Molecular Biology of Malignant Melanoma

  • Mar Pons
  • Pablo Mancheño-Corvo
  • Pilar Martín-Duque
  • Miguel Quintanilla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 624)


The incidence of melanoma has increased more rapidly than any other type of cancer. In this review, we summarize the most important genetic alterations that contribute to the development of malignant melanoma. Our knowledge of the genetic and biological events involved in the genesis and progression of this disease has been benefited from the evolvement of a wealth of genetically engineered animal models. Hopefully, the understanding generated by all these studies will contribute to develop new therapeutic strategies to handle this fatal malignancy.


Epidermal Growth Factor Receptor BRAF Mutation Skin Melanoma Primary Cutaneous Melanoma cAMP Responsive Element Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 2003;22:3099–3112.PubMedCrossRefGoogle Scholar
  2. 2.
    Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 2005; 32:191–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark Jr WH, Elder DE, van Horn M. The biologic forms of malignant melanoma. Hum Pathol 1986; 17:443–450.PubMedCrossRefGoogle Scholar
  4. 4.
    Chudnovski Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest 2005; 115:813–824.Google Scholar
  5. 5.
    Takata M, Saida T. genetic alterations in melanocytic tumors. J Derm Sci 2006; 43:1–10.CrossRefGoogle Scholar
  6. 6.
    Meier F, Satyamoorthy K, Nesbit M et al. Molecular events in melanoma development and progression. Front Biosci 1998; 3:D1005–D1010.PubMedGoogle Scholar
  7. 7.
    Rusciano D. Differentiation and metastasis in melanoma. Crit Rev Oncog 2000; 11:147–163.PubMedGoogle Scholar
  8. 8.
    Healy E, Jordan SA, Budd PS et al. Functional variation of MCIR alleles from red-haired individuals. Hum Mol Genet 2001; 10:397–2402.CrossRefGoogle Scholar
  9. 9.
    Palmer JS, Duffy DL, Box NF et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: Is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000; 66:176–186.PubMedCrossRefGoogle Scholar
  10. 10.
    Daya-Grosjean L, Sarasin A. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors. Mutat Res 2005; 571:43–56.PubMedGoogle Scholar
  11. 11.
    Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20:2149–2182.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertolotto C, Abbe P, Hemesath TJ et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998; 142:827–835.PubMedCrossRefGoogle Scholar
  13. 13.
    Price ER, Horstmann MA, Wells AG et al. A-Melanocyte-stimulating hormone signaling regulates expression of micrphtalmia, a gene deficient in Waanderburg syndrome. J Biol Chem 1998; 273:33042–33047.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadekaro AL, Kanto H, Kavanagh R et al. Significance of the melanocortin 1 receptor in regulating human melanocyte pigmentation, proliferation and survival. Ann NY Acad Sci 2003; 994:359–365.PubMedCrossRefGoogle Scholar
  15. 15.
    Hussussian CJ, Struewing IP, Goldstein AM et al. Germline p16 mutations in familial melanoma. Nat Genet 1994; 8:15–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Kamb A, Shattuck-Eidens D, Eeles R et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8:23–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366:704–707.PubMedCrossRefGoogle Scholar
  18. 18.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92:713–723.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xiong Y, Yarbrough WJ. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92:725–734.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamijo T, Weber JD, Zambetti G et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95:8292–8297.PubMedCrossRefGoogle Scholar
  21. 21.
    Stott FJ, bates S, James MC et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17:5001–5014.PubMedCrossRefGoogle Scholar
  22. 22.
    Randerson-Moor JA, Harland M, Williams S et al. A germline deletion of p14(ARF) but not CDNK2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10:55–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Rizos H, Puig S, Badenas C et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2001; 20:5543–5547.PubMedCrossRefGoogle Scholar
  24. 24.
    Hewitt C, Lee WC, Evans G et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 2002; 11:1273–1279.PubMedCrossRefGoogle Scholar
  25. 25.
    Box NF, Duffy DL, Chen W et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutation. Am J Hum Genet 2001; 69:765–773.PubMedCrossRefGoogle Scholar
  26. 26.
    van der Velden PA, Sandkuijl LA, Bergman W et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 2001; 69:774–779.PubMedCrossRefGoogle Scholar
  27. 27.
    Wolfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted by cytollytic T-lymphocytes in a human melanoma. Science 1995; 269:1281–1284.PubMedCrossRefGoogle Scholar
  28. 28.
    Zuo L, Weger J, Yang Q et al. Germ-line mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12:97–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Soufir N, Avril MF, Chompret A et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998; 7:209–216.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldstein AM, Struewing JP, Chidambaram A et al. Genotype-phenotype relationships in US melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 2000; 92:1006–1010.PubMedCrossRefGoogle Scholar
  31. 31.
    de Snoo FA, Hayward NK. Cutaneous melanoma susceptibility and progression genes. Cancer Lett 2005; 230:153–186.PubMedCrossRefGoogle Scholar
  32. 32.
    Sotillo R, Garcia JF, Ortega S et al. Invasive melanoma in cdk4-targeted mice. Proc Nat Acad Sci USA 2001; 98:13312–13317.PubMedCrossRefGoogle Scholar
  33. 33.
    Eng C, Li FP, Abramson DH et al. Mortality from second tumors amon long-term survivors of retinoblatoma. J Natl Cancer Inst 1993; 85:1121–1128.PubMedCrossRefGoogle Scholar
  34. 34.
    Fletcher O, Easton D, Anderson K et al. Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 2004; 96:357–363.PubMedCrossRefGoogle Scholar
  35. 35.
    Goldstein AM, Chan M, harland M et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors and uveal melanoma accross GenoMEL. Cancer Res 2006; 66:9818–9828.PubMedCrossRefGoogle Scholar
  36. 36.
    Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33:19–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Uribe P, Wistuba II, Gonzalez S. BRAF mutation: a frequent event in benign, atypical and malignant melanocytic lesions of the skin. Am J Dermatopathol 2003; 25:365–370.PubMedCrossRefGoogle Scholar
  38. 38.
    Maldonado JL, Fridlyand J, Patel H et al. Determinants of BRAF mutations in primary melanomas J Natl Cancer Inst 2003; 95:1878–1890.PubMedGoogle Scholar
  39. 39.
    Sebolt-Leopold J, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4:937–947.PubMedCrossRefGoogle Scholar
  40. 40.
    Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 2004; 6:313–319.PubMedCrossRefGoogle Scholar
  41. 41.
    Kumar R, Angelini S, Snellman E et al. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol 2004; 122:342–348.PubMedCrossRefGoogle Scholar
  42. 42.
    Michaloglou C, Vredeveld LC, Soengas MS et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436:720–724.PubMedCrossRefGoogle Scholar
  43. 43.
    Demunter A, Stas M, Degreef H et al. Analysis of N-and K-ras mutations in the distintinctive tumor progression phases of melanoma. J Inv Dermatol 2001; 117:1483–1489.CrossRefGoogle Scholar
  44. 44.
    Papp T, Pemsel H, Zimmermann R et al. Mutational analysis of the N-ras, p53, p16INK4a, CD4 and MC1R genes in human congenital melanocytic naevi. J Med Genet 1999; 36:610–614.PubMedGoogle Scholar
  45. 45.
    Jafari M, Papp T, Kirchner S et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol 1995; 121:23–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 2003; 3:559–569.PubMedCrossRefGoogle Scholar
  47. 47.
    van Elsas A, Zerp SF, van der Flier S et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Pathol 1996; 149:883–893.PubMedGoogle Scholar
  48. 48.
    Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949–954.PubMedCrossRefGoogle Scholar
  49. 49.
    Solit DB, Garraway LA, Pratilas CA et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439:358–362.PubMedCrossRefGoogle Scholar
  50. 50.
    Krasagakis K, Garbe C, Zouboulis CC et al. Growth control of melanoma cells and melanocytes by cytokines. Recent Results Cancer Res 1995; 139:169–182.PubMedGoogle Scholar
  51. 51.
    Natali PG, Nicotra MR, Di Renzo MF et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: Demonstration of the relationship to malignant melanoma tumor progression. Br J Cancer 1993; 68:746–750.PubMedGoogle Scholar
  52. 52.
    Wiltshire RN, Duray P, Bittner ML et al. Direct visualization of the clonal progression of primary cutaneous melanoma: Application of tissue microdissection and comparative genomic hybridization. Cancer Res 1995; 55:3954–3957.PubMedGoogle Scholar
  53. 53.
    Bastian BC, LeBoit PE, Hamm H et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 1998; 58:2170–2175.PubMedGoogle Scholar
  54. 54.
    Li G, Schaider H, Satyamoorthy K et al. Downregulation of E-cadherin and desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 2001; 20:8125–8135.PubMedCrossRefGoogle Scholar
  55. 55.
    McGill GG, Haq R, Nishimura EK et al. c-Met expression is regulated by Mitf in the melanocytic lineage. J Biol Chem 2006; 281:10365–10373.PubMedCrossRefGoogle Scholar
  56. 56.
    Koprowski H, Herlyn M, Balaban C et al. Expression for the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11:297–302.Google Scholar
  57. 57.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355–365.PubMedCrossRefGoogle Scholar
  58. 58.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2002; 2:499–501.CrossRefGoogle Scholar
  59. 59.
    Isshiki K, Elder DE, Guerry D et al. Chromosome 10 allelic loss in malignant melanoma. Genes Chromosomes Cancer 1993; 8:178–184.PubMedCrossRefGoogle Scholar
  60. 60.
    Guldberg P, thor Straten P, Birck A et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in makignant melanoma. Cancer Res 1997; 57:3660–3663.PubMedGoogle Scholar
  61. 61.
    Tsao H, Zhang X, Benoit E et al. Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 1998; 16:3397–3402.PubMedCrossRefGoogle Scholar
  62. 62.
    Dhawan P, Singh AB, Ellis DL et al. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 2002; 62:7335–7342.PubMedGoogle Scholar
  63. 63.
    Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004; 64:7002–7010.PubMedCrossRefGoogle Scholar
  64. 64.
    Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 2005; 23:1473–1482.PubMedCrossRefGoogle Scholar
  65. 65.
    Bardeesy N, Bastian BC, Hezel A et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 2001; 21:2144–2153.PubMedCrossRefGoogle Scholar
  66. 66.
    Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12:406–414.PubMedCrossRefGoogle Scholar
  67. 67.
    Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 2004; 38:365–411.PubMedCrossRefGoogle Scholar
  68. 68.
    Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 1994; 8:251–255.PubMedCrossRefGoogle Scholar
  69. 69.
    Hershey CL, Fisher DE. Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 2005; 347:73–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Huber WE, Price ER, Widlund HR et al. A tissue-restricted cAMP transcriptional response: SOX10 modulates α-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J Biol Chem 2003; 278:45224–45230.PubMedCrossRefGoogle Scholar
  71. 71.
    Dorski RI, Raible DW, Moon RT. Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev 2000; 14:158–162.Google Scholar
  72. 72.
    Takeda K, Yasumoto K, Takada R et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 2000; 275:14013–14016.PubMedCrossRefGoogle Scholar
  73. 73.
    Widlund HR, Horstmann MA, Price ER et al. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 2002; 158:1079–1087.PubMedCrossRefGoogle Scholar
  74. 74.
    Wu M, Hemesath TJ, Takemoto CM et al. c-Kit triggers dual phosphorylation, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000; 14:301–312.PubMedGoogle Scholar
  75. 75.
    Price ER, Ding HF, Badalian T et al. Lineage-specific signalling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem 1998; 273:17983–17986.PubMedCrossRefGoogle Scholar
  76. 76.
    Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436:117–122.PubMedCrossRefGoogle Scholar
  77. 77.
    Merlino G, Noonan FP. Modeling gene-environment interactions in malignant melanoma. Trends Mol Med 2003; 9:102–108.PubMedCrossRefGoogle Scholar
  78. 78.
    Bradl M, Klein-Szanto A, Porter S et al. malignant melanoma in transgenic mice. Proc natl Acad Sci USA 1991; 88:164–168.PubMedCrossRefGoogle Scholar
  79. 79.
    Kelsall SR, Mintz B. Metastatic cutanoeus melanoma promoted by ultraviolet radiation in mice with transgene-initiated low melanoma susceptibility. Cancer Res 1998; 58:4061–4065.PubMedGoogle Scholar
  80. 80.
    Klein-Szanto AJ, Silvers WK, Mintz B. Ultraviolet radiation-induced malignant skin melanoma in melanoma-susceptible transgenic mice. Cancer Res 1994; 54:4569–4572.PubMedGoogle Scholar
  81. 81.
    Sharpless NE, Bardeesy N, Lee KH et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413:86–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Krimpenfort P, Quon KC, Loonstra A et al. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413:83–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Rane SG, Cosenza SC, Mettus RV et al. Germ line transmission of the Cdk4R24C mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 2002; 22:644–656.PubMedCrossRefGoogle Scholar
  84. 84.
    You MJ, Castrillon DH, Bastian BC et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci USA 2002; 99:1455–1460.PubMedCrossRefGoogle Scholar
  85. 85.
    Sharpless NE, Kannan K, Xu J et al. Boyh products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 2003; 22:5055–5059.PubMedCrossRefGoogle Scholar
  86. 86.
    Kannan K, Sharpless NE, Xu J et al. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Prc Natl Acad Sci USA 2003; 100:1221–1225.CrossRefGoogle Scholar
  87. 87.
    Broome-Powell M, Gause PR, Hyman P et al. Induction of melanoma in TPras transgenic mice. Carcinogenesis 1999; 20:1747–1753.PubMedCrossRefGoogle Scholar
  88. 88.
    Otsuka T, Takayama H, Sharp R et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998; 58:5157–5167.PubMedGoogle Scholar
  89. 89.
    Takayama H, LaRochelle WJ, Sharp R et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94:701–706.PubMedCrossRefGoogle Scholar
  90. 90.
    Noonan FP, Otsuka T, Bang S et al. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res 2000; 60:3738–3743.PubMedGoogle Scholar
  91. 91.
    Noonan FP, Recio JA, Takayama H et al. Neonatal sunburn and melanoma in mice. Nature 2001; 413:271–272.PubMedCrossRefGoogle Scholar
  92. 92.
    Recio JA, Noonan FP, Takayama H et al. Ink4a/Arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res 2002; 62:6724–6730.PubMedGoogle Scholar
  93. 93.
    Patton EE, Widlund HR, Kutok JL et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15:249–254.PubMedCrossRefGoogle Scholar
  94. 94.
    Bardeesy N, Wong KK, DePinho RA et al. Animals models in melanoma: Recent advances and future prospects. Adv Cancer Res 2000; 79:123–156.PubMedCrossRefGoogle Scholar
  95. 95.
    Meierjohann S, Schartl M. From mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet 2006; 22:654–661.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Mar Pons
    • 1
  • Pablo Mancheño-Corvo
    • 1
  • Pilar Martín-Duque
    • 1
  • Miguel Quintanilla
    • 1
  1. 1.Instituto de Investigaciones Biomédicas Alberto Sols, Departamento de BiotecnologiaUniversidad Francisco de Vitoria, CSIC-UAMMadridSpain

Personalised recommendations