Oil Crops pp 517-533 | Cite as


  • Winthrop B. Phippen
Part of the Handbook of Plant Breeding book series (HBPB, volume 4)


Temperate plant species whose seed oils are rich in medium-chain fatty acids (MCFAs) are relatively rare (Wolf et al. 1983). One species of particular interest is cuphea, a temperate annual oilseed crop with high levels of MCFAs such as capric and lauric acid (Graham et al. 1981; Graham and Kleiman 1985; Graham and Kleiman 1992). These fatty acids are highly valued as feedstocks in manufacturing cosmetics, soaps and detergents, pharmaceuticals, and industrial lubricants (Wolf et al. 1983; Thompson et al. 1990; Cermak and Isbell 2004). Additionally, new uses for MCFAs have the potential to significantly replace petroleum-based products like motor oil, hydraulic fluid, and diesel fuel (Geller et al. 1999; Geller and Goodrum 2000; Leroux et al. 2006). This chapter primarily covers the advances of cuphea research since the previous reviews of cuphea breeding presented by Knapp (1990a, 1993) with the main focus on oilseed production in the cuphea species of C. lanceolata, and C....


Fatty Acid Profile Lauric Acid Seed Dormancy Capric Acid Progeny Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amarasinghe, V., Graham, S.A. and Graham, A. (1991) Trichome morphology in the genus Cuphea (Lythraceae). Bot. Gaz. 152, 77–90.CrossRefGoogle Scholar
  2. Arkcoll, D. (1988) Lauric oil resources. Econ. Bot. 42, 195–205.CrossRefGoogle Scholar
  3. Babayan, V.K. (1981) Medium chain length fatty acid esters and their medical and nutritional applications. J. Amer. Oil Chem. Soc. 58, 49–51.CrossRefGoogle Scholar
  4. Barringer, B. (2007) Polyploidy and self-fertilization in flowering plants. Amer. J. Bot. 94, 1527–1533.CrossRefGoogle Scholar
  5. Behle, R.W. and Isbell, T.A. (2005) Evaluation of cuphea as a rotation crop for control of western corn rootworm (coleoptera: Chrysomelidae). J. Econ. Ent. 98, 1984–1991.CrossRefGoogle Scholar
  6. Berti, M.T. and Johnson, B.L. (2008) Seed germination response of cuphea to temperature. Ind. Crops Prod. 27, 17–21.CrossRefGoogle Scholar
  7. Berti, M., Johnson, B., Forcella, F. and Gesch, R.W. (2005) Cuphea seed yield and oil content response to harvest methods. ASA-CSSA-SSSA 2005 International Annual Meetings. Salt Lake City, UT. CR-ROM Abstract 418a.Google Scholar
  8. Berti, M.T., Johnson, B.L. and Manthey, L.K. (2007) Seed physiological maturity in cuphea. Ind. Crops Prod. 25, 190–201.CrossRefGoogle Scholar
  9. Campbell, T.A. (1987) Chemical mutagenesis in two cuphea species. Can. J. Plant Sci. 67, 909–917.CrossRefGoogle Scholar
  10. Chalker, S.L. (1999) Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9.CrossRefGoogle Scholar
  11. Cermak, S. and Isbell, T. (2004) Estolides – The next biobased functional fluid. Inform 15, 515–517.Google Scholar
  12. Cermak, S.C., Isbell, T.A., Isbell, J.E., Akerman, G.G., Lowery, B.A. and Deppe, A.B. (2005) Batch drying of cuphea seeds. Ind. Crops Prod. 21, 353–359.CrossRefGoogle Scholar
  13. Cermak, S.C., John, A.L. and Evangelista, R.L. (2007) Enrichment of decanoic acid in cuphea fatty acids by molecular distillation. Ind. Crops Prod. 26, 93–99.CrossRefGoogle Scholar
  14. Crane, J., Kovach, D., Gardner, C. and Walters, C. (2006) Triacylglycerol phase and ‘intermediate’ seed storage physiology: A study of cuphea carthagenensis. Planta 223, 1081–1089.CrossRefPubMedGoogle Scholar
  15. Dezanet, A., Krepsky, P.B., Mathioni, S.M., Farias, M.R. and Nodari, R.O. (2007) Development, biomass production and flavonoid contents in plants of Cuphea carthagenensis (jacq.) macbride, submitted to different substrates, irrigation systems and leaf pruning. Latin Am. J. Pharm. 26, 51–56.Google Scholar
  16. Earle, F.R., Glass, C.A., Geisinger, G.C, Wolff, I.A and Jones, Q. (1960) Search for new industrial oils. J. Am. Oil Chem. Soc. 37, 440–447.CrossRefGoogle Scholar
  17. Evangelista, R.L. and Cermak, S.C. (2007) Full-press oil extraction of cuphea (PSR23) seeds. J. Am. Oil Chem. Soc. 84, 1169–1175.CrossRefGoogle Scholar
  18. Evangelista, R.L., Wu, Y. and Hojilla-Evangelista, M. (2006) Characterization of proteins in cuphea (PSR23) seeds. J. Am. Oil Chem. Soc. 83, 785–790.CrossRefGoogle Scholar
  19. Fehr, W.R. (1987) Interspecific hybridization. In: Principles of Cultivar Development. McGraw Hill, New York, pp. 165–171.Google Scholar
  20. Filichkin, S.A., Slabaugh, M.B. and Knapp, S.J. (2006) New FATB thioesterases from a high-laurate cuphea species: Functional and complementation analyses. Eur. J. Lipid Sci. Tech. 108, 979–990.CrossRefGoogle Scholar
  21. Forcella, F., Amundson, G.B., Gesch, R.W., Papiernik, S.K., Davis, V.M. and Phippen, W.B. (2005a) Herbicides tolerated by cuphea (Cuphea viscosissima x lanceolata). Weed Technol. 19, 861–865.CrossRefGoogle Scholar
  22. Forcella, F., Gesch, R.W. and Isbell, T.A. (2005b) Seed yield, oil, and fatty acids of cuphea in the northwestern corn belt. Crop Sci. 45, 2195–2202.CrossRefGoogle Scholar
  23. Forcella, F., Spokas, K., Gesch, R.W., Isbell, T.A. and Archer, D.W. (2007) Swathing and windrowing as harvest aids for cuphea. Agron. J. 99, 415–418.CrossRefGoogle Scholar
  24. Geller, D.P. and Goodrum, J.W. (2000) Rheology of vegetable oil analogs and triglycerides. Am. Oil Chem. Soc. 77, 111–114.CrossRefGoogle Scholar
  25. Geller, D.P., Goodrum, J.W. and Knapp, S.J. (1999) Fuel properties of oil from a genetically altered Cuphea viscosissima. Ind. Crops Prod. 9, 85–91.CrossRefGoogle Scholar
  26. Gesch, R.W. and Forcella, F. (2007) Differential sensitivity to temperature of cuphea vegetative and reproductive growth. Ind. Crops Prod. 25, 305–309.CrossRefGoogle Scholar
  27. Gesch, R.W., Forcella, F., Barbour, N.W., Phillips, B. and Voorheees, W.B. (2002) Yield and growth response of cuphea to sowing date. Crop Sci. 42, 1959–1965.CrossRefGoogle Scholar
  28. Gesch, R.W., Forcella, F., Barbour, N.W., Voorheees, W.B. and Phillips, B. (2003) Growth and yield response of cuphea to row spacing. Field Crops Res. 81, 193–199.CrossRefGoogle Scholar
  29. Gesch, R.W., Forcella, F., Olness, A., Archer, D.W. and Hebard, A. (2006) Agricultural management of cuphea and potential for commercial production in the northern corn belt. Ind. Crops Prod. 24, 300–306.CrossRefGoogle Scholar
  30. Gesch, R.W., Sharratt, B., Forcella, F. and Olness, A. (2004) Physiological response and seed yield of irrigated cuphea. 95th AOCS Annual Meeting and Expo. Cincinnati, OH, p. 71.Google Scholar
  31. Graham, S.A. (1988) Revision of Cuphea section Heterodon (Lythraceae). Sys. Bot. Mono. 20, 1–168.CrossRefGoogle Scholar
  32. Graham, S.A. (1989a) Chromosome numbers in Cuphea (Lythraceae): New counts and a summary. Amer. J. Bot. 76, 1530–1540.CrossRefGoogle Scholar
  33. Graham, S.A. (1989b) Cuphea: A new plant source of medium-chain fatty acids. Food Sci. Nutr. 28, 139–173.Google Scholar
  34. Graham, S.A. and Cavalcanti, T.B. (2001) New chromosome counts in the Lythraceae and a review of chromosome numbers in the family. Syst. Bot. 26, 445–458.Google Scholar
  35. Graham, S.A., Hirsinger, F. and Röbbelen, G. (1981) Fatty acids of cuphea (Lythraceae) seed lipids and their systematic significance. Amer. J. Bot. 68, 908–917.CrossRefGoogle Scholar
  36. Graham, S.A. and Kleiman, R. (1985) Fatty acid composition in cuphea seed oils from Brazil and Nicaragua. Am. Oil Chem. Soc. 62, 81–82.CrossRefGoogle Scholar
  37. Graham, S.A. and Kleiman, R. (1992) Composition of seed oils in some Latin American Cuphea (Lythraceae). Ind. Crops Prod. 1, 31–34.CrossRefGoogle Scholar
  38. Hardin, B. (1991) Cuphea – plants with a beautiful future. Agric. Res. 39, 16–18.Google Scholar
  39. Hirsinger, F. (1980) Untersuchungen zur Beurteilung der Anbauwürdigkeit einer neuen MCT Ölpflanze Cuphea (Lythraceae). 2. Chemische Mutagenese bei Cuphea aperta Koehne. Z. Pflanzenzüchtg. 85, 157–169.Google Scholar
  40. Hirsinger, F. (1985) Agronomic potential and seed composition of Cuphea, an annual crop for lauric and capric seed oils. J. Amer. Oil Chem. Soc. 62, 76–80.CrossRefGoogle Scholar
  41. Hirsinger, F. and Knowles, P.F. (1984) Morphological and agronomic description of selected Cuphea germplasm. Econ. Bot. 38, 439–451.CrossRefGoogle Scholar
  42. Hirsinger, F. and Röbbelen, G. (1980) Studies on the agronomical value of a new MCT oil crop, Cuphea (Lythraceae). 3. Chemical mutagenesis of C. lanceolata and C. procumbens, and general evaluation. Z. Pflanzenzüchtg. 85, 275–286.Google Scholar
  43. Hojilla-Evangelista, M.P. and Evangelista, R.L. (2006) Effects of cooking and screw-pressing on functional properties of cuphea PSR23 seed proteins. J. Am. Oil Chem. Soc. 83, 713–718.CrossRefGoogle Scholar
  44. Ignacio, L.F. (1985) Present and future position of coconut in world supply and trade. J. Am. Oil Chem. Soc. 62, 197–204.CrossRefGoogle Scholar
  45. Janick, J. and Whipkey, A. (1986) In vitro propagation of Cuphea wrightii. HortScience 21, 135–137.Google Scholar
  46. Knapp, S.J. (1990a) New temperate oilseed crops. In: J. Janick and J.E. Simon (Eds.), Advances in New Crops. Timber Press, Portland, pp. 203–210.Google Scholar
  47. Knapp, S.J. (1990b) Recurrent mass selection for reduced seed dormancy in Cuphea laminuligera and Cuphea lanceolata. Plant Breed. 104, 46–52.CrossRefGoogle Scholar
  48. Knapp, S.J. (1993) Breakthroughs towards the domestication of Cuphea. In: J. Janick and J.E. Simon (Eds.), New Crops. John Wiley, New York, pp. 372–379.Google Scholar
  49. Knapp, S.J. and Crane, J.M. (2000a) Registration of self-pollinated fully non-dormant Cuphea germplasm VL160. Crop Sci. 40, 300–301.Google Scholar
  50. Knapp, S.J. and Crane, J.M. (2000b) Registration of high oil Cuphea germplasm VL186. Crop Sci. 40, 301.Google Scholar
  51. Knapp, S.J. and Crane, J.M. (2000c) Registration of reduced seed-shattering Cuphea germplasm PSR23. Crop Sci. 40, 299–300.Google Scholar
  52. Knapp, S., Brunick, R., Crane, J., Powers, C., Slabaugh, M. and Karkmarkar, V. (2004) Breeding and genetics of cuphea, a new medium-chain oilseed. 95th AOCS Annual Meeting and Expo. Cincinnati, OH, pp. 71–72.Google Scholar
  53. Koehne, E. (1903) Lythraceae. IV. In: A. Engler (Ed.), Das Pflanzenreich. Regni Vegetabilis Conspectus. Heft 17, W. Engelmann, Leipzig, Germany, p. 216.Google Scholar
  54. Leroux, K., Jensen, M. and Timpe, R. (2006) Utilization of cuphea oils for biodiesel production. 97th American Oil Chemists’ Society Annual Meeting. St. Louis, MO, p. 67.Google Scholar
  55. Lorey, W. and Röbbelen, G. (1984) Interspecific hybridization within the genus Cuphea (Lythraceae). Angew. Bot. 58, 423–432.Google Scholar
  56. Mathias, R., Espinosa, S. and Röbbelen, G. (1990) A new embryo rescue procedure for interspecific hybridization. Plant Breed. 104, 258–261.CrossRefGoogle Scholar
  57. Mathioni, S.M., Lin, S.S., Guerra, M.P. and Enodari, R.O. (2005) Storage, viability and dormancy of seeds from natural population of Cuphea carthagenensis (Jacq.) Macbride. Rev. Bras. Plantas Med. 8, 45–51.Google Scholar
  58. Millam, S., Mitchell, S.M., Moscheni, E. and Lyon, J.E. (1997) The establishment and regeneration of a range of cuphea germplasm in vitro. Plant Cell Tiss. Org. Cult. 48, 143–146.CrossRefGoogle Scholar
  59. National Botanical Research Institute (NBRI) Newsletter. (2003) Genetic improvement and development of cultivars for medium chain fatty acids in Cuphea. Ind. Nat. Bot. Res. Inst. 30, 21–25.Google Scholar
  60. Olness, A., Gesch, R.W., Forcella, F., Archer, D.W. and Rinke, J. (2005) Importance of vanadium and nutrient ionic ratios on the development of hydroponically grown cuphea. Ind. Crops Prod. 21, 165–171.CrossRefGoogle Scholar
  61. Pandey, V., Banerji, R., Dixit, B.S., Singh, M., Shukla, S. and Singh, S.P. (2000) Cuphea a rich source of medium chain triglycerides: Fatty acid composition and oil diversity in Cuphea procumbens. Eur. J. Lipid Sci. Tech. 102, 463–466.CrossRefGoogle Scholar
  62. Papiernik, S.K., Forcella, F., Gesch, R.W. and Amundson, G. (2006) Clopyralid tolerance of cuphea. North Central Weed Sci. Soc. Proc. 61, 25.Google Scholar
  63. Phippen, W.B., Isbell, T.A. and Phippen, M.E. (2006) Total seed oil and fatty acid methyl ester contents of cuphea accessions. Ind. Crops Prod. 24, 52–59.CrossRefGoogle Scholar
  64. Przybecki, Z., Olejniczak, J. and Adamska, E. (2001) Regeneration of Cuphea wrightii (Peyr 651) and fertile C. wrightii x C. tolucana hybrids from leaf explants. Cell. Mol. Biol. Lett. 6, 859–870.PubMedGoogle Scholar
  65. Rameshkumar, R., Singh, M. and Singh, S.P. (2002) Genetic variability and heritability studies in Cuphea procumbens. Ind. J. Plant Genet. Resour. 15, 36–39.Google Scholar
  66. Ray, D.T., Gathman, A.C. and Thompson, A.E. (1989) Cytogenetic analysis of interspecific hybrids in cuphea. J. Hered. 80, 329–332.Google Scholar
  67. Ray, D.T., Thompson, A.E. and Gathman, A.C. (1988) Interspecific hybridization in Cuphea. HortScience 23, 751–753.Google Scholar
  68. Röbbelen, G. and Hirsinger, F. (1982) Cuphea, the first annual oil crop for the production of medium-chain triglycerides (MCT). In: Improvement of oilseed and industrial crops by induced mutations. Panel Proceedings Series. Intl. Atomic Energy Agency, Vienna, pp. 161–170.Google Scholar
  69. Röbbelen, G. and von Witzke, S. (1989) Mutagenesis for the Domestication of Cuphea. Plant Domestication by Induced Mutations. Intl. Atomic Energy Agency, Vienna, pp. 101–119.Google Scholar
  70. Saikusa, T., Kitta, K., Ohkawa, Y., Fujii, Y., Kouzai, S. and Mori, Y. (2001) Edible properties of cuphea seed oil. Nippon Shokuhin Kagaku Kogaku Kaishi 48, 210–213.Google Scholar
  71. Sharratt, B.S. and Gesch, R.W. (2004) Water use and root length density of cuphea spp. influenced by row spacing and sowing date. Agron. J. 96, 1475–1480.CrossRefGoogle Scholar
  72. Singh, S.P. and Rameshkumar, R. (2003) Cuphea – importance and bibliography. Appl. Bot. Abstr. 23, 60–75.Google Scholar
  73. Singh, S.P. and Singh, M. (2002) Genetics of test weight and oil content in Cuphea procumbens. Genetika 34, 1–10.CrossRefGoogle Scholar
  74. Singh, S.P., Singh, M., Shukla, S. and Yadav, H.K. (2007) Combining ability analysis in creeping waxweed (Cuphea procumbens Orteg.). Proc. Ind. Nat. Sci. Acad. Part B Biol. Sci. 77, 297–302.Google Scholar
  75. Thompson, A.E. (1984) Cuphea – a potential new crop. HortScience 19, 352–354.Google Scholar
  76. Thompson, A.E., Dierig, D.A., Knapp, S.J. and Kleiman, R. (1990) Variation in fatty acid content and seed weight in some lauric acid rich Cuphea species. J. Am. Oil Chem. Soc. 67, 611–617.CrossRefGoogle Scholar
  77. Thompson, A.E. and Kleiman, R. (1988) Effect of seed maturity on seed oil, fatty acid and crude protein content of eight cuphea species. J. Am. Oil Chem. Soc. 65, 139–146.CrossRefGoogle Scholar
  78. Tisserat, B., Vaughn, S.F. and Berhow, M.A. (2008) Ultrahigh CO2 levels enhances cuphea growth and morphogenesis. Ind. Crops Prod. 27, 133–135.CrossRefGoogle Scholar
  79. Volk, G.M., Crane, J., Caspersen, A.M., Hill, L.M., Gardner, C. and Walters, C. (2006) Massive cellular disruption occurs during early imbibition of cuphea seeds containing crystallized triacylglycerols. Planta 224, 1415–1426.CrossRefPubMedGoogle Scholar
  80. Volk, G.M., Crane, J., Caspersen, A.M., Kovach, D., Gardner, C. and Walters, C. (2007) Hydration of cuphea seeds containing crystallised triacylglycerols. Funct. Plant Biol. 34, 360–367.CrossRefGoogle Scholar
  81. Webb, D.M., Knapp, S.J. and Tagliani, L.A. (1992) An RFLP and allozyme linkage map of Cuphea lanceolata. Theor. Appl. Genet. 83, 528–532.CrossRefGoogle Scholar
  82. Widrlechner, M.P. and Kovach, D.A. (2000) Dormancy-breaking protocols for cuphea seed. Seed Sci. Technol. 28, 11–27.Google Scholar
  83. Wilson, T.L., Miwa, T.K. and Smith, C.R. (1960) Cuphea llavea seed oil, a good source of capric acid. J. Am. Oil Chem. Soc. 37, 67–76.CrossRefGoogle Scholar
  84. Wolf, R.B., Graham, S.A. and Kleiman, R. (1983) Fatty acid composition of Cuphea seed oils. J. Am. Oil Chem. Soc. 60, 27–28.Google Scholar
  85. Yagueddu, C., Comparatore, V.M., Cardinali, F.J., Tosto, A.C.M. and Bevacqua, S.V. (2006) Cuphea glutinosa (Lythraceae) in tandilia system hills: Morphology and environment. Bol. Soc. Argent. Bot. 41, 285–292.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AgricultureWestern Illinois UniversityMacombUSA

Personalised recommendations