Selective Lead Compounds against Kinetoplastid Tubulin

  • R.E. Morgan
  • K.A. Werbovetz*
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)


Kinetoplastid parasites are responsible for the potentially fatal diseases leishmaniasis, African sleeping sickness and Chagas disease. The current treatments for these diseases are far from ideal and new compounds are needed as antiparasitic drug candidates. Tubulin is the accepted target for treatments against cancer and helminths, suggesting that kinetoplastid tubulin is also a suitable target for antiprotozoal compounds. Selective lead compounds against kinetoplastid tubulin have been identified that could represent a starting point for the development of new drug candidates against these parasites.


Protozoan Parasite Cutaneous Leishmaniasis High Throughput Screen Antimitotic Agent J774 Macrophage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pellegrini F, Budman DR. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 2005; 23:264–273.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou J, Giannakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem-Anti-Cancer Agents 2005; 5:65–71.CrossRefGoogle Scholar
  3. 3.
    Martin RJ, Robertson AP, Bjorn H. Target sites of anthelmintics. Parasitol 1997; 114:S111–S124.Google Scholar
  4. 4.
    Nicolaou KC, Yang Z, Liu JJ. Total synthesis of taxol. Nature 1994; 367:630–634.PubMedCrossRefGoogle Scholar
  5. 5.
    Srivastava V, Negi AS, Kumar JK et al. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg Med Chem 2005; 13:5892–5908.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson L, Miller HP, Farrell KW et al. Taxol stabilization of microtubules in vitro: Dynamics of tubulin addition and loss at opposite microtubule ends. Biochemistry 1985; 24:5254–5262.PubMedCrossRefGoogle Scholar
  7. 7.
    Arregui L, Muñoz-Fontela C, Serrano S et al. Direct visualization of the microtubular cytoskeleton of ciliated protozoa with a fluorescent taxiod. J Eukaryot Microbiol 2002; 49:312–318.PubMedCrossRefGoogle Scholar
  8. 11.
    Croft SL, Barrett MP, Urbina JA. Chemotheraphy of trypanosomiases and leishmaniasis. Trends Parasitol 2005; 21:508–512.PubMedCrossRefGoogle Scholar
  9. 12.
    Werbovetz KA. Tubulin as an antiprotozoal drug target. Mini Rev Med Chem 2002; 2:519–529.PubMedCrossRefGoogle Scholar
  10. 13.
    Downing KH, Nogales E. Tubulin structure: Insights into microtubule properties and functions. Curr Opin Struct Biol 1998; 8:785–791.PubMedCrossRefGoogle Scholar
  11. 14.
    Kline-Smith SL, Walczak CE. Mitotic spindle assembly and chromosome segregation: Refocusing on microtubule dynamics. Mol Cell 2004; 15:317–327.PubMedCrossRefGoogle Scholar
  12. 15.
    Amos LA, Schlieper D. Microtubules and maps. Adv Protein Chem 2005; 71:257–298.PubMedCrossRefGoogle Scholar
  13. 16.
    Castoldi M, Popov AV. Purification of brain tubulin through two cycles of polymerizationdepolymerization in a high-molarity buffer. Protein Expr Purif 2003; 32:83–88.PubMedCrossRefGoogle Scholar
  14. 17.
    Fourest-Lieuvin A. Purification of tubulin from limited volumes of cultured cells. Protein Expr Purif 2006; 45:183–190.PubMedCrossRefGoogle Scholar
  15. 18.
    Werbovetz KA, Brendle JJ, Sackett DL. Purification, characterisation and drug susceptibility of tubulin from Leishmania. Mol Biochem Parasitol 1999; 98:53–65.PubMedCrossRefGoogle Scholar
  16. 19.
    Gull K. Protist tubulins: New arrivals, evolutionary relationships and insights to cytoskeletal function. Curr Opin Microbiol 2001; 4:427–432.PubMedCrossRefGoogle Scholar
  17. 20.
    Hu K, Roos DS, Murray JM. A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 2002; 156:139–1050.CrossRefGoogle Scholar
  18. 21.
    Kohl L, Gull K. Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 1998; 93:1–9.PubMedCrossRefGoogle Scholar
  19. 22.
    Lubega GW, Ochola OK, Prichard RK. Trypanosoma brucci: Anti-tubulin antibodies specifically inhibit trypanosome growth in culture. Exp Parasitol 2002; 102:134–142.PubMedCrossRefGoogle Scholar
  20. 23.
    Rao S, Krauss NE, Heerding JM et al. 3'-(p-Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J Biol Chem 1994; 269:3132–3134.PubMedGoogle Scholar
  21. 24.
    Rao S, Orr GA, Chaudhary AG et al. Characterization of the taxol binding site on the microtubule. 2-(m-Azido benzoyl)taxol photolabels a peptide (amino acids 217-231) of tubulin. J Biol Chem 1995; 270:20235–20238.PubMedCrossRefGoogle Scholar
  22. 25.
    Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998; 391:199–203.PubMedCrossRefGoogle Scholar
  23. 26.
    Löwe J, Li H, Downing KH et al. Refined structure of αβ-tubulin at 3.5 Å resolution. J Mol Biol 2001; 313:1045–1057.PubMedCrossRefGoogle Scholar
  24. 27.
    Bollag DM, McQueney PA, Zhu J et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995; 55:2325–2333.PubMedGoogle Scholar
  25. 28.
    Giannakakou P, Gussio R, Nogales E. A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 2000; 97:2904–2909.PubMedCrossRefGoogle Scholar
  26. 29.
    Long BH, Carboni JM, Wasserman AJ et al. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerisation, is similar to paclitaxel (taxol). Cancer Res 1998; 58:1111–1115.PubMedGoogle Scholar
  27. 30.
    Jiménez-Barbero J, Amat-Guerri F, Snyder JP. The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. Curr Med Chem-Anti-Cancer Agents 2002; 2:91–122.CrossRefGoogle Scholar
  28. 31.
    Havens CG, Bryant N, Asher L et al. Cellular effects of leishmanial tubulin inhibitors on L. donovani. Mol Biochem Parasitol 2000; 110:223–236.PubMedCrossRefGoogle Scholar
  29. 32.
    Baum SG, Wittner M, Nadler JP. Taxol, a microtubule stablizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci 1981; 78:4571–4575.PubMedCrossRefGoogle Scholar
  30. 33.
    Moulay L, Robert-Gero M, Brown S et al. Sinefungin and taxol effects on cell cycle and cytoskeleton of Leishmania donovani promastigotes. Exp Cell Res 1996; 226:283–291.PubMedCrossRefGoogle Scholar
  31. 34.
    Kapoor P, Sachdeva M, Madhubala R. Effect of the microtubule stablising agent taxol on leishmanial protozoan parasites in vitro. FEMS Microbiol Lett 1999; 176:429–435.PubMedCrossRefGoogle Scholar
  32. 35.
    Dantas AP, Barbosa HS, De Castro SL. Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. J Submicrosc Cytol Pathol 2003; 35:287–294.PubMedGoogle Scholar
  33. 36.
    Luduena RF, Roach MC. Tubulin sulfhydryl groups as probes and targets for anitmitotic and antimicrotubule agents. Pharmacol Ther 1991; 49:133–152.PubMedCrossRefGoogle Scholar
  34. 37.
    Rai S, Wolff J. Localization of the vinblastine-binding site on β-tubulin. J Biol Chem 1996; 271:14707–14711.PubMedCrossRefGoogle Scholar
  35. 38.
    Chatterjee SK, Laffray J, Patel P et al. Interaction of tubulin with a new fluorescent analogue of vinblastine. Biochemistry 2002; 41:14010–14018.PubMedCrossRefGoogle Scholar
  36. 39.
    Gigant B, Wang C, Ravelli RBG et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005; 435:519–522.PubMedCrossRefGoogle Scholar
  37. 40.
    Grellier P, Sinou V, Garreau-de Loubresse N et al. Selective and reversible effects of vinca alkaloids on Trypanosoma cruzi epimastigote forms: Blockage of cytokinesis without inhibition of the organelle duplication. Cell Motil Cytoskeleton 1999; 42:36–47.PubMedCrossRefGoogle Scholar
  38. 41.
    Ochola, DO, Prichard RK, Lubega GW. Classical ligands bind tubulin of trypanosomes and inhibit their growth in vitro. J Parasitol 2002; 88:600–604.PubMedGoogle Scholar
  39. 42.
    Floyd LJ, Barnes LD, Williams RF. Photoaffinity labelling of tubulin with (2-nitro-4-azidophenyl) deacetylcolchicine: Direct evidence for two colchicine binding sites. Biochemistry 1989; 28:8515–8525.PubMedCrossRefGoogle Scholar
  40. 43.
    Uppuluri S, Knipling L, Sackett DL et al. Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci USA 1993; 90:11598–11602.PubMedCrossRefGoogle Scholar
  41. 44.
    Bai R, Pei XF, Boyé O et al. Identification of cysteine 354 of β-tubulin as part of the binding site for the A ring of colchicine. J Biol Chem 1996; 271:12639–12645.PubMedCrossRefGoogle Scholar
  42. 45.
    Ruoli B, Covell DG, Pei XF et al. Mapping the binding site of colchicinoids on β-tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondary with cysteine 354. J Biol Chem 2000; 275:40443–40452.CrossRefGoogle Scholar
  43. 46.
    Ravell RBG, Gigant B, Curmi PA et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428:198–202.CrossRefGoogle Scholar
  44. 47.
    Shearwin KE, Timasheff SN. Effect of cochicine analogues on the dissociation of αβ tubulin into subunits: The locus of colchicine binding. Biochemistry 1994; 33:894–901.PubMedCrossRefGoogle Scholar
  45. 48.
    Burns RG. Analysis of the colchicine-binding site of β-tubulin. FEBS Lett 1992; 297:205–208.PubMedCrossRefGoogle Scholar
  46. 49.
    Macrae TH, Gull K. Purification and assembly in vitro of tubulin from Trypanosoma brucei brucei. Biochem J 1990; 265:87–93.PubMedGoogle Scholar
  47. 50.
    MacDonald LM, Armson A, Thompson RCA et al. Characterization of factors favouring the expression of soluble protozoan tubulin proteins in Escherichia coli. Protein Expr Purif 2003; 29:117–122.PubMedCrossRefGoogle Scholar
  48. 51.
    Russell DG, Miller D, Gull K. Tubulin heterogeneity in the trypanosome Crithidia fasciculata. Mol Cell Biol 1984; 4:779–790.PubMedGoogle Scholar
  49. 52.
    Yakovich AJ, Ragone FL, Alfonzo JD et al. Leishmania tarentolae: Purification and characterization of tubulin and its suitability as a substrate for antileishmanial drug screening. Exp Parasitol 2006; in press.Google Scholar
  50. 53.
    Wenyon D. Observations on the intestinal protozoa of three Egyptian lizards, with a note on a cell-invading fungus. Parasitol 1921; 12:133–140.Google Scholar
  51. 54.
    Chan MMY, Fong D. Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 1990; 249:924–926.PubMedCrossRefGoogle Scholar
  52. 55.
    Traub-Cseko YM, Ramalho-Ortgao JM, Dantas AP et al. Dintroaniline herbicides against protozoan parasites; the case of Trpanosoma cruzi. Trends Parasitol 2001; 17:136–141.PubMedCrossRefGoogle Scholar
  53. 56.
    Chan MMY, Grogl M, Chen CC et al. Herbicides to curb human parasitic infections: In vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc Natl Acad Sci USA 1993; 90:5657–5661.PubMedCrossRefGoogle Scholar
  54. 57.
    Callahan HL, Kelley C, Pereira T et al. Microtubule inhibitors: Structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob Agents Chemother 1996; 40:947–952.PubMedGoogle Scholar
  55. 58.
    Morejohn LC, Fosket DE. The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Ther 1991; 51:217–230.PubMedCrossRefGoogle Scholar
  56. 59.
    Bhattacharya G, Salem MM, Werbovetz KA. Anitleishmanial dinitroaniline sulfonamides with activity against parasite tubulin. Bioorg Med Chem Lett 2002; 21:2395–2398.CrossRefGoogle Scholar
  57. 60.
    Bhattacharya G, Herman J, Delffn D et al. Synthesis and antitubulin activity of N1-and N4-substituted 3,5-dinitro sulfanilamides against African Trypanosomes and Leishmania. J Med Chem 2004; 47:1823–1832.PubMedCrossRefGoogle Scholar
  58. 61.
    Werbovetz KA, Sackett DL, Delffn D et al. Selective antimicrotubule activity of N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. Mol Pharmacol 2003; 64:1325–1333.PubMedCrossRefGoogle Scholar
  59. 62.
    Wu D, George TG, Hurh E et al. Presystemic metabolism prevents in vivo antikinetoplastid activity of N1, N4-substituted 3,5-dinitro sulfanilamide, GB-II-150. Life Sci 2006; 79:1081–1093.PubMedCrossRefGoogle Scholar
  60. 63.
    George TG, Johnsamuel J, Delffn DA et al. Antikinetoplastid antimitotic activity and metabolic stability of dinitroaniline sulfonamides and benzamides. Bioorg Med Chem 2006; 14:5699–5710.PubMedCrossRefGoogle Scholar
  61. 64.
    Morrissette NS, Mitra A, Sept D et al. Dinitroanilines bind a-tubulin to disrupt microtubules. Mol Biol Cell 2004; 25:1960–1968.CrossRefGoogle Scholar
  62. 65.
    Abraham I, Dion RL, Duanmu et al. 2,4-Dichlorobenzyl thiocyante, an antimitotic agent that alters microtubule morphology. Proc Natl Acad Sci USA 1986; 83:6839–6843.PubMedCrossRefGoogle Scholar
  63. 66.
    Bai RL, Lin CM, Nguyen NY et al. Identification of the cysteine residue of β-tubulin alkylated by the antimitotic agent 2,4-dichlorobenyzl thiocyante, facilitated by separation of the protein sub-units of tubulin by hydrophobic column chromatography. Biochem 1989; 28:5606–5612.CrossRefGoogle Scholar
  64. 67.
    Szajnman SH, Yan W, Bailey BN et al. Design and synthesis of aryloxyethyl thiocyanate derivatives as potent inhibitors of Trypanosoma cruzi proliferation. J Med Chem 2000; 43:1826–1840.PubMedCrossRefGoogle Scholar
  65. 68.
    Cottrell DM, Capers J, Salem MM et al. Antikinetoplastid activity of 3-aryl-5-thiocy-anatomethyl-l, 2,4-oxadiazoles. Bioorg Med Chem 2004; 12:2815–2824.PubMedCrossRefGoogle Scholar
  66. 69.
    Abraham I, Dion RL, Duanmu C et al. 2,4-Dichlorobenzyl thiocyanate, an antimitotic agent that alters microtubule morphology. Proc Natl Acad Sci USA 1986; 83:6839–6943.PubMedCrossRefGoogle Scholar
  67. 70.
    Morgan RE, Westwood NJ. Screening and synthesis: High throughput technologies applied to parasitology. Parasitol 2004; 128:SS71–S79.Google Scholar
  68. 71.
    Baldwin J, Michnoff CH, Malmquist NA et al. High-throughput screening for potent and selective inhibitors of Plasmoduim falciparum dihydroorotate dehydrogenase. J Biol Chem 2005; 280:21847–21853.PubMedCrossRefGoogle Scholar
  69. 72.
    St. George S, Bishop JV, Titus RG et al. Novel compounds active against Leishmania major. Antimicrob Agents Chemother 2006; 50:474–479.CrossRefGoogle Scholar
  70. 73.
    Haggarty SJ, Mayer TU, Miyamoto et al. Dissecting cellular processes using small molecules: Identification of colchincine-like, taxol-like and other small molecules that perturb mitosis. Chem Biol 2000; 7:275–286.PubMedCrossRefGoogle Scholar
  71. 74.
    Mayer TU, Kapoor TM, Haggarty SJ et al. Small molecule inhibitors of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286:971–974.PubMedCrossRefGoogle Scholar
  72. 75.
    Hamel E, Blokhin AV, Dale G et al. Limitations in the use of tubulin polymerization assays as a screen for the identification of new antimitotic agents: The potent marine natural product curacin A as an example. Drug Dev Res 1995; 34:110–120.CrossRefGoogle Scholar
  73. 76.
    Kokoshka JM, Ireland CM, Barrows LR. Cell-based screen for identification of inhibitors of tubulin polymerization. J Nat Prod 1996; 59:1179–182.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • R.E. Morgan
    • 1
  • K.A. Werbovetz*
    • 2
  1. 1.Division of Medicinal Chemistry and Pharmacognosy College of PharmacyThe Ohio State University ColumbusOhioUSA
  2. 2.Division of Medicinal Chemistry and Pharmacognosy College of PharmacyThe Ohio State UniversityColumbusUSA

Personalised recommendations