Advertisement

Genomic Imprinting in Plants

  • Olivier Garnier
  • Sylvia Laouiellé-Duprat
  • Charles Spillane
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 626)

Abstract

Genomic imprinting attracted particular attention in the 1980’s following the discovery that the parental origin of genetic information is essential for normal development of eutherians1,2, for review see3. The term imprinting was first introduced in the 1960s to describe the elimination of the paternal chromosomes during spermatogenesis in the Sciarid fly4, 5, 6

Keywords

Seed Development Imprint Gene Female Gametophyte Curr Opin Plant Biol Triploid Endosperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature 1984; 311:374–376.PubMedCrossRefGoogle Scholar
  2. 2.
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37:179–183.PubMedCrossRefGoogle Scholar
  3. 3.
    Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2:21–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Stern C. The nucleus and somatic cell variation. J Cell Physiol 1958; 52:1–27; discussion 27–34.Google Scholar
  5. 5.
    Crouse HV. The nature of the influence of x-translocations on sex of progeny in Sciara coprophila. Chromosoma 1960; 11:146–166.PubMedCrossRefGoogle Scholar
  6. 6.
    Goday C, Esteban MR. Chromosome elimination in sciarid flies. Bioessays 2001; 23:242–250.PubMedCrossRefGoogle Scholar
  7. 7.
    Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308:548–550.PubMedCrossRefGoogle Scholar
  8. 8.
    de la Casa-Esperon E, Sapienza C. Natural selection and the evolution of genome imprinting. Annu Rev Genet 2003; 37:349–370.PubMedCrossRefGoogle Scholar
  9. 9.
    Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science 1999; 286:481–486.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science 2001; 293:1103–1105.CrossRefGoogle Scholar
  11. 11.
    Henikoff S, McKittrick E, Ahmad K. Epigenetics, histone H3 variants, the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol 2004; 69:235–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Tilghman SM. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 1999; 96:185–193.PubMedCrossRefGoogle Scholar
  13. 13.
    Walter J, Paulsen M. Imprinting and disease. Semin Cell Dev Biol 2003; 14:101–110.PubMedCrossRefGoogle Scholar
  14. 14.
    Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet 2005; 21:457–465.PubMedCrossRefGoogle Scholar
  15. 15.
    Moore T. Genetic conflict, genomic imprinting and establishment of the epigenotype in relation to growth. Reproduction 2001; 122:185–193.PubMedCrossRefGoogle Scholar
  16. 16.
    Scott RJ, Spielman M. Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 2006b; 113:53–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Haig D, Westoby M. Parent specific gene expression and the triploid endosperm. American Naturalist 1989; 134:147–155.CrossRefGoogle Scholar
  18. 18.
    Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7:45–49.PubMedGoogle Scholar
  19. 19.
    Lloyd VK, Sinclair DA, Grigliatti TA. Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics 1999; 151:1503–1516.PubMedGoogle Scholar
  20. 20.
    Lloyd V. Parental imprinting in Drosophila. Genetica 2000; 109:35–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Joanis V, Lloyd VK. Genomic imprinting in Drosophila is maintained by the products of Suppressor of variegation and trithorax group, but not Polycomb group, genes. Mol Genet Genomics 2002; 268:103–112.PubMedCrossRefGoogle Scholar
  22. 22.
    Killian JK, Byrd JC, Jirtle JV et al. M6P/IGF2R imprinting evolution in mammals. Mol Cell 2000; 5:707–716.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Neill MJ, Ingram RS, Vrana PB et al. Allelic expression of IGF2 in marsupials and birds. Dev Genes Evol 2000; 210:18–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Killian JK, Nolan CM, Wylie AA et al. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 2001; 10:1721–1728.PubMedCrossRefGoogle Scholar
  25. 25.
    Hahn Y, Yang SK, Chung JH. Structure and expression of the zebrafish mest gene, an ortholog of mammalian imprinted gene PEG1/MEST. Biochim Biophys Acta 2005; 1731:125–132.PubMedGoogle Scholar
  26. 26.
    Colosi DC, Martin D, More K et al. Genomic organization and allelic expression of UBE3A in chicken. Gene 2006; 383:93–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Lawton BR, Sevigny L, Obergfell C et al. Allelic expression of IGF2 in live-bearing, matrotrophic fishes. Dev Genes Evol 2005; 215:207–212.PubMedCrossRefGoogle Scholar
  28. 28.
    Baroux C, Spillane C, Grossniklaus U. Evolutionary origins of the endosperm in flowering plants. Genome Biol 2002a; 3, reviews 1026.CrossRefGoogle Scholar
  29. 29.
    Haig D. Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 2004; 38:553–585.PubMedCrossRefGoogle Scholar
  30. 30.
    Barlow DP, Stoger R, Herrmann BG et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 1991; 349:84–87.PubMedCrossRefGoogle Scholar
  31. 31.
    DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64:849–859.PubMedCrossRefGoogle Scholar
  32. 32.
    Grossniklaus U, Vielle-Calzada JP, Hoeppner MA et al. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 1998; 280:446–450.PubMedCrossRefGoogle Scholar
  33. 33.
    Constancia M, Hemberger M, Hughes J et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002; 417:945–948.PubMedCrossRefGoogle Scholar
  34. 34.
    Charalambous M, Smith FM, Bennett WR et al. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci USA 2003; 100:8292–8297.PubMedCrossRefGoogle Scholar
  35. 35.
    Plagge A, Gordon E, Dean W et al. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 2004; 36:818–826.PubMedCrossRefGoogle Scholar
  36. 36.
    Hurst LD, McVean GT. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet 1997; 13:436–443.PubMedCrossRefGoogle Scholar
  37. 37.
    Hurst LD, McVean GT. Do we understand the evolution of genomic imprinting? Curr Opin Genet Dev 1998; 8:701–708.PubMedCrossRefGoogle Scholar
  38. 38.
    Solter D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 1988; 22:127–146.PubMedCrossRefGoogle Scholar
  39. 39.
    Solter D. Refusing the ovarian time bomb. Trends Genet 1994; 10, 346; author reply 348–349.PubMedCrossRefGoogle Scholar
  40. 40.
    Varmuza S, Mann M. Genomic imprinting—defusing the ovarian time bomb. Trends Genet 1994; 10:118–123.PubMedCrossRefGoogle Scholar
  41. 41.
    Iwasa Y. The conflict theory of genomic imprinting: how much can be explained? Curr Top Dev Biol 1998; 40:255–293.PubMedCrossRefGoogle Scholar
  42. 42.
    Pardo-Manuel de Villena F, de la Casa-Esperon E, Sapienza C. Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 2000; 16:573–579.PubMedCrossRefGoogle Scholar
  43. 43.
    Weisstein AE, Spencer HG. The evolution of genomic imprinting via variance minimization: an evolutionary genetic model. Genetics 2003; 165:205–222.PubMedGoogle Scholar
  44. 44.
    Day T, Bonduriansky R. Intralocus sexual conflict can drive the evolution of genomic imprinting. Genetics 2004; 167:1537–1546.PubMedCrossRefGoogle Scholar
  45. 45.
    Wolf JB, Hager R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol 2006; 4, e380.PubMedCrossRefGoogle Scholar
  46. 46.
    Spencer HG, Clark AG. A chip off the old block: a model for the evolution of genomic imprinting via selection for parental similarity. Genetics 2006; 174:931–935.PubMedCrossRefGoogle Scholar
  47. 47.
    Paldi A, Gyapay G, Jami J. Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr Biol 1995; 5:1030–1035.PubMedCrossRefGoogle Scholar
  48. 48.
    Robinson WP, Lalande M. Sex-specific meiotic recombination in the Prader-Willi/Angelman syndrome imprinted region. Hum Mol Genet 1995; 4:801–806.PubMedCrossRefGoogle Scholar
  49. 49.
    Lercher MJ, Hurst LD. Imprinted chromosomal regions of the human genome have unusually high recombination rates. Genetics 2003; 165:1629–1632.PubMedGoogle Scholar
  50. 50.
    Sandovici I, Kassovska-Bratinova S, Vaughan JE et al. Human imprinted chromosomal regions are historical hot-spots of recombination. PLoS Genet 2006; 2, 2101.CrossRefGoogle Scholar
  51. 51.
    Kono T, Obata Y, Wu Q et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004; 428:860–864.PubMedCrossRefGoogle Scholar
  52. 52.
    Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet Genome Res 2006; 113:31–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Grossniklaus U, Spillane C, Page DR et al. Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 2001; 4:21–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Scott RJ, Spielman M. Deeper into the maize: new insights into genomic imprinting in plants. Bioessays 2006a; 28:1167–1171.PubMedCrossRefGoogle Scholar
  55. 55.
    Dilkes BP, Comai L. A differential dosage hypothesis for parental effects in seed development. Plant Cell 2004; 16:3174–3180.PubMedCrossRefGoogle Scholar
  56. 56.
    Kermicle JL, Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev 1990; Suppl, 9–14.Google Scholar
  57. 57.
    Messing J, Grossniklaus U. Genomic imprinting in plants. Results Probl Cell Differ 1999; 25:23–40.PubMedGoogle Scholar
  58. 58.
    Alleman M, Doctor J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 2000; 43:147–161.PubMedCrossRefGoogle Scholar
  59. 59.
    Kermicle J. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 1970; 66:69–85.PubMedGoogle Scholar
  60. 60.
    Gehring M, Choi Y, Fischer RL. Imprinting and seed development. Plant Cell 2004; 16 Suppl, S203–213.Google Scholar
  61. 61.
    Kohler C, Grossniklaus U. Seed development and genomic imprinting in plants. Prog Mol Subcell Biol 2005; 38:237–262.PubMedCrossRefGoogle Scholar
  62. 62.
    Scott RJ, Spielman M, Bailey J et al. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 1998; 125:3329–3341.PubMedGoogle Scholar
  63. 63.
    Adams S, Vinkenoog R, Spielman M et al. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 2000; 127:2493–2502.PubMedGoogle Scholar
  64. 64.
    Birchler JA. Dosage analysis of maize endosperm development. Annu Rev Genet 1993; 27:181–204.PubMedCrossRefGoogle Scholar
  65. 65.
    von Wangenheim KH, Peterson HP. Aberrant endosperm development in interploidy crosses reveals a timer of differentiation. Dev Biol 2004; 270:277–289.CrossRefGoogle Scholar
  66. 66.
    Chaudhuri S, Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci USA 1994; 91:4867–4871.PubMedCrossRefGoogle Scholar
  67. 67.
    Baroux C, Spillane C, Grossniklaus U. Genomic imprinting during seed development. Adv Genet 2002b; 46:165–214.PubMedCrossRefGoogle Scholar
  68. 68.
    Verona RI, Mann MR, Bartolomei MS. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 2003; 19:237–259.PubMedCrossRefGoogle Scholar
  69. 69.
    Kinoshita T, Yadegari R, Harada JJ et al. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 1999; 11:1945–1952.PubMedCrossRefGoogle Scholar
  70. 70.
    Spillane C, MacDougall C, Stock C et al. Interaction of the Arabidopsis polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol 2000; 10:1535–1538.PubMedCrossRefGoogle Scholar
  71. 71.
    Yadegari R, Kinoshita T, Lotan O et al. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 2000; 12:2367–2382.PubMedCrossRefGoogle Scholar
  72. 72.
    Sorensen MB, Chaudhury AM, Robert H et al. Polycomb group genes control pattern formation in plant seed. Curr Biol 2001; 11:277–281.PubMedCrossRefGoogle Scholar
  73. 73.
    Guitton AE, Berger F. Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 2005; 49:707–716.PubMedCrossRefGoogle Scholar
  74. 74.
    Vielle-Calzada JP, Thomas J, Spillane C et al. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 1999; 13:2971–2982.PubMedCrossRefGoogle Scholar
  75. 75.
    Luo M, Bilodeau P, Dennis ES et al. Expression and parent-of-origin effects for FIS2, MEA, FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 2000; 97:10637–10642.PubMedCrossRefGoogle Scholar
  76. 76.
    Choi Y, Gehring M, Johnson L et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 2002; 110:33–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Xiao W, Gehring M, Choi Y et al. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 2003; 5:891–901.PubMedCrossRefGoogle Scholar
  78. 78.
    Gehring M, Huh JH, Hsieh TF et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 2006; 124:495–506.PubMedCrossRefGoogle Scholar
  79. 79.
    Jullien PE, Kinoshita T, Ohad N et al. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 2006a; 18:1360–1372.PubMedCrossRefGoogle Scholar
  80. 80.
    Jullien PE, Katz A, Oliva M et al. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 2006b; 16:486–492.PubMedCrossRefGoogle Scholar
  81. 81.
    Baroux C, Gagliardini V, Page DR et al. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev 2006; 20:1081–1086.PubMedCrossRefGoogle Scholar
  82. 82.
    Kakutani T, Kato M, Kinoshita T et al. Control of development and transposon movement by DNA methylation in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 2004; 69:139–143.PubMedCrossRefGoogle Scholar
  83. 83.
    Kinoshita T, Miura A, Choi Y et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 2004; 303:521–523.PubMedCrossRefGoogle Scholar
  84. 84.
    Lippman Z, Gendrel AV, Black M et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 2004; 430:471–476.PubMedCrossRefGoogle Scholar
  85. 85.
    Soppe WJ, Jasencakova Z, Houben A et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 2002; 21:6549–6559.PubMedCrossRefGoogle Scholar
  86. 86.
    Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature 2004; 431:364–370.PubMedCrossRefGoogle Scholar
  87. 87.
    Kohler C, Hennig L, Spillane C et al. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 2003; 17:1540–1553.PubMedCrossRefGoogle Scholar
  88. 88.
    Kohler C, Page DR, Gagliardini V et al. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 2005; 37:28–30.PubMedGoogle Scholar
  89. 89.
    Makarevich G, Leroy O, Akinci U et al. Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 2006; 7:947–952.PubMedCrossRefGoogle Scholar
  90. 90.
    Danilevskaya ON, Hermon P, Hantke S et al. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 2003; 15:425–438.PubMedCrossRefGoogle Scholar
  91. 91.
    Gutierrez-Marcos JF, Costa LM, Biderre-Petit C et al. Maternally expressed genel is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 2004; 16:1288–1301.PubMedCrossRefGoogle Scholar
  92. 92.
    Guo M, Rupe MA, Danilevskaya ON et al. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 2003; 36:30–44.PubMedCrossRefGoogle Scholar
  93. 93.
    Gutierrez-Marcos JF, Pennington PD, Costa LM et al. Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos Trans R Soc Lond B Biol Sci 2003; 358:1105–1111.PubMedCrossRefGoogle Scholar
  94. 94.
    Haun W, Laouielle-Duprat S, O’Connell M et al. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant Journal in press. 2006.Google Scholar
  95. 95.
    Ginjala V, Holmgren C, Ulleras E et al. Multiple cis elements within the Igf2/H19 insulator domain organize a distance-dependent silencer. A cautionary note. J Biol Chem 2002; 277:5707–5710.PubMedCrossRefGoogle Scholar
  96. 96.
    Bell AC, West AG, Felsenfeld G. Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 2001; 291:447–450.PubMedCrossRefGoogle Scholar
  97. 97.
    Holmgren C, Kanduri C, Dell G et al. CpG methylation regulates the Igf2/H19 insulator. Curr Biol 2001; 11:1128–1130.PubMedCrossRefGoogle Scholar
  98. 98.
    West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. Genes Dev 2002; 16:271–288.PubMedCrossRefGoogle Scholar
  99. 99.
    Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 2003; 299:716–719.PubMedCrossRefGoogle Scholar
  100. 100.
    Spillane C, Baroux C, Escobar-Restrepo JM et al. Transposons and tandem repeats are not involved in the control of genomic imprinting at the MEDEA locus in Arabidopsis. Cold Spring Harb Symp Quant Biol 2004; 69:465–475.PubMedCrossRefGoogle Scholar
  101. 101.
    Gutierrez-Marcos JF, Costa LM, Dal Pra M et al. Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 2006; 38:876–878.PubMedCrossRefGoogle Scholar
  102. 102.
    Morgan HD, Santos F, Green K et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 Spec No 1, R47–R58.CrossRefGoogle Scholar
  103. 103.
    Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005; 6:351–360.PubMedCrossRefGoogle Scholar
  104. 104.
    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293:1089–1093.PubMedCrossRefGoogle Scholar
  105. 105.
    Takeda S, Paszkowski J. DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma, 2006; 115:27–35.PubMedCrossRefGoogle Scholar
  106. 106.
    Finnegan EJ. Epialleles—a source of random variation in times of stress. Curr Opin Plant Biol 2002; 5:101–106.PubMedCrossRefGoogle Scholar
  107. 107.
    Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 2002; 43:1106–1111.PubMedCrossRefGoogle Scholar
  108. 108.
    Elmayan T, Proux F, Vaucheret H. Arabidopsis RPA2: A Genetic link among transcriptional gene silencing, DNA repair, DNA replication. Curr Biol 2005; 15:1919–1925.PubMedCrossRefGoogle Scholar
  109. 109.
    Matzke MA, Aufsatz W, Kanno T et al. Homology-dependent gene silencing and host defense in plants. Adv Genet 2002; 46:235–275.PubMedCrossRefGoogle Scholar
  110. 110.
    Jost JP, Oakeley EJ, Zhu B et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res 2001; 29:4452–4461.PubMedCrossRefGoogle Scholar
  111. 111.
    Gong Z, Morales-Ruiz T, Ariza RR et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 2002; 111:803–814.PubMedCrossRefGoogle Scholar
  112. 112.
    Gendrel AV, Colot V. Arabidopsis epigenetics: when RNA meets chromatin. Curr Opin Plant Biol 2005; 8:142–147.PubMedCrossRefGoogle Scholar
  113. 113.
    Martienssen R, Lippman Z, May B et al. Transposons, tandem repeats, the silencing of imprinted genes. Cold Spring Harb Symp Quant Biol 2004; 69:371–379.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang J, Mager J, Chen Y et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet 2001; 28:371–375.PubMedCrossRefGoogle Scholar
  115. 115.
    Mager J, Montgomery ND, de Villena FP et al. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003; 33:502–507.PubMedCrossRefGoogle Scholar
  116. 116.
    Kakutani T. Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 1997; 12:1447–1451.PubMedCrossRefGoogle Scholar
  117. 117.
    Soppe WJ, Jacobsen SE, Alonso-Blanco C et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodom ain gene. Mol Cell 2000; 6:791–802.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Olivier Garnier
    • 1
  • Sylvia Laouiellé-Duprat
    • 1
  • Charles Spillane
    • 1
  1. 1.Genetics and Biotechnology Lab, Department of Biochemistry, Biosciences InstituteUniversity College CorkCorkIreland

Personalised recommendations