Fishing for Anti-Leishmania Drugs: Principles and Problems

  • Emanuela Handman
  • Lukasz Kedzierski
  • Alessandro D. Uboldi
  • James W. Goding
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)


To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmaniay Leishmania majorand Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.


Visceral Leishmaniasis Cutaneous Leishmaniasis Potential Drug Target Meglumine Antimoniate Axenic Amastigotes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett JF. Can biotech deliver new antibiotics? Curr Opin Microbiol 2005; 8(5):498–503.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenfield RA, Bronze MS. Current therapy and the development of therapeutic options for the treatment of diseases due to bacterial agents of potential biowarfare and bioterrorism. Curr Opin Investig Drugs 2004; 5(2): 135–40.PubMedGoogle Scholar
  3. 3.
    North CS, Pollio DE, Pfefferbaum B et al. Capitol hill staff workers' experiences of bioterrorism: Qualitative findings from focus groups. J Trauma Stress 2005; 18(1):79–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Hotez PJ, Molyneux DH, Fenwick A et al. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, Tuberculosis, and Malaria. PLoS Med 2006; 3(5):e102.PubMedCrossRefGoogle Scholar
  5. 5.
    Murray HW, Berman JD, Davies CR et al. Advances in leishmaniasis. Lancet 2005; 366(9496):1561–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Croft SL, Barrett MP, Urbina JA. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 2005; 21(11):508–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Davis AJ, Kedzierski L. Recent advances in antileishmanial drug development. Curr Opin Investig Drugs 2005; 6(2):163–9.PubMedGoogle Scholar
  8. 8.
    Ouellette M, Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol 1991; 142(6):737–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Croft SL, Coombs GH. Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003; 19(11):502–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Herrling P. Experiments in social responsibility. Nature 2006; 439:267–268.PubMedCrossRefGoogle Scholar
  11. 11.
    Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitology 2000; 30:1269–1281.CrossRefGoogle Scholar
  12. 12.
    Reithinger R, Mohsen M, Aadil K et al. Anthroponotic cutaneous leishmaniasis, Kabul, Afghanistan. Emerg Infect Dis 2003; 9(6):727–9.PubMedGoogle Scholar
  13. 13.
    Seaman J, Mercer AJ, Sondorp HE et al. Epidemic visceral leishmaniasis in southern Sudan: Treatment of severely debilitated patients under wartime conditions and with limited resources. Ann Intern Med 1996; 124(7):664–72.PubMedGoogle Scholar
  14. 14.
    Desjeux P. Leishmaniasis: Current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27(5):305–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Korzeniewski K, Olszanski R. Leishmaniasis among soldiers of stabilization forces in Iraq. Review article. Int Mark Health 2004; 55(l–4):155–63.Google Scholar
  16. 16.
    Weina PJ, Neafie RC, Wortmann G et al. Old world leishmaniasis: An emerging infection among deployed US military and civilian workers. Clin Infect Dis 2004; 39(11):1674–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Chevalier B, Carmoi T, Sagui E et al. Report of the first cases of cutaneous leishmaniasis in East Timor. Clin Infect Dis 2000; 30:840.PubMedCrossRefGoogle Scholar
  18. 18.
    Rose K, Curtis J, Baldwin T et al. Cutaneous leishmaniasis in red kangaroos: Isolation and characterization of the causative organisms. Int J Parasitol 2004; 34:655–664.PubMedCrossRefGoogle Scholar
  19. 19.
    Desjeux P. Leishmaniasis. Nature Reviews Microbiology 2004; 2:692–693.PubMedCrossRefGoogle Scholar
  20. 20.
    WHO/CTD. Leishmaniasis control. Burden and trends 1998:1–4.Google Scholar
  21. 21.
    Herwaldt BL. Leishmaniasis. Lancet 1999; 354:1191–1199.PubMedCrossRefGoogle Scholar
  22. 22.
    Yardley V, Croft SL. A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents 2000; 13(4):243–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Laguna F. Treatment of leishmaniasis in HIV-positive patients. Ann Trop Med Parasitol 2003; 97(Suppl l):135–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Bergquist NR, Leonardo LR, Mitchell GF. Vaccine-linked chemotherapy: Can schistosomiasis control benefit from an integrated approach? Trends Parasitol 2005; 21(3):112–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med 2004; 4(6):601–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamhawi S, Ramalho-Ortigao M, Pham VM et al. A role for insect galectins in parasite survival. Cell 2004; 119(3):329–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Handman E, Elso C, Foote S. Genes and susceptibility to leishmaniasis. Adv Parasitol 2005; 59:1–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson CF, Mendez S, Sacks DL. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 2005; 174:2934–2941.PubMedGoogle Scholar
  29. 29.
    Jacobson RL. Leishmania tropica (Kinetoplastida: Trypanosomatidae)—a perplexing parasite. Folia Parasitol (Praha) 2003; 50(4):241–50.Google Scholar
  30. 30.
    Bosque F, Saravia NG, Valderrama L et al. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand J Immunol 2000; 51(5):533–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Le Fichoux Y, Quaranta JF, Aufeuvre JP et al. Occurrence of Leishmania infantum parasitemia in asymptomatic blood donors living in an area of endemicity in southern France. J Clin Microbiol 1999; 37(6): 1953–7.PubMedGoogle Scholar
  32. 32.
    Riera C, Fisa R, Udina M et al. Detection of Leishmania infantum cryptic infection in asymptomatic blood donors living in an endemic area (Eivissa, Balearic Islands, Spain) by different diagnostic methods. Trans R Soc Trop Med Hyg 2004; 98(2):102–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Blackwell JM, Mohamed HS, Ibrahim ME. Genetics and visceral leishmaniasis in the Sudan: Seeking a link. Trends Parasitol 2004; 20(6):268–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Follador I, Araujo C, Bacellar O et al. Epidemiologic and immunologic findings for the subclinical form of Leishmania braziliensis infection. Clin Infect Dis 2002; 34(11):E54–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Davies CR, Kaye P, Croft SL et al. Leishmaniasis: New approaches to disease control. Bmj 2003; 326(7385):377–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Blum J, Desjeux P, Schwartz E et al. Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 2004; 53(2):158–166.PubMedCrossRefGoogle Scholar
  37. 37.
    Bourreau E, Prevot G, Gardon J et al. High intralesional interleukin-10 messenger RNA expression in localized cutaneous leishmaniasis is associated with unresponsiveness to treatment. J Infect Dis 2001; 184(12):1628–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Murray HW. Prevention of relapse after chemotherapy in a chronic intracellular infection: Mechanisms in experimental visceral leishmaniasis. J Immunol 2005; 174(8):4916–23.PubMedGoogle Scholar
  39. 39.
    Convit J, Castellanos PL, Rondon A et al. Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet 1987; l(8530):401–5.CrossRefGoogle Scholar
  40. 40.
    Convit J, Castellanos PL, Ulrich M et al. Immunotherapy of localized, intermediate, and diffuse forms of American cutaneous leishmaniasis. J Infect Dis 1989; 160(l):104–115.PubMedGoogle Scholar
  41. 41.
    Arevalo I, Ward B, Miller R et al. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin Infect Dis 2001; 33(11):1847–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Reithinger R, Mohsen M, Wahid M et al. Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: A randomized, controlled trial. Clin Infect Dis 2005; 40(8): 1148–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Reithinger R, Aadil K, Kolaczinski J et al. Social impact of leishmaniasis, Afghanistan. Emerg Infect Dis 2005; 11(4):634–6.PubMedGoogle Scholar
  44. 44.
    Drews J. Drug discovery: A historical perspective. Science 2000; 287(5460):1960–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Bleicher KH, Bohm HJ, Muller K et al. Hit and lead generation: Beyond high-throughput screening. Nat Rev Drug Discov 2003; 2(5):369–78.PubMedCrossRefGoogle Scholar
  46. 46.
    Bleicher KH, Green LG, Martin RE et al. Ligand identification for G-protein-coupled receptors: A lead generation perspective. Curr Opin Chem Biol 2004; 8(3):287–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002; 1(11):882–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Bressi JC, Verlinde CL, Aronov AM et al. Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. J Med Chem 2001; 44(13):2080–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422(6928):198–207.PubMedCrossRefGoogle Scholar
  50. 50.
    Tyers M, Mann M. From genomics to proteomics. Nature 2003; 422(6928):193–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Huber LA. Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol 2003; 4(1):74–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Kopec KK, Bozyczko-Coyne D, Williams M. Target identification and validation in drug discovery: The role of proteomics. Biochem Pharmacol 2005; 69(8):1133–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Moritz RL, Clippingdale AB, Kapp EA et al. Application of 2-D free-flow electrophoresis/RP-HPLC for proteomic analysis of human plasma depleted of multi high-abundance proteins. Proteomics 2005; 5(13):3402–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Tang HY, Ali-Khan N, Echan LA et al. A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 2005; 5(13):3329–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Simpson DC, Smith RD. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 2005; 26(7–8):1291–305.PubMedCrossRefGoogle Scholar
  56. 56.
    Gongora R, Acestor N, Quadroni M et al. Mapping the proteome of Leishmania Viannia parasites using two-dimensional polyacrylamide gel electrophoresis and associated technologies. Biomedica 2003; 23(2):153–60.PubMedGoogle Scholar
  57. 57.
    Drummelsmith J, Brochu V, Girard I et al. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics 2003; 2(3):146–55.PubMedCrossRefGoogle Scholar
  58. 58.
    Drummelsmith J, Girard I, Trudel N et al. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem 2004; 279(32):33273–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta N, Goyal N, Rastogi AK. In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol 2001; 17(3):150–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 2006; 146(2):198–218.PubMedCrossRefGoogle Scholar
  61. 61.
    Templin MF, Stoll D, Schrenk M et al. Protein microarray technology. Drug Discov Today 2002; 7(15):815–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Delehanty JB, Ligler FS. Method for printing functional protein microarrays. Biotechniques 2003; 34(2):380–5.PubMedGoogle Scholar
  63. 63.
    Gietz ID. Yeast two-hybrid system screening. Methods Mol Biol 2005; 313:345–72.Google Scholar
  64. 64.
    Ito T, Ota K, Kubota H et al. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol Cell Proteomics 2002; l(8):561–6.Google Scholar
  65. 65.
    LaCount DJ, Vignali M, Chettier R et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 2005; 438(7064):103–7.CrossRefGoogle Scholar
  66. 66.
    Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005; 437(7062): 1173–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Suthram S, Sittler T, Ideker T. The Plasmodium protein network diverges from those of other eukaryotes. Nature 2005; 438(7064):108–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Crump A. New medicines from nature’s armamentarium. Trends Parasitol 2006; 22(2):51–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Fournet A, Munoz V. Natural products as trypanocidal, antileishmanial and antimalarial drugs. Curr Top Med Chem 2002; 2(11):1215–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Okpekon T, Yolou S, Gleye C et al. Antiparasitic activities of medicinal plants used in Ivory Coast. J Ethnopharmacol 2004; 90(l):91–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Takahashi M, Fuchino H, Sekita S et al. In vitro leishmanicidal activity of some scarce natural products. Phytother Res 2004; 18(7):573–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhai L, Chen M, Blom J et al. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 1999; 43(6):793–803.PubMedCrossRefGoogle Scholar
  73. 73.
    Panchal RG, Hermone AR, Nguyen TL et al. Identification of small molecule inhibitors of anthrax lethal factor. Nat Struct Mol Biol 2004; 11(1):67–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou Y, Gregor VE, Sun Z et al. Structure-guided discovery of novel aminoglycoside mimetics as antibacterial translation inhibitors. Antimicrob Agents Chemother 2005; 49(12):4942–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Urbina JA. Chemotherapy of Chagas disease. Curr Pharm Des 2002; 8(4):287–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Urbina JA, Conception JL, Rangel S et al. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol Biochem Parasitol 2002; 125(1–2):35–45.PubMedCrossRefGoogle Scholar
  77. 77.
    Fairlamb AH. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol 2003; 19(11):488–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Fairlamb AH. Metabolic pathway analysis in trypanosomes and malaria parasites. Philos Trans R Soc Lond B Biol Sci 2002; 357(1417):101–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Linares GE, Ravaschino EL, Rodriguez JB. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 2006; 13(3):335–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Hunter WN, Alphey MS, Bond CS et al. Targeting metabolic pathways in microbial pathogens: Oxidative stress and anti-folate drug resistance in trypanosomatids. Biochem Soc Trans 2003; 31(Pt 3):607–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Robinson DR, Gull K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 1991; 352(6337):731–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Robinson DR, Sherwin T, Ploubidou A et al. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 1995; 128(6):1163–1172.PubMedCrossRefGoogle Scholar
  83. 83.
    Ogbadoyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 2003; 14(5):1769–79.PubMedCrossRefGoogle Scholar
  84. 84.
    Broadhead R, Dawe HR, Farr H et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 2006; 440(7081):224–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Uboldi AD, Walsh P, Spurck T et al. A Leishmania mitochondrial protein determines cell morphology, mitochondrial segregation and virulence. 2006.Google Scholar
  86. 85b.
    Uboldi AD, Lueder FB, Walsh P et al. A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 2006; in press.Google Scholar
  87. 86.
    Ilgoutz SC, McConville MJ. Function and assembly of the Leishmania surface coat. Int J Parasitol 2001; 21:899–908.CrossRefGoogle Scholar
  88. 87.
    Garami A, Ilg T. Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 2001; 20(l4):3657–3666.PubMedCrossRefGoogle Scholar
  89. 88.
    Garami A, Ilg T. The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J Biol Chem 2001; 276(9):6566–6575.PubMedCrossRefGoogle Scholar
  90. 89.
    Garami A, Mehlert A, Ilg T. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 2001; 21(23):8168–8183.PubMedCrossRefGoogle Scholar
  91. 90.
    Stewart J, Curtis J, Spurck TP et al. Characterisation of a Leishmania mexicana knockout lacking guanosine diphosphate-mannose pyrophosphorylase. Int J Parasitol 2005; 35(8):861–73.PubMedCrossRefGoogle Scholar
  92. 91.
    Ralton JE, Nederer T, Piraino HL et al. Evidence that intracellular β1-2 mannan is a virulence factor in Leishmania parasites. J Biol Chem 2003; 278:40757–40763.PubMedCrossRefGoogle Scholar
  93. 92.
    Collet JF, Stroobant V, Pirard M et al. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem 1998; 273(23):14l07–12.CrossRefGoogle Scholar
  94. 93.
    Koonin EV, Tatusov RL. Computer analysis of bacterial haloacid dehalogenases defines a large super-family of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol 1994; 244(l):125–32.PubMedCrossRefGoogle Scholar
  95. 94.
    Kedzierski L, Malby RL, Smith BJ et al. Structure of Leishmania mexicana phosphomannomutase highlights similarities with human isoforms. J Mol Biol 2006; 363:215–27.PubMedCrossRefGoogle Scholar
  96. 95.
    Silvaggi NR, Zhang C, Lu Z et al. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of carbohydrate deficient glycoprotein syndrome type la. J Biol Chem 2006.Google Scholar
  97. 96.
    Warit S, Zhang N, Short A et al. Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Mol Microbiol 2000; 36(5):1156–66.PubMedCrossRefGoogle Scholar
  98. 97.
    Davis AJ, Perugini MA, Smith BJ et al. Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Biol Chem 2004; 279(13):12462–12468.PubMedCrossRefGoogle Scholar
  99. 98.
    Perugini MA, Griffin MD, Smith BJ et al. Insight into the self-association of key enzymes from pathogenic species. Eur Biophys J 2005; 34(5):469–476.PubMedCrossRefGoogle Scholar
  100. 99.
    Perez-Montfort R, Gomez-Puyou MT, Gomez-Puyou A. The interfaces of oligomeric proteins as targets for drug design against enzymes from parasites. Curr Top Med Chem 2002; 2(5):457–70.PubMedCrossRefGoogle Scholar
  101. 100.
    Chen DQ, Kolli BK, Yadava N et al. Episomal expression of specific sense and antisense mRNAs in Leishmania amazonensis: Modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infect Immun 2000; 68(1):80–6.PubMedCrossRefGoogle Scholar
  102. 101.
    Zhang WW, Matlashevski G. Loss of virulence in Leishmania donovani deficient in an amastigote specific protein A2. Proc Natl Acad Sci USA 1997; 94:8807–8811.PubMedCrossRefGoogle Scholar
  103. 102.
    Flaspohler JA, Lemley K, Parsons M. A dominant negative mutation in the GIM1 gene of Leishmania donovani is responsible for defects in glycosomal protein localization. Mol Biochem Parasitol 1999; 99(1):117–28.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Emanuela Handman
    • 1
  • Lukasz Kedzierski
    • 1
  • Alessandro D. Uboldi
    • 1
  • James W. Goding
    • 1
  1. 1.Walter and Eliza HallInstitute of Medical ResearchVictoriaAustralia

Personalised recommendations