p53 Protein and Pathogenesis of Melanoma and Nonmelanoma Skin Cancer

  • Cara L. Benjamin
  • Vladislava O. Melnikova
  • Honnavara N. Ananthaswamy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 624)


The p53 tumor suppressor gene and gene product are among the most diverse and complex molecules involved in cellular functions. Genetic alterations within the p53 gene have been shown to have a direct correlation with cancer development and have been shown to occur in nearly 50% of all cancers. p53 mutations are particularly common in skin cancers and UV irradiation has been shown to be a primary cause of specific’ signature’ mutations that can result in oncogenic transformatiorn. There are certain ‘hot-spots’ in the p53 gene where mutations are commonly found that result in a mutated dipyrimidine site. This review discusses the role of p53 from normal function and its dysfunction in precancerous lesions, nonmelanoma and melanoma skin cancers. Additionally, molecules that associate with p53 and alter its function to produce neoplastic conditions are also explored in this chapter.


Skin Cancer Basal Cell Carcinoma Actinic Keratosis Skin Tumor Skin Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vitasa BC, Taylor HR, Strickland PT et al. Association of nonmelanoma skin cancer and actinic keratosis with cumulative solar ultraviolet exposure in Maryland watermen. Cancer 1990; 65(12):2811–2817.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosso S, Zanetti R, Martinez C et al. The mulicentre south European study ‘Helios’. II: Different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer 1996; 73(11):1447–1454.PubMedGoogle Scholar
  3. 3.
    Armstrong BK, Krickcr A. The epidemiology of UV induced skin cancer. J Photochem Photobiol 2001; 63(1–3):8–18.Google Scholar
  4. 4.
    de Gruijl FR. UVA vs UVB. Methods Enzymol 2000; 319:359–366.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Leun JC, de Gruijl FR. Climate change and skin cancer. Photochem Photobiol Sci 2002; 1:324–326.PubMedCrossRefGoogle Scholar
  6. 6.
    Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on skin. Toxicol Appl Pharmacol 2004; 195:298–308.PubMedCrossRefGoogle Scholar
  7. 7.
    Kraemer KH. Sunlight and skin cancer: another link revealed. Proc Natl Acad Sci USA 1997; 94:11–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Zigman S, Fowler J, Kraus AL. Black light induction of skin tumors in mice. J Invest Dermatol 1976; 67:723–725.PubMedCrossRefGoogle Scholar
  9. 9.
    Strickland P. Photocarcinogenesis by near ultraviolet (UVA) radiation in Senear mice. J Invest Dermatol 1986; 87:272–275.PubMedCrossRefGoogle Scholar
  10. 10.
    de Gruijl FR. p53 mutations as a marker of skin cancer risk: comparasion of UVA and UVB effects. Exp Dermatol 2002; 11(Suppl 1):37–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Agar NS, Halliday GM, Barnetson RS et al. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci USA 2004; 101(14):4954–4959.PubMedCrossRefGoogle Scholar
  12. 12.
    Setlow RB, Woodhead AD, Grist E. Animal model for ultraviolet raditation-induced melanoma: platyfish-swortail hybrid. Proc Natl Acad Sci USA 1989; 86(22):8922–8926.PubMedCrossRefGoogle Scholar
  13. 13.
    Setlow RB, Grist E, Thompson K et al. Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 1993; 90:6666–6670.PubMedCrossRefGoogle Scholar
  14. 14.
    Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246(4930):629–634.PubMedCrossRefGoogle Scholar
  15. 15.
    Lane D. p53, guardian of the genome. Nature 1992; 358:15–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Basset-Seguin N, Moles JP, Mils V et al. TP53 tumor suppressor gene and skin carcinogenesis. J Invest Dermatol 1994; 103(5 Suppl):102S–106S.PubMedCrossRefGoogle Scholar
  17. 17.
    Levine AJ, Momand J, Finlay CA. The p53 tumor supressor gene. Nature 1991; 351:453–456.PubMedCrossRefGoogle Scholar
  18. 18.
    Vogelstein B, Kinzler KW p53 function and dysfunction. Cell 1992; 70:523–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88:1442–1455.PubMedCrossRefGoogle Scholar
  20. 20.
    Lamb P, Crawford L. Characterization of the human p53 gene. Mol Cell Biol 1986; 6:1379–1385.PubMedGoogle Scholar
  21. 21.
    Greenblatt MS, Bennett WP, Hollstein M et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54(18):4855–4878.PubMedGoogle Scholar
  22. 22.
    Ziegler A, Leffell DJ, Kunala S et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 1993; 90:4216–4220.PubMedCrossRefGoogle Scholar
  23. 23.
    Ziegler A, Jonason AS, Leffell DJ et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372(6508):730–731.CrossRefGoogle Scholar
  24. 24.
    Burns PA, Kemp CJ, Gannon JV et al. Loss of heterozygosity and mutational alterations of the p53 gene in skin tumours of interspecific hybrid mice. Oncogene 1991; 6(12):2363–2369.PubMedGoogle Scholar
  25. 25.
    Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4:1689–1694.PubMedGoogle Scholar
  26. 26.
    Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Mol Cell Biol 1991; 51:6304–6311.Google Scholar
  27. 27.
    Kastan MB, Zhan Q, El-Deiry S et al. A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell 1992; 71:587–597.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuerbitz SJ, Plunkett BS, Walsh WV et al. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89:7491–7495.PubMedCrossRefGoogle Scholar
  29. 29.
    Healy E, Reynolds NJ, Smith MD et al. Dissociation of erythemia and p53 expression in human skin following UVB irradiation and induction of p53 protein and mRNA following application of skin irritants. J Invest Dermatol 1994; 103:493–499.PubMedCrossRefGoogle Scholar
  30. 30.
    Fritsche M, Haessler C, Brandner G. Induction of the nuclear accumulation of the tumor supressor gene p53 by DNA damaging agents. Oncogene 1993; 8:307–318.PubMedGoogle Scholar
  31. 31.
    Nelson WG, Kastan MB. DNA starnd breaks: the DNA template alterations that trigger p53-dependent DNA damage response. Mol Cell Biol 1994; 14:1815–1823.PubMedGoogle Scholar
  32. 32.
    Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 1990; 250(4985):1233–1238.PubMedCrossRefGoogle Scholar
  33. 33.
    Setlow RB, Carrier WL. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. Mol Biol 1966; 17:237–254.CrossRefGoogle Scholar
  34. 34.
    Mitchell DL. the relative cytotoxicity of (6–4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 1988; 48:51–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Mitchell DL, Nairn RS. The biology of the 6-4 photoproducts and cyclobutanc dimcrs in mammalian cells. Photochem Photobiol 1989; 49:805–819.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith ML, Fornace Jr AJ. p53-mediated protective responses to UV irradiation. Proc Natl Acad Sci USA 1997; 94:12255–12257.PubMedCrossRefGoogle Scholar
  37. 37.
    Brugarolas J, Chandrasekaran C, Gordon JI et al. Radiation-induced cell cylce arrest compormised by p21 deficiency. Nature 1995; 377:552–557.PubMedCrossRefGoogle Scholar
  38. 38.
    Kamijo t, Weber JD, Zambetti G et al. Functional and physical interactions of the ARF tumorsuppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95:8292–8297.PubMedCrossRefGoogle Scholar
  39. 39.
    Hall PA, McKee PH, Menage HP et al. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993; 8:203–207.PubMedGoogle Scholar
  40. 40.
    Zahn Q, Carrier F, Fornace Jr AJ. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 1993; 13:4242–4250.Google Scholar
  41. 41.
    White E. Life, death and the pursuit of apoptosis. Genes Dev 1996; 10:1–15.PubMedCrossRefGoogle Scholar
  42. 42.
    Yonish-Roauch E, Reznitzky D, Lotem J et al. Wild type p53 induces apoptosis of myeloid leukemic cells that is inhibited by IL-6. Nature 1991; 352:345–347.CrossRefGoogle Scholar
  43. 43.
    Levine AJ. p53 the cellular gatekeeper for growth and division. Cell 1997; 88:323–331.PubMedCrossRefGoogle Scholar
  44. 44.
    Pfeifer GP, You Y-H, Besaratinia A. Mutations induced by ultraviolet light. Mut Res 2005; 571:19–31.Google Scholar
  45. 45.
    Tommasi S, Denissenko MF, Pfeifer GP. Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res 1997; 57:4727–4730.PubMedGoogle Scholar
  46. 46.
    You Y-H, Szabo PE, Pfeifer GP. Cyclobutane pyrimidine dimers form preferentially at the mojor p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 2000; 21:2113–2117.PubMedCrossRefGoogle Scholar
  47. 47.
    You Y-H, Lee DH, Yoon JH et al. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Biol Chem 2001; 276:44688–44694.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakazawa H, English D, Randell PL et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement, proc Natl Acad Sci USA 1994; 91(1):360–364.PubMedCrossRefGoogle Scholar
  49. 49.
    Ren ZP, Hedrum A, Ponten F et al. Human epidermal cancer and accompanying precursors have identical p53 mutations different from p53 mutations in adjacent areas of clonally expanded nonneoplastic keratinocytes. Oncogene 1996; 12(4):765–773.PubMedGoogle Scholar
  50. 50.
    Jonason AS, Kunala S, Price GL et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 1996; 93(24):14025–14029.PubMedCrossRefGoogle Scholar
  51. 51.
    Nelson MA, Einspahr JG, Alberts DS et al. Analysis of the p53 gene in human precancersous actinic keratosis lesions and squamous cell cancers. Cancer Lett 1994; 85(1):23–29.PubMedCrossRefGoogle Scholar
  52. 52.
    Campbell C, Quinn AG, Ro YS et al. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol 1993; 100(6):746–748.PubMedCrossRefGoogle Scholar
  53. 53.
    Rady P, Scinicariello F, Wagner Jr RF et al. p53 mutations in basal cell carcinomas. Cancer Res 1992; 52(13):3804–3806.PubMedGoogle Scholar
  54. 54.
    Pierceall WE, Mukhopadhyay T, Goldberg LH et al. Mutations in the p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol Carcinog 1991; 4(6):445–449.PubMedCrossRefGoogle Scholar
  55. 55.
    Dumaz N, Drougard C, Sarasin A et al. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient Xeroderma pigmentosum patients. Proc Natl Acad Sci USA 1993; 90(22):10529–10533.PubMedCrossRefGoogle Scholar
  56. 56.
    Sato M, Nishigori C, Zghal M et al. Ultraviolet-specific mutations in the p53 gene in skin tumors in Xeroderma pigmentosum patients. Cancer Res 1993; 53(13):2944–2946.PubMedGoogle Scholar
  57. 57.
    van der Riet P, Karp D, Farmer E et al. Progression of basal cell carcinoma through loss of chromosome 9q and inactivation of a single p53 allele. Cancer Res 1994; 54(1):25–27.PubMedGoogle Scholar
  58. 58.
    Bolshakov S, Walker CM, Strom SS et al. p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinoma. Clin Cancer Res 2003; 9(1):228–234.PubMedGoogle Scholar
  59. 59.
    Stern RS, Bolshakov S, Natataj AJ et al. p53 mutation in nonmelanoma skin cancers occuring in psoralen ultraviolet a-treated patients: evidence for heterogeneity and field cancerization. J Invest Dermatol 2002; 119(2):522–526.PubMedCrossRefGoogle Scholar
  60. 60.
    Kress S, Sutter C, Strickland PT et al. Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 1992; 52(22):6400–6403.PubMedGoogle Scholar
  61. 61.
    Kanjilal S, Pierceall WE, Cummings KK et al. High frequency of p53 mutations in ultraviolet radiation-induced muring skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res 1993; 53(13):2961–2964.PubMedGoogle Scholar
  62. 62.
    Pierceall WE, Goldberg LH, Tainsky MA et al. Ras gene mutation and amplification in human non-melanoma skin cancers. Mol Carcinog 1991; 4(3):196–202.PubMedCrossRefGoogle Scholar
  63. 63.
    Moles JP, Moyret C, Guillot B et al. p53 gene mutations in human epithelial skin cancers. Oncogene 1993; 8(3):583–588.PubMedGoogle Scholar
  64. 64.
    Brash DE, Rudolph JA, Simon JA et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 1991; 88(22):10124–12128.PubMedCrossRefGoogle Scholar
  65. 65.
    Dumaz N, van Kranen HJ, de Vries A et al. the role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. Carcinogenesis 1997; 18(5):897–904.PubMedCrossRefGoogle Scholar
  66. 66.
    Ananthaswamy HN, Fourtanier A, Evans RL et al. p53 Mutations in hairless SKH-1 mouse skin tumors induced by a solar simulator. Photochem Photobiol 1998; 67(2):227–232.PubMedCrossRefGoogle Scholar
  67. 67.
    Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366):215–212.PubMedCrossRefGoogle Scholar
  68. 68.
    Jacks T, Remington L, Williams BO et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4(1):1–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 1994; 8(1):66–69.PubMedCrossRefGoogle Scholar
  70. 70.
    Kemp CJ, Donehower LA, Bradley A et al. Reduction of p53 gene dosage does not increase initiation or pormotion but enhances malignant progression of chemically induced skin tumors. Cell 1993; 74(5):813–822.PubMedCrossRefGoogle Scholar
  71. 71.
    Jiang W, Ananthaswamy HN, Muller H et al. p53 protects against skin cancer induction by UV-B radiation. Oncogene 1999; 18:4247–4253.PubMedCrossRefGoogle Scholar
  72. 72.
    van Kranen HJ, Westerman A, Berg RJW et al. Dose-dependent effects of UVB-induced skin carcinogenesis in hairless p53 knockout mice. Mut Res 2005; 571:81–90.Google Scholar
  73. 73.
    Stark LA, Arends MJ, McLaren KM et al. Accumulation of p53 is associated with tumour progression in cutaneous lesions of renal allograft recipients. Br J Cancer 1994; 70(4):662–667.PubMedGoogle Scholar
  74. 74.
    McGregor JM, Berkhout RJ, Rozycka M et al. p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene 1997; 15(14):1737–1740.PubMedCrossRefGoogle Scholar
  75. 75.
    McGregor JM, Harwood CA, Brooks L et al. Relationship between p53 codon 72 polymorphism and susceptibility to sunburn and skin cancer. J Invest Dermatol 2002; 119(1):84–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Purdie KJ, Pennington J, Proby CM et al. The promoter of a novel human papillomavirus (HPV77) associated with skin cancer displays a UV responsiveness, which is mediated through a consensus p53 binding sequence. EMBO J 1999; 18(19):5359–5369.PubMedCrossRefGoogle Scholar
  77. 77.
    Berg RJW, van Kranen HJ, Rebel HG et al. Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistodhemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci USA 1996; 93(1):274–278.PubMedCrossRefGoogle Scholar
  78. 78.
    Ananthaswamy HN, Loughlin SM, Cox P et al. Sunlight and skin cancer: inhibition of p53 mutation in UV-irradiated mouse skin by sunscreens. Nature Med 1997; 3(5):510–514.PubMedCrossRefGoogle Scholar
  79. 79.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759–767.PubMedCrossRefGoogle Scholar
  80. 80.
    Hussein MR, Haemel AK, Wood GS. Apoptosis and melanoma: molecular mechanisms. J Pathol 2003; 199:275.PubMedCrossRefGoogle Scholar
  81. 81.
    Kanjilal S, Strom SS, Clayman GL et al. p53 mutations in nonmelanoma skin cancer of the head and neck: molecular evidence for field cancerization. Cancer Res 1995; 55(16):3604–3609.PubMedGoogle Scholar
  82. 82.
    Brash DE, Zhang W, Grossman D et al. Colonization of adjacent stem cell compartments by mutant keratinocytes. Seminars in Cancer Biology 2005; 15:97–102.PubMedCrossRefGoogle Scholar
  83. 83.
    Ouhtit A, Gorny A, Muller HK et al. Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis. Am J Pathol 2000; 157(6):1975–1981.PubMedGoogle Scholar
  84. 84.
    Zhang W, Remenyik E, Zelterman D et al. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc Natl Acad Sci USA 2001; 98(24):13948–13953.PubMedCrossRefGoogle Scholar
  85. 85.
    Rebel H, Mosnier LO, Berg RJ et al. Early p53-positive foci as indicators of tumor risk in ultraviole-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency and p53 heterozygosity. Cancer Res 2001; 61(3):977–983.PubMedGoogle Scholar
  86. 86.
    De Meyts P, Urso B, Christoffersen CT et al. Mechanism of insulin and IGF-I receptor activation and signal transduction specificity. Receptor dimer cross-linking, bell-shaped curves and sustained versus transient signaling. Ann N Y Acad Sci 1995; 766:388–401.PubMedCrossRefGoogle Scholar
  87. 87.
    Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 1996; 274(5290):1194–1197.PubMedCrossRefGoogle Scholar
  88. 88.
    Bender K, Blattner C, Knebel A et al. UV-induced signal transduction. J Photochem Photobiol B 1997; 37(1–2):1–17.PubMedCrossRefGoogle Scholar
  89. 89.
    Kuhn C, Hurwitz SA, Kumar MG et al. Activation of the insulin-linke growth factor-receptor promotes the survival of human keratinocytes following ultraviolet B irradiation. Int J Cancer 1999; 80(3):431–438.PubMedCrossRefGoogle Scholar
  90. 90.
    Jost M, Kari C, Rodeck U. The EGF receptor—and essential regulator of multiple epidermal functions. Eur J Dermatol 2000; 10(7):505–510.PubMedGoogle Scholar
  91. 91.
    Peus D, Vasa RA, Mevcs A et al. UVB-induccd epidermal growth factor receptor phosphorylation is critical for downstream signaling and keratinocyte survival. Photochem Photobiol 2000; 72(1):135–140.PubMedCrossRefGoogle Scholar
  92. 92.
    Walterscheid JP, Ullrich SE, Nghiem DX. Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J Exp Med 2002; 195(2):171–179.PubMedCrossRefGoogle Scholar
  93. 93.
    Coffer PJ, Burgering BM, Peppelenbosch MP et al. UV activation of receptor tyrosine kinase activity. Oncogene 1995; 11(3):561–569.PubMedGoogle Scholar
  94. 94.
    Oda K, Arakawa H, Tanaka T et al. p53AIP1, a potential mediator of p53-dependent apoptosis and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102(6):849–862.PubMedCrossRefGoogle Scholar
  95. 95.
    Mudgil AV, Segal N, Andriani F et al. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression. J Invest Dermatol 2003; 121(1):191–197.PubMedCrossRefGoogle Scholar
  96. 96.
    Hill LL, Ouhtit A, Loughlin SM et al. Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 1999; 285(5429):898–900.PubMedCrossRefGoogle Scholar
  97. 97.
    Remenyik E, Wikonkal NM, Zhang W et al. Antigen-specific immunity does not mediate acute regression of UVB-induced p53-mutant clones. Oncogene 2003; 22(41):6369–6376.PubMedCrossRefGoogle Scholar
  98. 98.
    de Gruijl FR, van der Leun JC. Development of skin tumors in hairless mice after discontinuation of ultraviolet irradiation. Cancer Res 1991; 51(3):979–984.PubMedGoogle Scholar
  99. 99.
    Ananthaswamy HN, Ullrich SE, Mascotto RE et al. Inhibition of solar simulator-induced p53 mutations and protection against skin cancerdevelopment in mice by sunscreens. J Invest Dermatol 1999; 112:763–768.PubMedCrossRefGoogle Scholar
  100. 100.
    Brash DE, Ziegler A, Jonason AS et al. Sunlight and sunburn in human skin cancer:p53 apoptosis and tumor promotion. J Invest Dermatol Symp Proc 1996; 1(2):136–142.Google Scholar
  101. 101.
    LefFell DJ, Brash DE. Sunlight and skin cancer. Sci Am 1996; 275:52–59.PubMedCrossRefGoogle Scholar
  102. 102.
    Oliner JD, Pietenpol JA, Thiallingam S et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362:857–860.PubMedCrossRefGoogle Scholar
  103. 103.
    Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299–303.PubMedCrossRefGoogle Scholar
  104. 104.
    Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387:296–299.PubMedCrossRefGoogle Scholar
  105. 105.
    Giaccia AJ, Kastan MB. The complexity of p53 modulation emerging patterns from divergent signals. Genes Dev 1998; 12:2973–2983.PubMedCrossRefGoogle Scholar
  106. 106.
    Weissman AM. Regulating protein degradation by ubiquination. Immunol Today 1997; 18:189–198.PubMedCrossRefGoogle Scholar
  107. 107.
    Korabiowska M, Brinck U, Betke H et al. Growth arrest DNA damage gene expression in naevi. In Vivo 1999; 13(3):247–250.PubMedGoogle Scholar
  108. 108.
    Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 2005; 32:191–205.PubMedCrossRefGoogle Scholar
  109. 109.
    Kubbutat MH, Vousden KH. Proteolytic cleavage of human p53 by calpain: a potent regulator of protein stability. Mol Cell Biol 1997; 17:460–468.PubMedGoogle Scholar
  110. 110.
    Pariat M, Carillo S, Molinari M et al. Proteolysis by calpains: a possible contribution to degradation of p53. Mol Cell Biol 1997; 17:2806–2815.PubMedGoogle Scholar
  111. 111.
    Gelis C, Mavon A, Vicendo P. The Contribution of Calpains in the Downregulation of Mdm2 and p53 Proteolysis in Reconstituted Human epidermis in Response to Solar Irradiation. Photochem Photobiol, 2005.Google Scholar
  112. 112.
    Reifenberger J, Wolter M, Knobbe CB et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152(1):43–51.PubMedCrossRefGoogle Scholar
  113. 113.
    D’Errico M, Calcagnile A, Canzona F et al. UV mutation signiture in tumor suppressor genes involved in skin carcinogenesis in Xeroderma pigmentosum patients. Oncogene 2000; 19(3):463–467.PubMedCrossRefGoogle Scholar
  114. 114.
    Daya-Grosjean L, Sarasin A. UV-specific mutation of the human patched gene in basal cell carcinomas from normal individuals and Xeroderma pigmentosum patients. Mut Res 2000; 450:193.Google Scholar
  115. 115.
    de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol 2001; 63:19.CrossRefGoogle Scholar
  116. 116.
    Ping XL, Ratner D, Zhang H et al. PTCH mutations in squamous cell carcinoma of the skin. J Invest Dermatol 2001; 116(4):614–616.PubMedCrossRefGoogle Scholar
  117. 117.
    Matsumura Y, Ananthaswamy HN. molecular mechanisms of photocarcinogenesis. Front Biosci 2002; 7:d765–783.PubMedCrossRefGoogle Scholar
  118. 118.
    Wiley SR, Schooley K, Smolak PJ et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3:673–682.PubMedCrossRefGoogle Scholar
  119. 119.
    Stander S, Schwarz T. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed in normal skin and cutaneous inflammatory disease, but not in chronically UV-exposed skin and nonmelanoma skin cancer. Am J Dermatopathol 2005; 27(2):116–121.PubMedCrossRefGoogle Scholar
  120. 120.
    Rees JL. Genetic alterations in nonmelanoma skin cancer. J Invest Dermatol 1994; 103:747.PubMedCrossRefGoogle Scholar
  121. 121.
    Kreimer-Erlacher H, Seidl H, Back B et al. High mutation frequency at Ha-ras exons 1–4 in squamous cell carcinomas from PUVA-treated psoriasis patients. Photochem Photobiol 2001; 74(2):323–330.PubMedCrossRefGoogle Scholar
  122. 122.
    Chan J, Robinson ES, Yeh IT et al. Absence of ras gene mutations in UV-induced malignant melanoma correlates with a dermal origin of melanocytes in Monodelphis domestica. Cancer Lett 2002; 184(1):73–80.PubMedCrossRefGoogle Scholar
  123. 123.
    Fears TR, Scotto J, Schneiderman MA. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am J Epidemiol 1977; 105(5):420–427.PubMedGoogle Scholar
  124. 124.
    Evans RD, Kopf AW, Lew RA et al. Risk factors for the development of malignant melanoma-I: Review of case-control studies. J Dermatol Surg Oncol 1988; 14(4):393–408.PubMedGoogle Scholar
  125. 125.
    Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 2001; 12(1):69–82.PubMedCrossRefGoogle Scholar
  126. 126.
    Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int J Cancer 1997; 73(2):198–203.PubMedCrossRefGoogle Scholar
  127. 127.
    Rees JL, Healy E. Molecular genetic approaches to nonmelanoma and melanoma skin cancer. Clin Exp Dermatol 1996; 21(4):253–262.PubMedCrossRefGoogle Scholar
  128. 128.
    Volkenandt M, Schlegel U, Nanus DM et al. Mutational analysis of the human p53 gene in malignant melanoma. Pigment Cell Res 1991; 4(1):35–40.PubMedCrossRefGoogle Scholar
  129. 129.
    Weiss J, Schwechheimer K, Cavenee WK et al. Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 1993; 54(4):693–699.PubMedCrossRefGoogle Scholar
  130. 130.
    Albino AP, Vidal MJ, McNutt NS et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 1994; 4(1):35–45.PubMedCrossRefGoogle Scholar
  131. 131.
    Lubbe J, Reichel M, Burg G et al. Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 1994; 102(5):819–821.PubMedCrossRefGoogle Scholar
  132. 132.
    Papp T, Jafari M, Schiflmann D. Lack of p53 mutations and loss of heterozygosity in noncultured human melanocytic lesions. J Cancer Res Clin Oncol 1996; 122(9):541–548.PubMedCrossRefGoogle Scholar
  133. 133.
    Sparrow LE, Soong R, Dawkins HJ et al. p53 gene mutation and expression in naevi and melanomas. Melanoma Res 1995; 5(2):93–100.PubMedCrossRefGoogle Scholar
  134. 134.
    Hartmann A, Blaszyk H, Cunningham JS et al. Overexpression and mutations of p53 in metastatic malignant melanomas. Int J Cancer 1996; 67(3):313–317.PubMedCrossRefGoogle Scholar
  135. 135.
    Lee JY, Dong SM, Shin MS et al. Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. Biochem Biophys Res Commun 1997; 237(3):667–672.PubMedCrossRefGoogle Scholar
  136. 136.
    Levine AJ, Wu MC, Chang A et al. The spectrum of mutations at the p53 locus. Evidence for tissue-specific mutagenesis, selection of mutant alleles and a “gain of function” phenotype. Ann N Y Acad Sci 1995; 768:111–128.PubMedCrossRefGoogle Scholar
  137. 137.
    Greene MH. The genetics of hereditary melanoma and nevi 1998 update. Cancer 1999; 86(11 Suppl):2464–2477.PubMedCrossRefGoogle Scholar
  138. 138.
    Fountain JW, Bale SJ, Housman DE et al. Genetics of melanoma. Cancer Surv 1990; 9(4):645–671.PubMedGoogle Scholar
  139. 139.
    Flores JF, Walker GJ, Glendening JM et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 1996; 56(21):5023–5032.PubMedGoogle Scholar
  140. 140.
    Piccinin S, Doglioni C, Maestro R et al. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Int J Cancer 1997; 74(1):26–30.PubMedCrossRefGoogle Scholar
  141. 141.
    Haluska FG, Hodi FS. Molecular genetics of familial cutaneous melanoma. J Clin Oncol 1998; 16(2):670–682.PubMedGoogle Scholar
  142. 142.
    Monzon J, Liu L, Brill H et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338(13):879–887.PubMedCrossRefGoogle Scholar
  143. 143.
    Gruis NA, van der Velden PA, Bergman W et al. Familial melanoma; CDKN2A and beyond. J Investig Dermatol Symp Proc 1999; 4(1):50–54.PubMedCrossRefGoogle Scholar
  144. 144.
    Bishop DT, Demenais F, Goldstein AM et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94(12):894–903.PubMedGoogle Scholar
  145. 145.
    Ghiorzo P, Villaggio B, Sementa AR et al. Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients. Hum Pathol 2004; 35(1):25–33.PubMedCrossRefGoogle Scholar
  146. 146.
    Talve L, Sauroja I, Collan Y et al. Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 1997; 74(3):255–259.PubMedCrossRefGoogle Scholar
  147. 147.
    Pollock PM, Welch J, Hayward NK. Evidence for three tumor suppressor loci on chromosome 9p involved in melanoma development. Cancer Res 2001; 61(3):1154–1161.PubMedGoogle Scholar
  148. 148.
    Cachia AR, Indsto JO, McLaren KM et al. CDKN2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res 2000; 6(9):3511–3515.PubMedGoogle Scholar
  149. 149.
    Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res 2000; 6(5):1845–1853.PubMedGoogle Scholar
  150. 150.
    Vuhahula E, Straume O, Akslcn LA. Frequent loss of p16 protein expression and high proliferative activity (Ki-67) in malignant melanoma from black Africans. Anticancer Res 2000; 20(6C):4857–4862.PubMedGoogle Scholar
  151. 151.
    Pavey SJ, Cummings MC, Whiteman DC et al. Loss of p16 expression is associated with histological features of melanoma invasion. Melanoma Res 2002; 12(6):539–547.PubMedCrossRefGoogle Scholar
  152. 152.
    Chang TG, Wang J, Chen LW et al. Loss of expression of the p16 gene is frequent in malignant skin tumors. Biochem Biophys Res Commun 1997; 230(1):85–88.PubMedCrossRefGoogle Scholar
  153. 153.
    Palmieri G, Cossu A, Ascierto PA et al. Definition of the role of chromosome 9p21 in sporadic melanoma through genetic analysis of primary tumours and their metastases. The Melanoma Cooperative Group. Br J Cancer 2000; 83(12):1707–1714.PubMedCrossRefGoogle Scholar
  154. 154.
    Healy E, Belgaid CE, Takata M et al. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. Cancer Res 1996; 56(3):589–593.PubMedGoogle Scholar
  155. 155.
    Melnikova VO, Bolshakov SV, Walker C et al. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 2004; 23(13):2347–2356.PubMedCrossRefGoogle Scholar
  156. 156.
    Sharpless NE, Bardeesy N, Lee KH et al. Loss of p16Ink4a with retention of pi9Arf predisposes mice to tumorigenesis. Nature 2001; 413(6851):86–91.PubMedCrossRefGoogle Scholar
  157. 157.
    Krimpenfort P, Quon KC, Mooi WJ et al. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413(6851):83–86.PubMedCrossRefGoogle Scholar
  158. 158.
    Soengas MS, Capodieci P, Polsky D et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409(6817):207–211.PubMedCrossRefGoogle Scholar
  159. 159.
    Polsky D, Bastian BC, Hazan C et al. HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma. Cancer Res 2001; 61(20):7642–7646.PubMedGoogle Scholar
  160. 160.
    Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17(17):5001–5014.PubMedCrossRefGoogle Scholar
  161. 161.
    Castellano M, Parmiani G. Genes involved in melanoma: an overview of INK4a and other loci. Melanoma Res 1999; 9(5):421–432.PubMedCrossRefGoogle Scholar
  162. 162.
    Bae I, Smith ML, Sheikh MS et al. An abnormality in the p53 pathway following gamma-irradiation in many wild-type p53 human melanoma lines. Cancer Res 1996; 56(4):840–847.PubMedGoogle Scholar
  163. 163.
    Korabiowska M, Betke H, Kellner S et al. Differential expression of growth arrest, DNA damage genes and tumour suppressor gene p53 in naevi and malignant melanomas. Anticancer Res 1997; 17(5A):3697–3700.PubMedGoogle Scholar
  164. 164.
    Hussein MR, Haemel AK, Wood GS. p53-related pathways and the molecular pathogenesis of melanoma. Eur J Cancer Prev 2003; 12(2):93–100.PubMedCrossRefGoogle Scholar
  165. 165.
    Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366):215–221.PubMedCrossRefGoogle Scholar
  166. 166.
    Abraham H, Meyer G. Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 2003; 13(6):715–727.PubMedCrossRefGoogle Scholar
  167. 167.
    Mills AA, Zheng B, Wang XJ et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398(6729):708–713.PubMedCrossRefGoogle Scholar
  168. 168.
    Tuve S, Wagner SN, Schittek B et al. Alterations of DeltaTA-p73 splice transcripts during melanoma development and progression. Int J Cancer 2004; 108(1):162–166.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang H, Schneider J, Rosdahl I. Expression of p16, p27, p53, p73 and Nup88 proteins in matched primary and metastatic melanoma cells. Int J Oncol 2002; 21(1):43–48.PubMedGoogle Scholar
  170. 170.
    Ariza ME, Broome-Powell M, Lahti JM et al. Fas-induced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34(cdc2)-related PITSLRE protein kinases. J Biol Chem 1999; 274(40):28505–28513.PubMedCrossRefGoogle Scholar
  171. 171.
    Setlow RB. DNA repair, againg and cancer. Natl Cancer Inst Monogr 1982; 60:249–255.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Cara L. Benjamin
    • 1
  • Vladislava O. Melnikova
    • 2
  • Honnavara N. Ananthaswamy
    • 1
  1. 1.Department of ImmunologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Cancer BiologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations