Advertisement

Targeting Glycoproteins or Glycolipids and Their Metabolic Pathways for Antiparasite Therapy

  • Sumi Mukhopadhyay nee Bandyopadhyay
  • Chitra Mandal
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)

Abstract

Carbohydrate-based dierapy, known as glycotherapeutics, is a new and emerging field diat promises to be the fixture hope for combating kinetoplastid infections more efficiently and effectively. Targeting novel glycoproteins/lipids, which are important disease determinants of kinetoplastid diseases, have helped in the development of this field. Better and refined understanding of all the available data would possibly help us in providing a future direction for rational drug design and better disease management. This review intends to focus on such lines, which will give us an insight into the future hope for development of novel therapeutic strategies through glycobiological platform for combating kinetoplastid infections.

Keywords

Sialic Acid Visceral Leishmaniasis Trypanosoma Cruzi Trypanosoma Brucei Variant Surface Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davila AM, Tyler KM. Combating Kinetoplastid diseases. Kinetoplastid Biol Dis 2002; 1:6.PubMedCrossRefGoogle Scholar
  2. 2.
    Handman E. Leishmaniasis: Current status of vaccine development. Clin Microbiol Rev 2001; 14:229–243.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhattacharya SK, Jha TK, Sundar S et al. Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in india. Clin Infect Dis 2004; 38:217–221.PubMedCrossRefGoogle Scholar
  4. 4.
    Guerin PJ, Olliaro P, Sundar S et al. Visceral leishmaniasis: Current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002; 2:494–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Davies CR, Kaye P, Croft SL et al. Leishmaniasis: New approaches to disease control. BMJ 2003; 326:377–382.PubMedCrossRefGoogle Scholar
  6. 6.
    Sundar S, Agarwal G, Ria M et al. Treatment of Indian visceral leishmaniasis with single dose or daily infusion of low dose liposomal amphotericin B, a randomized trial. BMJ 2002; 323:419–422.CrossRefGoogle Scholar
  7. 7.
    Iqbal J, Hira PR, Saroj G et al. Imported visceral leishmaniasis: Diagnostic dilemmas and comparative analysis of three assays. J Clin Microbiol 2002; 40:475–479.PubMedCrossRefGoogle Scholar
  8. 8.
    Alvar J, Avate CC, Rrez-solar BG et al. Leishmania and human immunodeficiency virus coinfection: The first 10 years. Clin Microbiol Rev 1997; 10:298–319.PubMedGoogle Scholar
  9. 9.
    Harder A, Greif G, Haberkorn A. Chemotherapeutic approaches to protozoa: Kinetoplastida-current level of knowledge and outlook. Parasitol Res 2001; 87:778–780.PubMedGoogle Scholar
  10. 10.
    Rosenthal E, Marty P. Recent understanding in the treatment of visceral leishmaniasis. JPGM 2003; 49:61–68.PubMedGoogle Scholar
  11. ll.Chava
    AK, Bandyopadhyay S, Chatterjee M et al. Sialoglycans in protozoal diseases: Their detection,modes of acquisition and emerging biological roles. Glycoconj J 2004; 20:199–206.PubMedGoogle Scholar
  12. 12.
    Sinha D, Chatterjee M, Mandal C. O-acetylation of sialic acids-their detection, biological significance and alteration in diseases-a Review: Trends Glycosci Glycotechnol 2000; 12:17–33.Google Scholar
  13. 13.
    Guha-Niyogi A, Sullivan DR, Turco SJ. Glycoconjugate structures of parasitic protozoa. Glycobiology 2001; 11:45–59.CrossRefGoogle Scholar
  14. 14.
    Pereira-Chioccola VL, Acosta-Serrano A, de Almeida IC et al. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies. J Cell Sci 2000; 113:1299–1307.PubMedGoogle Scholar
  15. 15.
    de Diego J, Punzon C, Duarte M et al. Alteration of macrophage function by a Trypanosoma cruzi membrane mucin. J Immunol 1997; 159:4983–4989.PubMedGoogle Scholar
  16. 16.
    Zamze SE, Ashford DA, Wooten EW et al. Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and type III variant surface glycoproteins. J Biol Chem 1991; 266:20244–20261.PubMedGoogle Scholar
  17. 17.
    Mehlert A, Zitzman N, Richardson JM et al. The glycosylation of variant surface glycoproteins and procyclic acidic repetitive proteins of Trypanosoma brucei. Mol Biochem Parasitol 1998; 91:145–152.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferguson MAJ. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112:2799–2809.PubMedGoogle Scholar
  19. 19.
    Stijlemans B, Conrath K, Cortez-Retamozo V et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: African trypanosomes as paradigm. J Biol Chem 2004; 279:1256–1261.PubMedCrossRefGoogle Scholar
  20. 20.
    Doering TL, Lu T, Werbovetz KA et al. Toxicity of myristic acid analogs toward African trypanosomes. Proc Natl Acad Sci 1994; 91:9735–9739.PubMedCrossRefGoogle Scholar
  21. 21.
    Lederkremer RM, Lima C, Ramirez MI et al. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J Biol Chem 1991; 266:23670–23675.PubMedGoogle Scholar
  22. 22.
    Camera JC, Jones C, Wait R et al. Structural variations in the glcosylinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj J 1996; 13:955–966.CrossRefGoogle Scholar
  23. 23.
    Schenkman S, Ferguson MAJ, Heise N et al. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchors are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol Biochem Parasitol 1993; 59:293–304.PubMedCrossRefGoogle Scholar
  24. 24.
    Previato JO, Jones C, Xavier MT et al. Structural characterization of the major glycosyl-phosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem 1995; 270:7241–7250.PubMedCrossRefGoogle Scholar
  25. 25.
    Serrano AA, Schenkman S, Yoshida N et al. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 1995; 270:27244–27253.PubMedCrossRefGoogle Scholar
  26. 26.
    Almeida IC, Ferguson MAJ, Schenkman S et al. Lytic anti a-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol anchored glycoproteins of Trypanosoma cruzi. Biochem J 1994; 304:793–802.PubMedGoogle Scholar
  27. 27.
    Malaga S, Yoshida N. Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infect Immun 2001; 69:353–359.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelm S, Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol 1997; 175:137–240.PubMedCrossRefGoogle Scholar
  29. 29.
    Agusti R, Paris G, Ratier L et al. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology 2004; 14:659–670.PubMedCrossRefGoogle Scholar
  30. 30.
    Treumann A, Zitzman N, Husmeier A et al. Structural characterization of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol 1997; 269:529–547.PubMedCrossRefGoogle Scholar
  31. 31.
    de Lederkremer RM, Colli W. Galactofuranose-containing glycoconjugates in trypanosomatids. Glycobiology 1995; 5:547–552.PubMedCrossRefGoogle Scholar
  32. 32.
    Mcconville MJ, Ferguson MAJ. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294:305–324.PubMedGoogle Scholar
  33. 33.
    Smith TK, Sharma DK, Crossman A et al. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 1997; 16:6667–6675.PubMedCrossRefGoogle Scholar
  34. 34.
    Ralton JE, Milne KG, Guther ML et al. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J Biol Chem 1993; 268:24183–24189.PubMedGoogle Scholar
  35. 35.
    Turco S, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.PubMedCrossRefGoogle Scholar
  36. 36.
    McConville MJ, Blackwell JM. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani: Characterization of the promastigote and amastigote glycolipids. J Biol Chem 1991; 266:15170–15179.PubMedGoogle Scholar
  37. 37.
    Ilg T, Overath P, Ferguson MA et al. O-and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase: Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994; 269:24073–24081.PubMedGoogle Scholar
  38. 38.
    Ilg T, Stierhof YD, Wiese M et al. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology 1994; 108(Suppl):S63–71.PubMedGoogle Scholar
  39. 39.
    Lovelace JK, Gottlieb M. Comparison of extracellular acid phosphatases from various isolates of Leishmania. Am J Trop Med Hyg 1986; 35:1121–1128.PubMedGoogle Scholar
  40. 40.
    Ilg T, Montgomery J, Stierhof YD et al. Molecular cloning and characterization of a novel repeat-containing Leishmania major gene, ppg1, that encodes a membrane-associated form of proteophosphoglycan with a putative glycosylphosphatidylinositol anchor. J Biol Chem 1999; 274:31410–31420.PubMedCrossRefGoogle Scholar
  41. 41.
    Ilg T, Handman E, Stierhof YD. Proteophosphoglycans from Leishmania promastigotes and amastigotes. Biochem Soc Trans 1999; 4:518–525.Google Scholar
  42. 42.
    Mukhopadhyaynee Bandyopadhyay S, Mandal C. Glycobiology of leishmania donovani. Indian J Med Res 2006; 123:203–220.Google Scholar
  43. 43.
    Medina-Acosta E, Kavess RE, Schwartz H et al. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol 1989; 37:263–273.PubMedCrossRefGoogle Scholar
  44. 44.
    Schlagenhauf E, Etges R, Metcalf P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure 1998; 6:1035–1046.PubMedCrossRefGoogle Scholar
  45. 45.
    Soteriadou KP, Remoundos MS, Katsikas MC et al. The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem 1992; 267:13980–13985.PubMedGoogle Scholar
  46. 46.
    Corradin S, Ransijn A, Corradin G et al. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem J 2002; 367:761–769.PubMedCrossRefGoogle Scholar
  47. 47.
    Bangs JD, Ransom DA, Nimick M et al. In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. Mol Biochem Parasitol 2001; 114:111–117.PubMedCrossRefGoogle Scholar
  48. 48.
    Chatterjee M, Chava AK, Kohla G et al. Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology 2003; 5:351–361.CrossRefGoogle Scholar
  49. 49.
    Chava AK, Chatterjee M, Gerwig GJ et al. Identification of sialic acids on Leishmania donovani amastigotes. Biol Chem 2004; 385:59–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Chava AK, Chatterjee M, Mandal C. O-acetyl sialic acids in parasitic diseases. In: Yarema KJ, ed. Chapter 3 in Hand book of Carbohydrate Engineering. USA: Published by Taylor and Francis Group, book division, 2005:71–97.Google Scholar
  51. 51.
    Schauer R. Achievements and challenges of sialic acid research. Glycoconj J 2000; 17:485–499.PubMedCrossRefGoogle Scholar
  52. 52.
    Chava AK, Chatterjee M, Sundar S et al. O-acetyl sialioglycoconjugates on erythrocytes for diagnosis and prognosis of Indian Visceral leishmaniasis and its biological role. Trends and Research in leishmaniasis, 2005; 5:223–243.Google Scholar
  53. 53.
    Chava AK, Chatterjee M, Sharma V et al. Differential expression of O-acetylated sialoglycoconjugates induces a variable degree of complement-mediated hemolysis in Indian leishmaniasis. J Infect Dis 2004; 189:1257–1264.PubMedCrossRefGoogle Scholar
  54. 54.
    Bandyopadhyay S, Chatterjee M, Sundar S et al. Identification of 9-O-acetylated sialoglycans on peripheral blood mononuclear cells in Indian visceral leishmaniasis. Glycoconj J 2004; 20:531–536.PubMedCrossRefGoogle Scholar
  55. 55.
    Chava AK, Chatterjee M, Sundar S et al. Development of an assay for quantification of linkage-specific O-acetylated sialoglycans on erythrocytes; its application in Indian visceral leishmnaiasis. J Immunol Meth 2002; 270:1–10.Google Scholar
  56. 56.
    Chatterjee M, Sharma V, Mandal C et al. Identification of antibodies directed against O-Acetylated sialic acids in Visceral Leishmaniasis: Its diagnostic and prognostic role. Glycoconj J 1998; 15:1141–1147.PubMedCrossRefGoogle Scholar
  57. 57.
    Chatterjee M, Basu K, Basu D et al. Distribution of IgG subclasses in antimonial unresponsive Indian kala-azar patients. Clin Exp Immunol 1998; 114:408–413.PubMedCrossRefGoogle Scholar
  58. 58.
    Sharma V, Chatterjee M, Mandal C et al. Rapid diagnosis of visceral leishmaniasis using Achatinin-H, a 9-O-acetylated sialic acid binding lectin. Amer J Trop Med Hyg 1998; 58:551–554.Google Scholar
  59. 59.
    Bandyopadhyay S, Chatterjee M, Pal S et al. Purification, characterization of O-acetylated sialoglycoconjugatesspecific IgM, and development of an enzyme-linked immunosorbent assay for diagnosis and follow-up of Indian visceral leishmaniasis patients. Diagn Microbiol Infect Dis 2004; 50:15–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Bandyopadhyay S, Chatterjee M, Das T et al. Antibodies directed against O-acetylated sialoglycoconjugates accelerate complement activation in leishmania donovani promastigotes. J Infect Dis 2004; 190:2010–2019.PubMedCrossRefGoogle Scholar
  61. 61.
    McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294:305–324.PubMedGoogle Scholar
  62. 62.
    Turco SJ. Glycoproteins of parasites. In: Montreul J, Vliegenhart JFG, Schachter H, eds. Glyco-proteins and Disease. Elsevier Science, B.V., 1996:113–124.Google Scholar
  63. 63.
    Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112:2799–2809.PubMedGoogle Scholar
  64. 64.
    Bates PA, Hermes I, Dwyer DM. Golgi mediated post translational processing of secretory acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol 1990; 39:247–256.PubMedCrossRefGoogle Scholar
  65. 65.
    Stierhof YD, Ilg T, Russell DG et al. Characterization of polymer release from the flagellar pocket of Leishmania mexicana promastigotes. J Cell Biol 1994; 125:321–331.PubMedCrossRefGoogle Scholar
  66. 66.
    Ilg T, Overath P, Ferguson MA et al. O-and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase: Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994; 269:24073–24081.PubMedGoogle Scholar
  67. 67.
    Ilg T, Stierhof YD, Wiese M et al. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology 1994; 108:S63–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Ilg T, Handman E, Stierhof YD. Proteophosphoglycans from Leishmania promastigotes and amastigotes. Biochem Soc Trans 1999; 4:518–25.Google Scholar
  69. 69.
    Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Palatnik CB, Borojevic R, Previato JO et al. Inhibition of Leishmania donovani promastigote internalization into murine macrophages by chemically defined parasite glycoconjugate ligands. Infect Immun 1989; 57:754–763.PubMedGoogle Scholar
  71. 71.
    Smith TK, Sharma DK, Crossman A et al. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 1997; 16:6667–6675.PubMedCrossRefGoogle Scholar
  72. 72.
    Davis AJ, Perugini MA, Smith BJ et al. Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Biol Chem 2004; 279:12462–12468.PubMedCrossRefGoogle Scholar
  73. 73.
    Chakraborty P, Bhaduri AN, Das PK. Neoglycoproteins as carriers for receptor-mediated drug targeting in the treatment of experimental visceral leishmaniasis. J Protozool 1990; 37:358–364.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Sumi Mukhopadhyay nee Bandyopadhyay
    • 1
  • Chitra Mandal
    • 2
  1. 1.Immunobiology DivisionIndian Institute of Chemical BiologyKolkataIndia
  2. 2.Immunobiology DivisionIndian Institute of Chemical BiologyKolkata -700032India

Personalised recommendations