Oil Crops pp 449-468 | Cite as


  • Jenö Bernáth
  • Éva Németh
Part of the Handbook of Plant Breeding book series (HBPB, volume 4)


Poppy (Papaver somniferum L.) has been utilised and cultivated since prehistoric times (Tétényi 1997). The narcotic and nutritive values of its products were recognised in ancient Egypt, Greece and Rome. Hippocrates (460–377 BC) was among the first to emphasise the medical advantages of poppy and its preparations. He also recognised the nutritive property of poppy seeds. Poppy spread from its Central Asian gene centre through the Roman Empire, where cultivation for food and medicinal utilisation started probably at the same time in all provinces. After the Roman period poppy cultivation continued both in Europe and Asia. However, opium became the main product in Asia, while poppy seed and oil were utilised in Europe.

The opium production in Southeast Asia (Golden Triangle), West Asia (Golden Crescent) and other territories is still going on using traditional methods. The production is regulated by local consumption, market possibilities and political considerations. A...


Seed Yield Alkaloid Content Opium Poppy Downy Mildew Resistance Poppy Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Hungarian poppy research has been supported since 2000 by the Hungarian Research Fund (OTKA, No. T32393 and K62732).


  1. Allen, R., Millgate, A., Chitty, J., Thisleton, J., Miller, J., Fist, A., Gerlach, W. and Larkin, P. (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol. 22, 1559–1565.CrossRefPubMedGoogle Scholar
  2. Anonymous. (2005) New varieties: Poppy variety Sokol (white seeded type). Czech J. Genet. Plant Breed. 41, 79–80.Google Scholar
  3. Anonymous. (2006) BfR recommends provisional daily upper intake level and a guidance value for morphine in poppy seeds. BfR Health Assessment No. 012/2006, Federal Institute of Risk Assessment, Berlin, Germany (web resource:; verified 1 July 2008)
  4. Anonymous. (2007a) Geopolitics of Illicit Drugs in Asia. (; web resource accessed 1 July 2008).
  5. Anonymous. (2007b) European Union, Community Plant Variety Office. (; web resource accessed 1 July 2008)
  6. Anonymous. (2007c) Groupement National Interprofessionel des Semences et plants. (; web resource accessed 1 July 2008)
  7. Bajpai, S., Prajapati, S., Luthra, R., Sharma, S., Naqvi, A. and Kumar, S. (1999) Variation in the seed and oil quality in the Indian germplasm of opium poppy. Genet. Res. Crop Evol. 46, 435–439.CrossRefGoogle Scholar
  8. Balci, A., Camci, H. and Celikoglu Kosar, F. (2007) A research for thebaine and morphine contents of opium poppy lines selected and evaluated in Ankara conditions. Abstracts of the 1st International Medicinal and Aromatic Plants Conference on Culinary Herbs, Apr. 29–May 4., Antalya, Turkey, p. 24.Google Scholar
  9. Belyaeva, R.G. (1988) Analysis of the inheritance of the mutations ‘anther in petal’ and ‘dissected petal’ in opium poppy. Genetika 24, 1072–1080.Google Scholar
  10. Bernáth, J. (1986) Complex physio-ecological evaluation of the alkaloid formation of the poppy (Papaver somniferum L.). Herba Hung. 25, 43–75.Google Scholar
  11. Bernáth, J. (Ed.). (1998) Poppy – The genus Papaver. Harwood Academic Publishers, Amsterdam.Google Scholar
  12. Bernáth, J. and Németh, É. (1999) New trends in selection of poppy (Papaver somniferum L.). Int. J. Hort. Sci. 5, 69–75.Google Scholar
  13. Bernáth, J. and Németh, É. (2003) Alkaloid accumulation in capsules of selfed and cross pollinated poppy. Plant Breed. 122, 263–267.CrossRefGoogle Scholar
  14. Bernáth, J. and Németh, É. (2005) Stability and variability of alkaloid accumulation in poppy (Papaver somniferum L.) induced by crossing. Acta Hort. 675, 179–185.Google Scholar
  15. Bernáth, J., Dános, B., Veres, T., Szántó, J. and Tétényi, P. (1988) Variation in alkaloid production in poppy ecotypes: Responses to different environments. Biochem. Syst. Ecol. 16, 171–178.CrossRefGoogle Scholar
  16. Bhandari, M.M. (1989) Inheritance of petal colour in Papaver somniferum L. J. Hort. Sci. 64, 339–340.Google Scholar
  17. Bhandari, M.M. (1990) Out-crossing in opium poppy Papaver somniferum. Euphytica 48, 167–169.CrossRefGoogle Scholar
  18. Bryant, R.J. (1988) Fifth SCI process development symposium. Chemistry and Industry. Birmingham, 7. March 1988, pp. 146–153.Google Scholar
  19. Chauhan, S.P. and Patra, N.K. (1993) Mutagenic effects of combined and single doses and EMS in opium poppy. Plant Breed. 110, 342–345.CrossRefGoogle Scholar
  20. Chitty, J.A., Allen, R.S., Fist, A.J. and Larkin, P.J. (2003) Genetic transformation in commercial Tasmanian cultivars of opium poppy, and movement of transgenic pollen in the field. Funct. Plant Biol. 30, 1045–1058.CrossRefGoogle Scholar
  21. Dános, B. (1965) Wirkung der generativen Hybridisierung auf die Gestaltung des Alkaloidgehalts des Mohns. Pharmazie 20, 727–730.PubMedGoogle Scholar
  22. De Candolle, A. (1883) Origine des plantes cultivées. Bailliére, Paris.Google Scholar
  23. Dobos, G. (1996) Winter poppy – a new genotype for seed production. Beiträge zur Züchtungsforschung 2, 37–40.Google Scholar
  24. Dobos, G. and Vetter, S. (1997) Variation des Morphingehaltes bei Wintermohn-Herkünften (Papaver somniferum L.). Z. Arzn. Gew. Pfl. 2, 87–89.Google Scholar
  25. Facchini, P.J., Penzes-Yost, C., Samanani, N. and Kowalchuk, B. (1998) Expression pattern conferred by tyrosine/dihydrophenylalanine decarboxylase promoters from opium poppy are conserved in transgenic tobacco. Plant Physiol. 118, 69–81.CrossRefPubMedGoogle Scholar
  26. Fedde, F. (1909) Papaveraceae-hypericoideae. In: Engler, A. (Ed.), Das Pflanzenreich. Engelmann, Leipzig, 40 (IV. 104), pp. 1–430.Google Scholar
  27. Frick, S., Chitty, J., Kramell, R., Schmidt, J., Allen, R., Larkin, P. and Kutchan, T. (2004) Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res. 13, 607–613.CrossRefPubMedGoogle Scholar
  28. Frick, S., Kramell, R. and Kutchan, T. (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab. Eng. 9, 169–167.CrossRefPubMedGoogle Scholar
  29. Ghiorghita, G., Niculita, C. and Balint, S.V. (1990) Influence of self-pollination and of the branching degree on some morpho-physiological indices in opium poppy (Papaver somniferum L.). Rev. Roumanie Biol. 35, 67–74.Google Scholar
  30. Hammer, K. and Fritsch, R. (1977) Zur Frage nach der Ursprungsart des Kulturmohns (Papaver somniferum L.). Kulturpflanze 25, 113–121.CrossRefGoogle Scholar
  31. Handrea, D. (1996) Variability of quantitative characters in some land races of Papaver somniferum L. Beiträge zur Züchtungsforschung 2, 127–130.Google Scholar
  32. Heeger, E.F. (1956) Handbuch des Arznei- und Gewürzpflanzenbaues. Deutscher Bauernverlag, Erfurt, p. 560.Google Scholar
  33. Heltmann, H. and Silva, F. (1978) Zur Züchtung leistungfähiger Inzuchtlinien für eine synthetische Mohnsorte. Herba Hung. 17, 55–60.Google Scholar
  34. Hörömpöli, T. (1998) A mák tőkorhadása elleni rezisztencianemesítés hatása a ‘Kompolti M’ fajtára. Abstracts of Lippay J. és Vas K. Scientific Session. Budapest, Sept. 16–17, pp. 132–133.Google Scholar
  35. Hrishi, N.J. (1960) Cytological studies of Papaver somniferum and P. setigerum and their hybrids. Genetica 31, 1–30.CrossRefPubMedGoogle Scholar
  36. INCB (2000) Report of the International Narcotics Control Board for 1999. United Nations, Vienna.Google Scholar
  37. Kadereit, J.W. (1986) Papaver somniferum L. (Papaveraceae): A triploid hybrid. Bot. Jahrb. Syst. 106, 221–244.Google Scholar
  38. Kaicker, U.S. (1985) Opium and breeding research at Indian Agricultural Research Institute. Proceedings of Vth ISHS Symposium on Medicinal and Aromatic Plants, Darjeeling, India, pp. 75–81.Google Scholar
  39. Kálmán-Pál, Á., Bernáth, J. and Tétényi, P. (1987) Phenotypic variability in the production and alkaloid spectrum of the Papaver somniferum L. hybrid. Herba Hung. 26, 75–82.Google Scholar
  40. Kálmán-Pál, Á., Nyárády-Szabadi, J., Bernáth, J. and Tétényi, P. (1989) Study of correlation system of variables in poppy cultivars by principal component analysis. Herba Hung. 28, 29–35.Google Scholar
  41. Kandalkar, V.S., Saxena, A.K., Khire, A. and Jain, Y.K. (1995) Genetical analysis of field resistance to downy mildew caused by Peronospora arborescens in opium poppy. J. Hill Res. 8, 252–255.Google Scholar
  42. Khanna, K.R. and Gupta, R.K. (1989) Gene action in opium poppy (Papaver somniferum). Ind. J. Agric. Sci. 59, 124–126.Google Scholar
  43. Khanna, K.R. and Shukla, S. (1983) The degree of out-crossing in opium poppy. New Botanist 10, 65–67.Google Scholar
  44. Khanna, K.R. and Shukla, S. (1989) Gene action in opium poppy (Papaver somniferum). Ind. J. Agric. Sci. 59, 124–126.Google Scholar
  45. Köck, O., Bernáth, J. and Sárkány, S. (2001) Hungarian poppy cultivars. In: Bernáth, J. (Ed.), Poppy – Culturflora of Hungarian Series. Akadémiai Publisher, Budapest, pp. 116–128.Google Scholar
  46. Kopp, E., Csedő, K. and Mátyás, S. (1961) Weitere Versuche zur Züchtung einer alkaloidreichen Mohnsorte. Pharmazie 16, 224–231.PubMedGoogle Scholar
  47. Kritikos, P.G. and Papadaki, S.P. (1967) The history of the poppy and of opium and their expansion in antiquity in the eastern Mediterranean area. Bull. Narc. 19, 17–38.Google Scholar
  48. Lal, R.K. and Sharma, J.R. (1995) Heterosis and its genetic components for opium alkaloids in Papaver somniferum. Curr. Res. Med. Aromat. Plants 17, 165–170.Google Scholar
  49. Larkin, P.J., Miller, J.A.C., Allen, R.S., Chitty, J.A., Gerlach, W.L., Frick, S., Kutchan, T.M. and Fist, A.J. (2007) Increasing morphinane alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol. J. 5, 26–37.CrossRefPubMedGoogle Scholar
  50. Levy, A. and Milo, J. (1998) Genetics and breeding of Papaver somniferum. In: Bernáth, J. (Ed.), Poppy – The genus Papaver. Harwood Academic Publishers, Amsterdam, pp. 93–104.Google Scholar
  51. Liersch, J., Szymanowska, E. and Krzymanski, J. (1996) Valuation of stability and economical value of new strains of low morphine poppy. Rosliny Oleiste 17, 391–396.Google Scholar
  52. Margl, L., Szatmáry, M. and Hajósné Novák, M. (2001) Biokémiai-genetikai markerek alkalmazása a mák-nemesítésben és a fajtavédelemben: I. izoenzimek. VII. Növénynemesítési Tudományos Napok, Budapest, Abstracts, p. 110.Google Scholar
  53. Millgate, A.G., Pogson, B.J., Wilson, I.A., Kutchan, T.M., Zenk, M.H., Gerlach, W.L., Fist, A.J. and Larkin, P.J. (2004) Morphine-pathway block in top1 poppies. Nature 431, 413–414.CrossRefPubMedGoogle Scholar
  54. Mórász, S. (1979) A mák termesztése. Mezőgazdasági Kiadó, Budapest, pp. 80.Google Scholar
  55. Morice, J. and Louarn, J. (1971) Study of morphine contents in the oil poppy (P. somniferum L.). Ann. Amelior. Plant 21, 465–485.Google Scholar
  56. Németh, É. (2002) World tendencies, aims and results of poppy (Papaver somniferum L.) breeding. In: Govil, J.N., Kumar, A.P. and Singh, V.K. (Eds.), Recent Progress in Medicinal Plants, Vol. 4. Biotechnology and Genetic Engineering. Sci Tech Pub., Houston, USA, pp. 129–141.Google Scholar
  57. Németh, É. and Bernáth, J. (2007) Selection of poppy (Papaver somniferum L.) cultivars for culinary purposes. I. Int. Med. Arom. Plant Conference on Culinary Herbs, 29 April–4 May 2007, Antalya, Turkey, Abstracts 1.Google Scholar
  58. Németh, É., Bernáth, J., Sztefanov, A. and Petheő, F. (2002) New results of poppy (Papaver somniferum L.) breeding for low alkaloid content in Hungary. Acta Hort. 576, 151–158.Google Scholar
  59. Nessler, C.L. (1998) In vitro culture technologies. In: Bernáth, J. (Ed.), Poppy – The Genus Papaver. Harwood Academic Publishers, Amsterdam, pp. 209–218.Google Scholar
  60. Nigam, K.B., Kandalkar, V.S. and Dhumale, D.B. (1990) Induced mutants in opium poppy. Ind. J. Agric. Sci. 60, 267–268.Google Scholar
  61. Nyman, V. and Hall, O. (1974) Breeding oil poppy (Papaver somniferum) for low content of morphine. Hereditas 76, 49–54.CrossRefPubMedGoogle Scholar
  62. Ounaroon, A., Frick, S. and Kutchan, T. (2005) Molecular genetic analysis of an O-methyltransferase of the opium poppy. Acta Hort. 675, 167–171.Google Scholar
  63. Patra, N.K., Ram, R.S., Chauhan, S.P. and Singh, A.K. (1992) Quantitative studies on the mating system of opium poppy (Papaver somniferum L.). Theor. Appl. Genet. 84, 299–302.CrossRefGoogle Scholar
  64. Petri, G. and Mihalik, E. (1998) Morphological-anatomical aspects. In: Bernáth, J. (Ed.), Poppy – The Genus Papaver. Horwood Academic Publishers, Amsterdam, pp. 47–64.Google Scholar
  65. Psenák, M. (1998) Biosynthesis of morphinane alkaloids. In: Bernáth, J. (Ed.): Poppy – The genus Papaver. Harwood Academic Publishers, Amsterdam, pp. 159–188.Google Scholar
  66. Reckin, J. (1971) A contribution to the cytologie of P. aculeatum, P. gracile and proposals for the revision of the section Mecones. Caryologie 23, 461–464.Google Scholar
  67. Rothmaler, W. (1949) Notuale Systematicae. 4. Papaveres. Index Sem. Gaterslebense, pp. 42–46.Google Scholar
  68. Sattar, A., Samad, A., Alam, M., Zaim, M., Dhawan, O.P., Singh, S.P., Bajpai, S. and Lal, R.K. (1995) Screening of opium poppy germplasm for diseaes resistance. Curr. Res. Med. Aromat. Plants 17, 315–320.Google Scholar
  69. Sethi, K.L., Sapra, R.L., Gupta, R., Dhindsa, K.S. and Sangwan, N.K. (1990) Performance of poppy cultivars in relation to seed, oil and latex yields under different environments. J. Sci. Food Agric. 52, 309–313.CrossRefGoogle Scholar
  70. Sharma, J.R., Lal, R.K. and Mishra, H.O. (1988) Heterosis and gene action for important traits in opium poppy (Papaver somniferum L.). Ind. J. Genet. Plant Breed. 48, 261–266.Google Scholar
  71. Sharma, J.R., Lal, R.K., Mishra, H.O., Lohia, R.S., Pant, V. and Yadav, P. (1997) Economic heterosis for yield and feasibilty of its exploitation in opium poppy (Papaver somniferum L.). J. Med. Arom. Plant Sci. 19, 398–402.Google Scholar
  72. Sharma, J.R., Lal, R.K., Misra, H.O., Naqvi, A.A. and Patra, D.D. (1999) Combating opium linked global abuses and supplementing the production of edible seed and seed oil: A novel non-narcotic var. ‘Sujata’ of opium poppy (Papaver somniferum L.). Curr. Sci. 77, 1584–1589.Google Scholar
  73. Sharma, J.R., Lal, R.K., Singh, S.P. and Mishra, H.O. (1991) Duplicative gene control of leaf incision in opium poppy (Papaver somniferum L.). J. Hered. 82, 174–175.Google Scholar
  74. Shukla, S., Singh, S.P. and Shukla, S. (1999) Genetic systems involved in inheritance of papaverine in opium poppy. Ind. J. Agric. Sci. 69, 44–47.Google Scholar
  75. Shukla, S., Yadav, H.K. and Singh, S.P. (2003) Path coefficient analyses for seed yield in opium poppy (Papaver somniferum L.). Proc. Natl. Acad. Sci. Ind. 73B, 83–88.Google Scholar
  76. Simmonds, Q.W. (1976) Evolution of Crop Plants. Longman, London.Google Scholar
  77. Singh, H.B., Singh, A., Priya, S., Srivastava, S. and Shukla, S. (2003) Evaluation of germplasm of opium poppy for resistance to downy mildew. Ind. J. Agric. Sci. 73, 391–394.Google Scholar
  78. Singh, S.P., Shukla, S. and Khanna, K.R. (1995) Diallel analysis for combining ability in opium poppy (Papaver somniferum). Ind. J. Agric. Sci. 65, 271–275.Google Scholar
  79. Singh, S.P., Shukla, S. and Khanna, K.R. (1997) Characterisation of Indian land races and released varieties of opium poppy. J. Med. Arom. Plant Sci. 19, 369–386.Google Scholar
  80. Singh, S.P., Tiwari, R.K. and Dubey, T. (1999) Heterosis and inbreeding depression in opium poppy (Papaver somniferum). J. Med. Arom. Plants 21, 23–25.Google Scholar
  81. Soó, R. (1968) A magyar flóra és vegetáció kézikönyve. 3. Akadémiai Kiadó, Budapest.Google Scholar
  82. Straka, P. and Nothnagel, T. (2002) A genetic map of Papaver somniferum L. based on molecular and morphological markers. Proceedings of the 2nd International Symposium on Breeding Research on Medicinal and Aromatic Plants, July 11–16, Chania, Greece, The Haworth Press, pp. 235–241.Google Scholar
  83. Straka, P., Schultze, W. and Nothnagel, T. (1993) Stand der Arbeiten zur Entwicklung morphinarmer Mohnformen. Vortr. Pflanzenzüchtg. 26, 36–41.Google Scholar
  84. Tétényi, P. (1963) Intraspecifikus kémiai taxonok és gyógynövénynemesítés. Akadémiai Doktori Értekezés, Budapest.Google Scholar
  85. Tétényi, P. (1989) Morphinoides du genere Papaver. Acte du Colloque Montréal, Chicoutimi, pp. 64–69.Google Scholar
  86. Tétényi, P. (1997) Opium poppy (Papaver somniferum): Botany and horticulture. Hort. Rev. 19, 373–405.Google Scholar
  87. Tétényi, P., Lőrincz, Cs. and Szabó, E. (1961) Untersuchung der infraspezifischen chemischen Differenzen bei Mohn: Beitrage zur Charakterisierung der Hybriden von Papaver somniferum L. x Papaver orientale L. Pharmazie 16, 426–433.Google Scholar
  88. Tóthné-Lökös, K., Szatmári, M. and Sutka, J. (1997) Codeine and morphine in Papaver somniferum grown in a controlled environment. Planta Med. 30, 340–348.Google Scholar
  89. Verma, S., Agarwal, S.K., Singh, S.S., Siddiqui, M.S. and Kumar, S. (1999) Poppy seed-composition and uses. J. Med. Arom. Plant Sci. 21, 442–446.Google Scholar
  90. Vesselovskaya, M.A. (1975) The poppy, its variability, classification and evolution. Trudi Prikl. Bot. Genet. Selekc. 55, 175–223.Google Scholar
  91. Weid, M., Ziegler, J. and Kutchan, T.M. (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. USA 101, 13957–13962.CrossRefPubMedGoogle Scholar
  92. Ziegler, J. and Kutchan, T.M. (2005) Differential gene expression in Papaver – species in comparison with alkaloid profiles. Acta Hort. 675, 173–177.Google Scholar
  93. Ziegler, J., Voightlander, S., Schmidt, J., Kramell, R., Miersch, O., Ammer, C., Gesell, A. and Kutchan, T. (2006) Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J. 48, 177–192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Medicinal and Aromatic PlantsCorvinus University of BudapestBudapestHungary

Personalised recommendations