Cytogenetics of Melanoma and Nonmelanoma Skin Cancer

  • Melanie A. Carless
  • Lyn R. Griffiths
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 624)


Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomaprotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.


Skin Cancer Basal Cell Carcinoma Comparative Genomic Hybridization Cytogenetic Analysis Merkel Cell Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert MR, Weinstock MA. Keratinocyte carcinoma. CA Cancer J Clin 2003; 53(5):292–302PubMedGoogle Scholar
  2. 2.
    Weinstock MA. Epidemiology of nonmelanoma skin cancer: clinical issues, definitions and classification. J Invest Dermatol 1994; 102(6):4S–5SPubMedCrossRefGoogle Scholar
  3. 3.
    Gloster HM, Jr. Brodland DG. The epidemiology of skin cancer. Dermatol Surg 1996; 22(3):217–226PubMedCrossRefGoogle Scholar
  4. 4.
    Hoglund M, Gisselsson D, Hansen GB et al. Dissecting karyotypic patterns in malignant melanomas: temporal clustering of losses and gains in melanoma karyotypic evolution. Int J Cancer 2004; 108(1):57–65PubMedCrossRefGoogle Scholar
  5. 5.
    Sarasin A. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res 1999; 428(1–2):5–10PubMedGoogle Scholar
  6. 6.
    Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004; 195(3):298–308PubMedCrossRefGoogle Scholar
  7. 7.
    Emri G, Wenczl E, Van Erp P et al. Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells. J Invest Dermatol 2000; 115(3):435–440PubMedCrossRefGoogle Scholar
  8. 8.
    Jin Y, Martins C, Jin C et al. Nonrandom karyotypic features in squamous cell carcinomas of the skin. Genes Chromosomes Cancer 1999; 26(4):295–303PubMedCrossRefGoogle Scholar
  9. 9.
    Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005; 5(10):773–785PubMedCrossRefGoogle Scholar
  10. 10.
    Duesberg P, Rasnick D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 2000; 47(2):81–107PubMedCrossRefGoogle Scholar
  11. 11.
    Klapperstuck T, Wohlrab W. DNA image cytometry on sections as compared with image cytometry on smears and flow cytometry in melanoma. Cytometry 1996; 25(1):82–89PubMedCrossRefGoogle Scholar
  12. 12.
    Rapi S, Caldini A, Fanelli A et al. Flow cytometric measurement of DNA content in human solid tumors: a comparison with cytogenetics. Cytometry 1996; 26(3):192–197PubMedCrossRefGoogle Scholar
  13. 13.
    Robinson JK, Rademaker AW, Goolsby C et al. DNA ploidy in nonmelanoma skin cancer. Cancer 1996; 77(2):284–291PubMedCrossRefGoogle Scholar
  14. 14.
    Williams NN, Daly JM. Flow cytometry and prognostic implications in patients with solid tumors. Surg Gynecol Obstet 1990; 171(3):257–266PubMedGoogle Scholar
  15. 15.
    Chen Z, Sandberg AA. Molecular cytogenetic aspects of hematological malignancies: clinical implications. Am J Med Genet 2002; 115(3):130–141PubMedCrossRefGoogle Scholar
  16. 16.
    Mertens F, Heim S, Mandahl N et al. Cytogenetic analysis of 33 basal cell carcinomas. Cancer Res 1991; 51(3):954–957PubMedGoogle Scholar
  17. 17.
    Lotem M, Yehuda-Gafni O, Butnaryu E et al. Cytogenetic analysis of melanoma cell lines: subclone selection in long-term melanoma cell cultures. Cancer Genet Cytogenet 2003; 142(2):87–91PubMedCrossRefGoogle Scholar
  18. 18.
    James L, Varley J. Advances in cytogenetic analysis of solid tumours. Chromosome Res 1996; 4(7):479–485PubMedCrossRefGoogle Scholar
  19. 19.
    Kallioniemi OP, Kallioniemi A, Piper J et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer 1994; 10(4):231–243PubMedCrossRefGoogle Scholar
  20. 20.
    Kallioniemi A, Visakorpi T, Karhu R et al. Gene Copy Number Analysis by Fluorescence in Situ Hybridization and Comparative Genomic Hybridization. Methods 1996; 9(1):113–121PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson CT, Gray JW. Cytogenetic profiling using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). J Cell Biochem Suppl 1993; 17G:139–143PubMedCrossRefGoogle Scholar
  22. 22.
    Varella-Garcia M. Molecular cytogenetics in solid tumors: laboratorial tool for diagnosis, prognosis and therapy. Oncologist 2003; 8(1):45–58PubMedCrossRefGoogle Scholar
  23. 23.
    Happle R. Loss of heterozygosity in human skin. J Am Acad Dermatol 1999; 41(2 Pt 1):143–164PubMedCrossRefGoogle Scholar
  24. 24.
    Forozan F, Mahlamaki EH, Monni O et al. Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 2000; 60(16):4519–4525PubMedGoogle Scholar
  25. 25.
    Okamoto I, Pirker C, Bilban M et al. Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma. Neoplasia 2005; 7(4):303–311PubMedCrossRefGoogle Scholar
  26. 26.
    Platzer P, Upender MB, Wilson K et al. Silence of chromosomal amplifications in colon cancer. Cancer Res 2002; 62(4):1134–1138PubMedGoogle Scholar
  27. 27.
    Chudnovsky Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest 2005; 115(4):813–824PubMedGoogle Scholar
  28. 28.
    Pollock PM, Welch J, Hayward NK. Evidence for three tumor suppressor loci on chromosome 9p involved in melanoma development. Cancer Res 2001; 61(3):1154–1161PubMedGoogle Scholar
  29. 29.
    Rager EL, Bridgeford EP, Ollila DW. Cutaneous melanoma: update on prevention, screening, diagnosis and treatment. Am Fam Physician 2005; 72(2):269–276PubMedGoogle Scholar
  30. 30.
    Skin Cancer Foundation. The Stages of Melanoma. http://www.skincancer.Org/content/view/17/3/l/3/. Accessed 2/3/2007, 2007Google Scholar
  31. 31.
    Clark WH, Jr. From L, Bernardino EA et al. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 1969; 29(3):705–727PubMedGoogle Scholar
  32. 32.
    Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 1970; 172(5):902–908PubMedCrossRefGoogle Scholar
  33. 33.
    Hussein MR, Wood GS. Molecular aspects of melanocytic dysplastic nevi. J Mol Diagn 2002; 4(2):71–80PubMedGoogle Scholar
  34. 34.
    von Roenn JH, Kheir SM, Wolter JM et al. Significance of DNA abnormalities in primary malignant melanoma and nevi, a retrospective flow cytometric study. Cancer Res 1986; 46(6):3192–3195Google Scholar
  35. 35.
    Kheir SM, Bines SD, Vonroenn JH et al. Prognostic significance of DNA aneuploidy in stage I cutaneous melanoma. Ann Surg 1988; 207(4):455–461PubMedCrossRefGoogle Scholar
  36. 36.
    Mitelman Database of Chromosome Aberrations in Cancer. In: Mitelman F, Johansson B, Mertens F. eds. 2006. Scholar
  37. 37.
    Cowan JM, Francke U. Cytogenetic analysis in melanoma and nevi. Cancer Treat Res 1991; 54:3–16PubMedGoogle Scholar
  38. 38.
    Marras S, Faa G, Dettori T et al. Chromosomal changes in dysplastic nevi. Cancer Genet Cytogenet 1999; 113(2):177–179PubMedCrossRefGoogle Scholar
  39. 39.
    Richmond A, Fine R, Murray D et al. Growth factor and cytogenetic abnormalities in cultured nevi and malignant melanomas. J Invest Dermatol 1986; 86(3):295–302PubMedCrossRefGoogle Scholar
  40. 40.
    Bastian BC, Olshen AB, LeBoit PE et al. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 2003; 163(5):1765–1770PubMedGoogle Scholar
  41. 41.
    Balazs M, Adam Z, Treszl A et al. Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry 2001; 46(4):222–232PubMedCrossRefGoogle Scholar
  42. 42.
    Barks JH, Thompson FH, Taetle R et al. Increased chromosome 20 copy number detected by fluorescence in situ hybridization (FISH) in malignant melanoma. Genes Chromosomes Cancer 1997; 19(4):278–285PubMedCrossRefGoogle Scholar
  43. 43.
    Utikal J, Udart M, Leiter U et al. Additional Cyclin D(1) gene copies associated with chromosome 11 aberrations in cutaneous malignant melanoma. Int J Oncol 2005; 26(3):597–605PubMedGoogle Scholar
  44. 44.
    Udart M, Utikal J, Krahn GM et al. Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 2001; 3(3):245–254PubMedCrossRefGoogle Scholar
  45. 45.
    Treszl A, Adany R, Rakosy Z et al. Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas as revealed by fluorescence in situ hybridisation. Cytometry B Clin Cytom 2004; 60(1):37–46PubMedCrossRefGoogle Scholar
  46. 46.
    Matsuta M, Imamura Y, Matsuta M et al. Detection of numerical chromosomal aberrations in malignant melanomas using fluorescence in situ hybridization. J Cutan Pathol 1997; 24(4):201–205PubMedCrossRefGoogle Scholar
  47. 47.
    Hussein MR, Sun M, Roggero E et al. Loss of heterozygosity, microsatellite instability and mismatch repair protein alterations in the radial growth phase of cutaneous malignant melanomas. Mol Carcinog 2002; 34(1):35–44PubMedCrossRefGoogle Scholar
  48. 48.
    Hussein MR, Roggero E, Tuthill RJ et al. Identification of novel deletion Loci at 1p36 and 9p22-21 in melanocytic dysplastic nevi and cutaneous malignant melanomas. Arch Dermatol 2003; 139(6):816–817PubMedCrossRefGoogle Scholar
  49. 49.
    Miller DL, Weinstock MA. Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 1994; 30(5 Pt 1):774–778PubMedCrossRefGoogle Scholar
  50. 50.
    Wong CS, Strange RC, Lear JT. Basal cell carcinoma. Bmj 2003; 327(7418):794–798PubMedCrossRefGoogle Scholar
  51. 51.
    Bernstein SC, Lim KK, Brodland DG et al. The many faces of squamous cell carcinoma. Dermatol Surg 1996; 22(3):243–254.PubMedCrossRefGoogle Scholar
  52. 52.
    Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol 2002; 146(Suppl 61):1–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Skidmore RA, Jr. Flowers FP. Nonmelanoma skin cancer. Med Clin North Am 1998; 82(6):1309–1323, viPubMedCrossRefGoogle Scholar
  54. 54.
    Salasche SJ. Epidemiology of actinic keratoses and squamous cell carcinoma. J Am Acad Dermatol 2000; 42(1 Pt 2):4–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Frost C, Williams G, Green A. High incidence and regression rates of solar keratoses in a queensland community. J Invest Dermatol 2000; 115(2):273–277.PubMedCrossRefGoogle Scholar
  56. 56.
    Marks R, Rennie G, Selwood TS. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 1988; 1(8589):795–797.PubMedCrossRefGoogle Scholar
  57. 57.
    Evans C, Cockerell CJ. Actinic keratosis: time to call a spade a spade. South Med J 2000; 93(7):734–736.PubMedGoogle Scholar
  58. 58.
    Ramrakha-Jones VS, Herd RM. Treating Bowen’s disease: a cost-minimization study. Br J Dermatol 2003; 148(6):1167–1172.PubMedCrossRefGoogle Scholar
  59. 59.
    Cohen PR. Bowen’s disease: squamous cell carcinoma in situ. Am Fam Physician 1991; 44(4):1325–1329.PubMedGoogle Scholar
  60. 60.
    Staibano S, Lo Muzio L, Pannone G et al. DNA ploidy and cyclin D1 expression in basal cell carcinoma of the head and neck. Am J Clin Pathol 2001; 115(6):805–813.PubMedCrossRefGoogle Scholar
  61. 61.
    Frentz G, Moller U. Clonal heterogeneity in curetted human epidermal cancers and precancers analysed by flow cytometry and compared with histology. Br J Dermatol 1983; 109(2):173–181.PubMedCrossRefGoogle Scholar
  62. 62.
    Fortier-Beaulieu M, Laquerriere A, Thomine E et al. DNA flow-cytometric analysis of basal cell carcinomas and its relevance to their morphological differentiation: a retrospective study. Dermatology 1994; 188(2):94–99.PubMedCrossRefGoogle Scholar
  63. 63.
    Pilch H, Weiss J, Heubner C et al. Differential diagnosis of keratoacanthomas and squamous cell carcinomas: diagnostic value of DNA image cytometry and p53 expression. J Cutan Pathol 1994; 21(6):507–513.PubMedGoogle Scholar
  64. 64.
    Biesterfeld S, Pennings K, Grussendorf-Conen EI et al. Aneuploidy in actinic keratosis and Bowen’s disease—increased risk for invasive squamous cell carcinoma? Br J Dermatol 1995; 133(4):557–560.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawara S, Takata M, Takehara K. High frequency of DNA aneuploidy detected by DNA flow cytometry in Bowen’s disease. J Dermatol Sci 1999; 21(1):23–26.PubMedCrossRefGoogle Scholar
  66. 66.
    Jin Y, Mertens F, Persson B et al. Nonrandom numerical chromosome abnormalities in basal cell carcinomas. Cancer Genet Cytogenet 1998; 103(1):35–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Jin Y, Martins C, Salemark L et al. Nonrandom karyotypic features in basal cell carcinomas of the skin. Cancer Genet Cytogenet 2001; 131(2):109–119.PubMedCrossRefGoogle Scholar
  68. 68.
    Casalone R, Mazzola D, Righi R et al. Cytogenetic and interphase FISH analyses of 73 basal cell and three squamous cell carcinomas: different findings in direct preparations and short-term cell cultures. Cancer Genet Cytogenet 2000; 118(2):136–143.PubMedCrossRefGoogle Scholar
  69. 69.
    Jin Y, Merterns F, Persson B et al. The reciprocal translocation t(9;16)(q22;p13) is a primary chromosome abnormality in basal cell carcinomas. Cancer Res 1997; 57(3):404–406.PubMedGoogle Scholar
  70. 70.
    Kawasaki-Oyama RS, Andre FS, Caldeira LF et al. Cytogenetic findings in two basal cell carcinomas. Cancer Genet Cytogenet 1994; 73(2):152–156.PubMedCrossRefGoogle Scholar
  71. 71.
    Ashton KJ, Weinstein SR, Maguire DJ et al. Molecular cytogenetic analysis of basal cell carcinoma DNA using comparative genomic hybridization. J Invest Dermatol 2001; 117(3):683–686.PubMedCrossRefGoogle Scholar
  72. 72.
    Saridaki Z, Koumantaki E, Liloglou T et al. High frequency of loss of heterozygosity on chromosome region 9p21–p22 but lack of p16INK4a/p19ARF mutations in greek patients with basal cell carcinoma of the skin. J Invest Dermatol 2000; 115(4):719–725.PubMedCrossRefGoogle Scholar
  73. 73.
    Quinn AG, Sikkink S, Rees JL. Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. Cancer Res 1994; 54(17):4756–4759.PubMedGoogle Scholar
  74. 74.
    Shen T, Park WS, Boni R et al. Detection of loss of heterozygosity on chromosome 9q22.3 in microdissected sporadic basal cell carcinoma. Hum Pathol 1999; 30(3):284–287.PubMedCrossRefGoogle Scholar
  75. 75.
    Shanley SM, Dawkins H, Wainwright BJ et al. Fine deletion mapping on the long arm of chromosome 9 in sporadic and familial basal cell carcinomas. Hum Mol Genet 1995; 4(1):129–133.PubMedCrossRefGoogle Scholar
  76. 76.
    Jin Y, Jin C, Salemark L et al. Clonal chromosome abnormalities in premalignant lesions of the skin. Cancer Genet Cytogenet 2002; 136(1):48–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Heim S, Caron M, Jin Y et al. Genetic convergence during serial in vitro passage of a polyclonal squamous cell carcinoma. Cytogenet Cell Genet 1989; 52(3—4):133–135.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim DK, Kim JY, Kim HT et al. A specific chromosome aberration in a keratoacanthoma. Cancer Genet Cytogenet 2003; 142(1):70–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Mertens F, Heim S, Mandahl N et al. Clonal chromosome aberrations in a keratoacanthoma and a basal cell papilloma. Cancer Genet Cytogenet 1989; 39(2):227–232.PubMedCrossRefGoogle Scholar
  80. 80.
    Ashton KJ, Weinstein SR, Maguire DJ et al. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol 2003; 139(7):876–882.PubMedCrossRefGoogle Scholar
  81. 81.
    Clausen OP, Beigi M, Bolund L et al. Keratoacanthomas frequently show chromosomal aberrations as assessed by comparative genomic hybridization. J Invest Dermatol 2002; 119(6):1367–1372.PubMedCrossRefGoogle Scholar
  82. 82.
    Clausen OP, Aass HC, Beigi M et al. Are keratoacanthomas variants of squamous cell carcinomas? A comparison of chromosomal aberrations by comparative genomic hybridization. J Invest Dermatol 2006; 126(10):2308–2315.PubMedCrossRefGoogle Scholar
  83. 83.
    Rehman I, Takata M, Wu YY et al. Genetic change in actinic keratoses. Oncogene 1996; 12(12):2483–2490.PubMedGoogle Scholar
  84. 84.
    Lee HJ, Kim JS, Ha SJ et al. p53 gene mutations in Bowen’s disease in Koreans: clustering in exon 5 and multiple mutations. Cancer Lett 2000; 158(1):27–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Mortier L, Marchetti P, Delaporte E et al. Progression of actinic keratosis to squamous cell carcinoma of the skin correlates with deletion of the 9p21 region encoding the pl6(INK4a) tumor suppressor. Cancer Lett 2002; 176(2):205–214.PubMedCrossRefGoogle Scholar
  86. 86.
    Waring AJ, Takata M, Rehman I et al. Loss of heterozygosity analysis of keratoacanthoma reveals multiple differences from cutaneous squamous cell carcinoma. Br J Cancer 1996; 73(5):649–653.PubMedGoogle Scholar
  87. 87.
    Van Gele M, Speleman F, Vandesompele J et al. Characteristic pattern of chromosomal gains and losses in Merkel cell carcinoma detected by comparative genomic hybridization. Cancer Res 1998;58(7):1503–1508.PubMedGoogle Scholar
  88. 88.
    Kaur S, Vauhkonen H, Bohling T et al. Gene copy number changes in dermatofibrosarcoma protuberans-a fine-resolution study using array comparative genomic hybridization. Cytogenet Genome Res 2006; 115(3–4):283–288.PubMedCrossRefGoogle Scholar
  89. 89.
    Scarisbrick JJ, Woolford AJ, Russell-Jones R et al. Allelotyping in mycosis fungoides and Sezary syndrome: common regions of allelic loss identified on 9p, 10q and 17p. J Invest Dermatol 2001; 117(3):663–670.PubMedCrossRefGoogle Scholar
  90. 90.
    Hoefnagel JJ, Dijkman R, Basso K et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 2005; 105(9):3671–3678.PubMedCrossRefGoogle Scholar
  91. 91.
    Leonard JH, Leonard P, Kearsley JH. Chromosomes 1, 11 and 13 are frequently involved in karyotypic abnormalities in metastatic Merkel cell carcinoma. Cancer Genet Cytogenet 1993; 67(1):65–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Larramendy ML, Koljonen V, Bohling T et al. Recurrent DNA copy number changes revealed by comparative genomic hybridization in primary Merkel cell carcinomas. Mod Pathol 2004; 17(5):561–567.PubMedCrossRefGoogle Scholar
  93. 93.
    Van Gele M, Leonard JH, Van Roy N et al. Frequent allelic loss at 10q23 but low incidence of PTEN mutations in Merkel cell carcinoma. Int J Cancer 2001; 92(3):409–413.PubMedCrossRefGoogle Scholar
  94. 94.
    Vortmeyer AO, Merino MJ, Boni R et al. Genetic changes associated with primary Merkel cell carcinoma. Am J Clin Pathol 1998; 109(5):565–570.PubMedGoogle Scholar
  95. 95.
    Kiuru-Kuhlefelt S, El-Rifai W, Fanburg-Smith J et al. Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans. Cytogenet Cell Genet 2001; 92(3–4):192–195.PubMedCrossRefGoogle Scholar
  96. 96.
    Nishio J, Iwasaki H, Ohjimi Y et al. Overrepresentation of 17q22-qter and 22q13 in dermatofibrosarcoma protuberans but not in dermatofibroma: a comparative genomic hybridization study. Cancer Genet Cytogenet 2002;132(2):102–108.PubMedCrossRefGoogle Scholar
  97. 97.
    Mao X, Lillington D, Scarisbrick JJ et al. Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sezary syndrome and mycosis fungoides. Br J Dermatol 2002; 147(3):464–475.PubMedCrossRefGoogle Scholar
  98. 98.
    Streubel B, Scheucher B, Valencak J et al. Molecular cytogenetic evidence of t(14;18)(IGH;BCL2) in a substantial proportion of primary cutaneous follicle center lymphomas. Am J Surg Pathol 2006; 30(4):529–536.PubMedCrossRefGoogle Scholar
  99. 99.
    Hallermann C, Kaune KM, Gesk S et al. Molecular cytogenetic analysis of chromosomal breakpoints in the IGH, MYC, BCL6 and MALT1 gene loci in primary cutaneous B-cell lymphomas. J Invest Dermatol 2004; 123(1):213–219.PubMedCrossRefGoogle Scholar
  100. 100.
    Gimenez S, Costa C, Espinet B et al. Comparative genomic hybridization analysis of cutaneous large B-cell lymphomas. Exp Dermatol 2005; 14(12):883–890.PubMedCrossRefGoogle Scholar
  101. 101.
    Santos GC, Zielenska M, Prasad M et al. Chromosome 6p amplification and cancer progression. J Clin Pathol 2007; 60(1):1–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Scarisbrick JJ, Woolford AJ, Russell-Jones R et al. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 2000; 95(9):2937–2942.PubMedGoogle Scholar
  103. 103.
    Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 2003; 306(4):799–804.PubMedCrossRefGoogle Scholar
  104. 104.
    Tian F, DaCosta Byfield S, Parks WT et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003; 63(23):8284–8292.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Melanie A. Carless
    • 1
  • Lyn R. Griffiths
    • 2
  1. 1.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA
  2. 2.Genomics Research Centre, School of Health ScienceGriffith University Gold CoastBundallAustralia

Personalised recommendations