, S.R. and Bhattacharyya, M. K. (2005) Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J. Hered. 96, 536–541.PubMedCrossRefGoogle Scholar
  98. Shoemaker, R.C., Schlueter, J.A., Cregan, P. and Vodkin, L. (2003) The status of soybean genomics and its role in the development of soybean biotechnologies. AgBioForum 6, 4–7.Google Scholar
  99. Singh, R.J. and Hymowitz, T. (1985) Diploid-like meiotic behavior in synthesized amphidiploids of the genus Glycine Willd. subgenus Glycine. Can. J. Genet. Cytol. 27, 655–660.Google Scholar
  100. Singh, R.J., Kim, H.H. and Hymowitz, T. (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor. Appl. Genet. 103, 212–218.CrossRefGoogle Scholar
  101. Singh, R.J., Nelson, R.L. and Chung, G.H. (2007) Genetic resources, chromosome engineering, and crop improvement. In: Singh, R.J. (Ed.), Oilseed Crops. Volume 4. CRC Press, Boca Raton, FL, pp. 13–50.Google Scholar
  102. Sleper, D.A. and Shannon, J.G. (2003) Role of public and private soybean breeding programs in the development of soybean varieties using biotechnology. AgBioForum 6, 27–32.Google Scholar
  103. Smalley, M.D., Fehr, W.R., Cianzio, S.R., Han, F., Sebastian, S.A. and Streit, L.G. (2004) Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Sci. 44, 436–442.Google Scholar
  104. Sneller, C.H. (1994) Pedigree analysis of elite soybean lines. Crop Sci. 34, 1515–1522.CrossRefGoogle Scholar
  105. Soyatech Inc. (2008). Soyfoods: The U.S. Market 2008. Soyatech Inc., Bar Harbor, ME, USA.Google Scholar
  106. Specht, J.E. and Williams, J.H. (1984) Contribution of genetic technology to soybean productivity – Retrospect and prospect. In: Fehr, W.R. (Ed.), Genetic contribution to yield gains of five major crops. CSSA and ASA, Madison, WI, USA, pp. 49–74.Google Scholar
  107. Specht, J.E., Hume, D.J. and Kumudini, S.V. (1999) Soybean yield potential – A genetic and physiological perspective. Crop Sci. 39, 1560–1570.CrossRefGoogle Scholar
  108. Spencer, M.M., Pantalone, V.R., Meyer, E.J., Landau-Ellis, D. and Hyten, Jr., D.L. (2003) Mapping the Fas locus controlling stearic acid content in soybean. Theor. Appl. Genet. 106,615–619.PubMedGoogle Scholar
  109. St. Martin, S.K. and Futi, X. (2000) Genetic gain in early stages of a soybean breeding program. Crop Sci. 40, 1559–1564.CrossRefGoogle Scholar
  110. St. Martin, S.K. and Geraldi, I.O. (2002) Comparison of three procedures for early generation testing of soybean. Crop Sci. 42, 705–709.CrossRefGoogle Scholar
  111. Stacey, G., Vodkin, L., Parrott, W.A. and Shoemaker, R.C. (2004) National Science Foundation-sponsored workshop report. Draft plan for soybean genomics. Plant Physiol. 135, 59–70.PubMedCrossRefGoogle Scholar
  112. Thompson, J.A. and Nelson, R.L. (1998) Core set of primers to evaluate genetic diversity in soybean. Crop Sci. 38, 1356–1362.CrossRefGoogle Scholar
  113. Tokatlidis, I.S., Tsialtas, J.T., Xynias, I.N., Tamoutsidis, E. and Irakli, M. (2004) Variation within a bread wheat cultivar for grain yield, protein content, carbon isotope discrimination and ash content. Field Crops Res. 86, 33–42.CrossRefGoogle Scholar
  114. Tollenaar, M. and Wu, J. (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39, 1597–1604.CrossRefGoogle Scholar
  115. United Soybean Board (2008) 15th annual consumer attitudes about nutrition. Insights into nutrition, health and soyfoods. USB, Chesterfield, MO, USA.Google Scholar
  116. Ustun, A., Allen, F.L. and English, B.C. (2001) Genetic progress in soybean of the U.S. Midsouth. Crop Sci. 41, 993–998.CrossRefGoogle Scholar
  117. Vavilov, N.I. (1922) The law of homologous series in variation. J. Genetics 12, 47–89.CrossRefGoogle Scholar
  118. Vavilov, N.I. (1927) Geographical regularities in the distribution of the genes of cultivated plants (Russ., Engl. summary). Bull. Appl. Bot. Gen. Sel. 17, 411–428.Google Scholar
  119. Voldeng, H.D., Cober, E.R., Hume, D.J., Gillard, C. and Morrison, M.J. (1997) Fifty-eight years of genetic improvement of short-season soybean cultivars in Canada. Crop Sci. 37, 428–431.CrossRefGoogle Scholar
  120. Vollmann, J., El Hadad, T., Gretzmacher, R. and Ruckenbauer, P. (1996) Seed protein content of soybean as affected by spatial variation in field experiments. Plant Breed. 115, 501–507.CrossRefGoogle Scholar
  121. Webb, D.M. (1999) Positional cloning of brown stem rot resistance genes in soybeans. United States Patent Number 5,948,953.Google Scholar
  122. Webb, D.M. (2000) Positional cloning of soybean cyst nematode resistance genes. United States Patent Number 6,162,967.Google Scholar
  123. Weltzien, E.R., Smith, M.E., Meitzner, L.S. and Sperling, L. (2003) Technical and institutional issues in participatory plant breeding – From the perspective of formal plant breeding: a global analysis of issues, results, and current experience. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.Google Scholar
  124. Wilcox, J.R. (2001) Sixty years of improvement in publicly developed elite soybean lines. Crop Sci. 41, 1711–1716.CrossRefGoogle Scholar
  125. Wilcox, J.R., Cavins, J.F. and Nielsen, N.C. (1984) Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil Chem. Soc. 61, 97–100.CrossRefGoogle Scholar
  126. Wilcox, J.R., Schapaugh, Jr., W.T., Bernard, R.L., Fehr, W.R. and Niehaus, M.H. (1979) Genetic improvement of soybeans in the Midwest. Crop Sci. 19, 803–805.CrossRefGoogle Scholar
  127. Wilcox, J.R. (2004) World distribution and trade of soybean. In: Boerma, H.R. and Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses, Third Edition. ASA, CSSA, SSSA, Madison, WI, USA, pp. 1–14.Google Scholar
  128. Wilson, R.F. (2004) Seed composition. In: Boerma, H.R. and Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses, Third Edition. ASA, CSSA, SSSA, Madison, WI, USA, pp. 621–677.Google Scholar
  129. Wohleser, H.S. (2006) Genetic and Environmental Analysis of Tocopherols in Soybean Seeds. Ph.D. Dissertation, University of Guelph, Guelph, Ontario, Canada.Google Scholar
  130. Wong, J.C., Lambert, R.J., Tadmor, Y. and Rocheford, T.R. (2003) QTL associated with accumulation of tocopherols in maize. Crop Sci. 42, 2257–2266.CrossRefGoogle Scholar
  131. Yamanaka, N., Sato, H., Yang, Z., Xu, D.H., Catelli, L.L., Binneck, E., Arrabal Arias, C.A., Vilela Abdelnoor, R. and Lima Nepomuceno, A. (2007) Genetic relationships between Chinese, Japanese, and Brazilian soybean gene pools revealed by simple sequence repeat (SSR) markers. Genet. Mol. Biol. 30, 1–16.CrossRefGoogle Scholar
  132. Yamanaka, N., Okabe, A., Adachi, T., Yang, C., Yang, G., Ma, X., Cai, L. and Song, Z. (2004) Characteristics and genetic diversity of soybean genetic resources in Northeast China. Japan Internat. Res. Center Agric. Sci., published 10 August 2004.Google Scholar
  133. Zohrabian, A., Traxler, G., Caudill, S. and Smale, M. (2003) The marginal value of an accession. Biotechnology and Genetic Resource Policies. What is a Genebank Worth? International Food Policy Research Institute (IFPRI) Brief 9, 1–2.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elroy R. Cober
    • 1
  • Silvia R. Cianzio
    • 2
  • Vincent R. Pantalone
    • 3
  • Istvan Rajcan
    • 4
  1. 1.Agriculture and Agri-food CanadaEastern Cereal and Oilseed Crop Research CentreOttawaCanada
  2. 2.Department of AgronomyIowa State UniversityAmesUSA
  3. 3.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Plant AgricultureUniversity of GuelphGuelphCanada

Personalised recommendations