Skip to main content

Targeting Glycoproteins or Glycolipids and Their Metabolic Pathways for Antiparasite Therapy

  • Chapter
Drug Targets in Kinetoplastid Parasites

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 625))

Abstract

Carbohydrate-based dierapy, known as glycotherapeutics, is a new and emerging field diat promises to be the fixture hope for combating kinetoplastid infections more efficiently and effectively. Targeting novel glycoproteins/lipids, which are important disease determinants of kinetoplastid diseases, have helped in the development of this field. Better and refined understanding of all the available data would possibly help us in providing a future direction for rational drug design and better disease management. This review intends to focus on such lines, which will give us an insight into the future hope for development of novel therapeutic strategies through glycobiological platform for combating kinetoplastid infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davila AM, Tyler KM. Combating Kinetoplastid diseases. Kinetoplastid Biol Dis 2002; 1:6.

    Article  PubMed  Google Scholar 

  2. Handman E. Leishmaniasis: Current status of vaccine development. Clin Microbiol Rev 2001; 14:229–243.

    Article  PubMed  CAS  Google Scholar 

  3. Bhattacharya SK, Jha TK, Sundar S et al. Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in india. Clin Infect Dis 2004; 38:217–221.

    Article  PubMed  CAS  Google Scholar 

  4. Guerin PJ, Olliaro P, Sundar S et al. Visceral leishmaniasis: Current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002; 2:494–501.

    Article  PubMed  Google Scholar 

  5. Davies CR, Kaye P, Croft SL et al. Leishmaniasis: New approaches to disease control. BMJ 2003; 326:377–382.

    Article  PubMed  Google Scholar 

  6. Sundar S, Agarwal G, Ria M et al. Treatment of Indian visceral leishmaniasis with single dose or daily infusion of low dose liposomal amphotericin B, a randomized trial. BMJ 2002; 323:419–422.

    Article  Google Scholar 

  7. Iqbal J, Hira PR, Saroj G et al. Imported visceral leishmaniasis: Diagnostic dilemmas and comparative analysis of three assays. J Clin Microbiol 2002; 40:475–479.

    Article  PubMed  Google Scholar 

  8. Alvar J, Avate CC, Rrez-solar BG et al. Leishmania and human immunodeficiency virus coinfection: The first 10 years. Clin Microbiol Rev 1997; 10:298–319.

    PubMed  CAS  Google Scholar 

  9. Harder A, Greif G, Haberkorn A. Chemotherapeutic approaches to protozoa: Kinetoplastida-current level of knowledge and outlook. Parasitol Res 2001; 87:778–780.

    PubMed  CAS  Google Scholar 

  10. Rosenthal E, Marty P. Recent understanding in the treatment of visceral leishmaniasis. JPGM 2003; 49:61–68.

    PubMed  CAS  Google Scholar 

  11. AK, Bandyopadhyay S, Chatterjee M et al. Sialoglycans in protozoal diseases: Their detection,modes of acquisition and emerging biological roles. Glycoconj J 2004; 20:199–206.

    PubMed  Google Scholar 

  12. Sinha D, Chatterjee M, Mandal C. O-acetylation of sialic acids-their detection, biological significance and alteration in diseases-a Review: Trends Glycosci Glycotechnol 2000; 12:17–33.

    CAS  Google Scholar 

  13. Guha-Niyogi A, Sullivan DR, Turco SJ. Glycoconjugate structures of parasitic protozoa. Glycobiology 2001; 11:45–59.

    Article  Google Scholar 

  14. Pereira-Chioccola VL, Acosta-Serrano A, de Almeida IC et al. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies. J Cell Sci 2000; 113:1299–1307.

    PubMed  CAS  Google Scholar 

  15. de Diego J, Punzon C, Duarte M et al. Alteration of macrophage function by a Trypanosoma cruzi membrane mucin. J Immunol 1997; 159:4983–4989.

    PubMed  Google Scholar 

  16. Zamze SE, Ashford DA, Wooten EW et al. Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and type III variant surface glycoproteins. J Biol Chem 1991; 266:20244–20261.

    PubMed  CAS  Google Scholar 

  17. Mehlert A, Zitzman N, Richardson JM et al. The glycosylation of variant surface glycoproteins and procyclic acidic repetitive proteins of Trypanosoma brucei. Mol Biochem Parasitol 1998; 91:145–152.

    Article  PubMed  CAS  Google Scholar 

  18. Ferguson MAJ. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112:2799–2809.

    PubMed  CAS  Google Scholar 

  19. Stijlemans B, Conrath K, Cortez-Retamozo V et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: African trypanosomes as paradigm. J Biol Chem 2004; 279:1256–1261.

    Article  PubMed  CAS  Google Scholar 

  20. Doering TL, Lu T, Werbovetz KA et al. Toxicity of myristic acid analogs toward African trypanosomes. Proc Natl Acad Sci 1994; 91:9735–9739.

    Article  PubMed  CAS  Google Scholar 

  21. Lederkremer RM, Lima C, Ramirez MI et al. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J Biol Chem 1991; 266:23670–23675.

    PubMed  Google Scholar 

  22. Camera JC, Jones C, Wait R et al. Structural variations in the glcosylinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj J 1996; 13:955–966.

    Article  Google Scholar 

  23. Schenkman S, Ferguson MAJ, Heise N et al. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchors are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol Biochem Parasitol 1993; 59:293–304.

    Article  PubMed  CAS  Google Scholar 

  24. Previato JO, Jones C, Xavier MT et al. Structural characterization of the major glycosyl-phosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem 1995; 270:7241–7250.

    Article  PubMed  CAS  Google Scholar 

  25. Serrano AA, Schenkman S, Yoshida N et al. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 1995; 270:27244–27253.

    Article  PubMed  CAS  Google Scholar 

  26. Almeida IC, Ferguson MAJ, Schenkman S et al. Lytic anti a-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol anchored glycoproteins of Trypanosoma cruzi. Biochem J 1994; 304:793–802.

    PubMed  CAS  Google Scholar 

  27. Malaga S, Yoshida N. Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infect Immun 2001; 69:353–359.

    Article  PubMed  CAS  Google Scholar 

  28. Kelm S, Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol 1997; 175:137–240.

    Article  PubMed  CAS  Google Scholar 

  29. Agusti R, Paris G, Ratier L et al. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology 2004; 14:659–670.

    Article  PubMed  CAS  Google Scholar 

  30. Treumann A, Zitzman N, Husmeier A et al. Structural characterization of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol 1997; 269:529–547.

    Article  PubMed  CAS  Google Scholar 

  31. de Lederkremer RM, Colli W. Galactofuranose-containing glycoconjugates in trypanosomatids. Glycobiology 1995; 5:547–552.

    Article  PubMed  CAS  Google Scholar 

  32. Mcconville MJ, Ferguson MAJ. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294:305–324.

    PubMed  CAS  Google Scholar 

  33. Smith TK, Sharma DK, Crossman A et al. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 1997; 16:6667–6675.

    Article  PubMed  CAS  Google Scholar 

  34. Ralton JE, Milne KG, Guther ML et al. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J Biol Chem 1993; 268:24183–24189.

    PubMed  CAS  Google Scholar 

  35. Turco S, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.

    Article  PubMed  CAS  Google Scholar 

  36. McConville MJ, Blackwell JM. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani: Characterization of the promastigote and amastigote glycolipids. J Biol Chem 1991; 266:15170–15179.

    PubMed  CAS  Google Scholar 

  37. Ilg T, Overath P, Ferguson MA et al. O-and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase: Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994; 269:24073–24081.

    PubMed  CAS  Google Scholar 

  38. Ilg T, Stierhof YD, Wiese M et al. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology 1994; 108(Suppl):S63–71.

    PubMed  Google Scholar 

  39. Lovelace JK, Gottlieb M. Comparison of extracellular acid phosphatases from various isolates of Leishmania. Am J Trop Med Hyg 1986; 35:1121–1128.

    PubMed  CAS  Google Scholar 

  40. Ilg T, Montgomery J, Stierhof YD et al. Molecular cloning and characterization of a novel repeat-containing Leishmania major gene, ppg1, that encodes a membrane-associated form of proteophosphoglycan with a putative glycosylphosphatidylinositol anchor. J Biol Chem 1999; 274:31410–31420.

    Article  PubMed  CAS  Google Scholar 

  41. Ilg T, Handman E, Stierhof YD. Proteophosphoglycans from Leishmania promastigotes and amastigotes. Biochem Soc Trans 1999; 4:518–525.

    Google Scholar 

  42. Mukhopadhyaynee Bandyopadhyay S, Mandal C. Glycobiology of leishmania donovani. Indian J Med Res 2006; 123:203–220.

    Google Scholar 

  43. Medina-Acosta E, Kavess RE, Schwartz H et al. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol 1989; 37:263–273.

    Article  PubMed  CAS  Google Scholar 

  44. Schlagenhauf E, Etges R, Metcalf P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure 1998; 6:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  45. Soteriadou KP, Remoundos MS, Katsikas MC et al. The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem 1992; 267:13980–13985.

    PubMed  CAS  Google Scholar 

  46. Corradin S, Ransijn A, Corradin G et al. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem J 2002; 367:761–769.

    Article  PubMed  CAS  Google Scholar 

  47. Bangs JD, Ransom DA, Nimick M et al. In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. Mol Biochem Parasitol 2001; 114:111–117.

    Article  PubMed  CAS  Google Scholar 

  48. Chatterjee M, Chava AK, Kohla G et al. Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology 2003; 5:351–361.

    Article  CAS  Google Scholar 

  49. Chava AK, Chatterjee M, Gerwig GJ et al. Identification of sialic acids on Leishmania donovani amastigotes. Biol Chem 2004; 385:59–66.

    Article  PubMed  CAS  Google Scholar 

  50. Chava AK, Chatterjee M, Mandal C. O-acetyl sialic acids in parasitic diseases. In: Yarema KJ, ed. Chapter 3 in Hand book of Carbohydrate Engineering. USA: Published by Taylor and Francis Group, book division, 2005:71–97.

    Google Scholar 

  51. Schauer R. Achievements and challenges of sialic acid research. Glycoconj J 2000; 17:485–499.

    Article  PubMed  CAS  Google Scholar 

  52. Chava AK, Chatterjee M, Sundar S et al. O-acetyl sialioglycoconjugates on erythrocytes for diagnosis and prognosis of Indian Visceral leishmaniasis and its biological role. Trends and Research in leishmaniasis, 2005; 5:223–243.

    Google Scholar 

  53. Chava AK, Chatterjee M, Sharma V et al. Differential expression of O-acetylated sialoglycoconjugates induces a variable degree of complement-mediated hemolysis in Indian leishmaniasis. J Infect Dis 2004; 189:1257–1264.

    Article  PubMed  CAS  Google Scholar 

  54. Bandyopadhyay S, Chatterjee M, Sundar S et al. Identification of 9-O-acetylated sialoglycans on peripheral blood mononuclear cells in Indian visceral leishmaniasis. Glycoconj J 2004; 20:531–536.

    Article  PubMed  CAS  Google Scholar 

  55. Chava AK, Chatterjee M, Sundar S et al. Development of an assay for quantification of linkage-specific O-acetylated sialoglycans on erythrocytes; its application in Indian visceral leishmnaiasis. J Immunol Meth 2002; 270:1–10.

    CAS  Google Scholar 

  56. Chatterjee M, Sharma V, Mandal C et al. Identification of antibodies directed against O-Acetylated sialic acids in Visceral Leishmaniasis: Its diagnostic and prognostic role. Glycoconj J 1998; 15:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  57. Chatterjee M, Basu K, Basu D et al. Distribution of IgG subclasses in antimonial unresponsive Indian kala-azar patients. Clin Exp Immunol 1998; 114:408–413.

    Article  PubMed  CAS  Google Scholar 

  58. Sharma V, Chatterjee M, Mandal C et al. Rapid diagnosis of visceral leishmaniasis using Achatinin-H, a 9-O-acetylated sialic acid binding lectin. Amer J Trop Med Hyg 1998; 58:551–554.

    CAS  Google Scholar 

  59. Bandyopadhyay S, Chatterjee M, Pal S et al. Purification, characterization of O-acetylated sialoglycoconjugatesspecific IgM, and development of an enzyme-linked immunosorbent assay for diagnosis and follow-up of Indian visceral leishmaniasis patients. Diagn Microbiol Infect Dis 2004; 50:15–24.

    Article  PubMed  CAS  Google Scholar 

  60. Bandyopadhyay S, Chatterjee M, Das T et al. Antibodies directed against O-acetylated sialoglycoconjugates accelerate complement activation in leishmania donovani promastigotes. J Infect Dis 2004; 190:2010–2019.

    Article  PubMed  CAS  Google Scholar 

  61. McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294:305–324.

    PubMed  CAS  Google Scholar 

  62. Turco SJ. Glycoproteins of parasites. In: Montreul J, Vliegenhart JFG, Schachter H, eds. Glyco-proteins and Disease. Elsevier Science, B.V., 1996:113–124.

    Google Scholar 

  63. Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112:2799–2809.

    PubMed  CAS  Google Scholar 

  64. Bates PA, Hermes I, Dwyer DM. Golgi mediated post translational processing of secretory acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol 1990; 39:247–256.

    Article  PubMed  CAS  Google Scholar 

  65. Stierhof YD, Ilg T, Russell DG et al. Characterization of polymer release from the flagellar pocket of Leishmania mexicana promastigotes. J Cell Biol 1994; 125:321–331.

    Article  PubMed  CAS  Google Scholar 

  66. Ilg T, Overath P, Ferguson MA et al. O-and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase: Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994; 269:24073–24081.

    PubMed  CAS  Google Scholar 

  67. Ilg T, Stierhof YD, Wiese M et al. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology 1994; 108:S63–71.

    Article  PubMed  Google Scholar 

  68. Ilg T, Handman E, Stierhof YD. Proteophosphoglycans from Leishmania promastigotes and amastigotes. Biochem Soc Trans 1999; 4:518–25.

    Google Scholar 

  69. Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.

    Article  PubMed  CAS  Google Scholar 

  70. Palatnik CB, Borojevic R, Previato JO et al. Inhibition of Leishmania donovani promastigote internalization into murine macrophages by chemically defined parasite glycoconjugate ligands. Infect Immun 1989; 57:754–763.

    PubMed  CAS  Google Scholar 

  71. Smith TK, Sharma DK, Crossman A et al. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 1997; 16:6667–6675.

    Article  PubMed  CAS  Google Scholar 

  72. Davis AJ, Perugini MA, Smith BJ et al. Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Biol Chem 2004; 279:12462–12468.

    Article  PubMed  CAS  Google Scholar 

  73. Chakraborty P, Bhaduri AN, Das PK. Neoglycoproteins as carriers for receptor-mediated drug targeting in the treatment of experimental visceral leishmaniasis. J Protozool 1990; 37:358–364.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

nee Bandyopadhyay, S.M., Mandal, C. (2008). Targeting Glycoproteins or Glycolipids and Their Metabolic Pathways for Antiparasite Therapy. In: Majumder, H.K. (eds) Drug Targets in Kinetoplastid Parasites. Advances In Experimental Medicine And Biology, vol 625. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77570-8_8

Download citation

Publish with us

Policies and ethics