Skip to main content

Histone Deacetylases

  • Chapter

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 625))

Abstract

Deacetylation of histones is required for gene regulation and cell cycle progression and the mediators, the histone deacetylases, are being vigorously pursued as drug targets for cancer chemotherapy. The deacetylases are also potential drug targets against infectious diseases and genome sequencing revealed proteins of this class in each of three kinetoplastid parasites. These enzymes are now being characterised and assessed for chemotherapeutic potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996; 272:408–11.

    Article  PubMed  CAS  Google Scholar 

  2. Hubbert C, Guardiola A, Shao R et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417:455–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ivens AC, Peacock CS, Worthey EA et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309:436–42.

    Article  PubMed  Google Scholar 

  4. Shogren-Knaak M, Ishii H, Sun JM et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844–7.

    Article  PubMed  CAS  Google Scholar 

  5. Loyola A, Almouzni G. Bromodomains in living cells participate in deciphering the histone code. Trends Cell Biol 2004; 14:279–81.

    Article  PubMed  CAS  Google Scholar 

  6. Pflum M, Tong J, Lane W et al. Histone deacetylase I phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 2001; 276:47733–41.

    Article  PubMed  CAS  Google Scholar 

  7. McKinsey TA, Zhang CL, Lu J et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408:106–11.

    Article  PubMed  CAS  Google Scholar 

  8. Yang L, Mei Q, Zielinska-Kwiatkowska A et al. An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription corepressors mSin3A/B. Biochem J 2003; 369:651–7.

    Article  PubMed  CAS  Google Scholar 

  9. Pile L, Schlag E, Wassarman D. The SIN3/RPD3 deacetylase complex is essential for G2 phase cell cycle progression and regulation of SMRTER corepressor levels. Mol Cell Biol 2002; 22:4965–76.

    Article  PubMed  CAS  Google Scholar 

  10. Blander G, Guarente L. The sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73:417–35.

    Article  PubMed  CAS  Google Scholar 

  11. Grubisha O, Smith BC, Denu JM. Small molecule regulation of Sir2 protein deacetylases. Febs J 2005; 272:4607–16.

    Article  PubMed  CAS  Google Scholar 

  12. Ingram AK, Horn D. Histone deacetylases in Trypanosoma brucei: Two are essential and another is required for normal cell cycle progression. Mol Microbiol 2002; 45:89–97.

    Article  PubMed  CAS  Google Scholar 

  13. Dokmanovic M, Marks PA. Prospects: Histone deacetylase inhibitors. J Cell Biochem 2005; 96:293–304.

    Article  PubMed  CAS  Google Scholar 

  14. Johnstone RW. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002; 1:287–99.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: Novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 1995; 17:423–30.

    Article  PubMed  CAS  Google Scholar 

  16. Darkin-Rattray SJ, Gurnett AM, Myers RW et al. Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 1996; 93:13143–7.

    Article  PubMed  CAS  Google Scholar 

  17. Taddei A, Roche D, Bickmore WA et al. The effects of histone deacetylase inhibitors on heterochromatin: Implications for anticancer therapy? EMBO Rep 2005; 6:520–4.

    Article  PubMed  CAS  Google Scholar 

  18. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996; 5:245–53.

    PubMed  Google Scholar 

  19. Ekwall K, Olsson T, Turner BM et al. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 1997; 91:1021–32.

    Article  PubMed  CAS  Google Scholar 

  20. Eissenberg JC, Elgin SC. Antagonizing the neighbours. Nature 2005; 438:1090–1.

    Article  PubMed  CAS  Google Scholar 

  21. Andrews KT, Walduck A, Kelso MJ et al. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int J Parasitol 2000; 30:761–8.

    Article  PubMed  CAS  Google Scholar 

  22. Murray PJ, Kranz M, Ladlow M et al. The synthesis of cyclic tetrapeptoid analogues of the antiprotozoal natural product apicidin. Bioorg Med Chem Lett 2001; 11:773–6.

    Article  PubMed  CAS  Google Scholar 

  23. Rundlett SE, Carmen AA, Kobayashi R et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996; 93:14503–8.

    Article  PubMed  CAS  Google Scholar 

  24. Finnin MS, Donigian JR, Cohen A et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401:188–93.

    Article  PubMed  CAS  Google Scholar 

  25. Somoza JR, Skene RJ, Katz BA et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 2004; 12:1325–34.

    Article  PubMed  CAS  Google Scholar 

  26. Glover L, Horn D. Repression of polymerase I-mediated gene expression at Trypanosoma brucei telomeres. EMBO Rep 2006; 7:93–9.

    Article  PubMed  CAS  Google Scholar 

  27. Baur J, Zou Y, Shay J et al. Telomere position effect in human cells. Science 2001; 292:2075–7.

    Article  PubMed  CAS  Google Scholar 

  28. Horn, D. Nuclear gene transcription and chromatin in Trypanosoma brucei. Int J Parasitol 2001; 31:1157–65.

    Article  PubMed  CAS  Google Scholar 

  29. Wu J, Carmen AA, Kobayashi R et al. HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc Natl Acad Sci USA 2001; 98:4391–6.

    Article  PubMed  CAS  Google Scholar 

  30. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997; 18:2714–23.

    Article  PubMed  CAS  Google Scholar 

  31. Sayle RA, Milner White EJ. RASMOL: Biomolecular graphics for all. Trends Biochem Sci 1995; 20:374–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Horn, D. (2008). Histone Deacetylases. In: Majumder, H.K. (eds) Drug Targets in Kinetoplastid Parasites. Advances In Experimental Medicine And Biology, vol 625. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77570-8_7

Download citation

Publish with us

Policies and ethics