Drugs and Transporters in Kinetoplastid Protozoa

  • Scott M.
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)


Kinetoplastid protozoa express hundreds of membrane transport proteins that allow them to take up nutrients, establish ion gradients, efflux metabolites, translocate compounds from one intracellular compartment to another, and take up or export drugs. The combination of molecular cloning, genetic approaches, and the completed genome projects for Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi have allowed detailed functional analysis of various transporters and predictions about the likely functions of others. Thus many opportunities exist to define the biological and pharmacological properties of parasite transporters whose genes were often difficult to identify in the pregenomic era. A subset of these transporters that are essential for parasite viability could serve as targets for novel drug therapies by identifying compounds that interfere with their uptake functions. Other permeases provide routes for uptake of selectively cytotoxic compounds and can thus be useful for delivery of drugs. Drug resistance may develop in strains where such drug uptake transporters are nonfunctional or in parasites that over-express other permeases that export a drug. A summary of recent work on Leishmania transporters for glucose and for purines is provided as an example of permeases that are being studied in molecular detail.


Nucleoside Transporter Leishmania Species Trypanosoma Brucei Leishmania Donovani Facilitative Glucose Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309(5733):416–422.PubMedCrossRefGoogle Scholar
  2. 2.
    Hille B. Ion Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates Inc., 2001. 3. King LS, Kozono D, Agre P. From structure to disease: The evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 2004; 5(9):687–698.CrossRefGoogle Scholar
  3. 4.
    Kavanaugh MP. Neurotransmitter transport: Models in flux. Proc Natl Acad Sci USA 1998; 95:12737–12738.PubMedCrossRefGoogle Scholar
  4. 5.
    Busch W, Saier Jr MH. The IUBMB-endorsed transporter classification system. Methods Mol Biol 2003; 227:21–36.PubMedGoogle Scholar
  5. 6.
    Carter NS, Fairlamb AH. Arsenical-resistant trypanosomes lack an unusual adenine/adenosine transporter. Nature 1993; 361:173–175.PubMedCrossRefGoogle Scholar
  6. 7.
    Carter NS, Berger BJ, Fairlamb AH. Uptake of diamidine drugs by the P2 transporter in melarsen-sensitive and-resistant Trypanosoma brucei brucei. J Biol Chem 1995; 270:28153–28157.PubMedCrossRefGoogle Scholar
  7. 8.
    Carter NS, Barrett MP, de Koning HP. A drug resistance determinant in Trypanosoma brucei. Trends in Microbiol 1999; 7: 469–471.CrossRefGoogle Scholar
  8. 9.
    Mäser P, Sütterlin C, Kralli A et al. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 1999; 285:242–244.PubMedCrossRefGoogle Scholar
  9. 10.
    Matovu E, Stewart ML, Geiser F et al. Mechanisms of arsenical and diamidine uptake and resistance in trypanosoma brucei. Eukaryotic Cell 2003; 2(5): 1003–1008.PubMedCrossRefGoogle Scholar
  10. 11.
    Marr JJ. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med 1991; 118:111–119.PubMedGoogle Scholar
  11. 12.
    Carson DA, Chang KP. Phosphorylation and anti-leishmanial activity of formycin B. Bioch Biophys Res Comm 1981; 100: 1377–1383.CrossRefGoogle Scholar
  12. 13.
    Al-Salabi MI, Wallace LJM, de Koning HP. A Leishmania major nucleobase transporter responsible for allopurinol uptake is a functional homolog of the Trypanosoma brucei H2 transporter. Mol Pharmacol 2003; 63:814–820.PubMedCrossRefGoogle Scholar
  13. 14.
    Sanchez M, Tryon R, Vasudevan G et al. Functional expression and characterisation of a purine nucleobase transporter gene from Leishmania major. Mol Membrane Biol 2004; 21:11–18.CrossRefGoogle Scholar
  14. 15.
    Carter NS, Drew ME, Sanchez M et al. Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 2000; 275:20935–20941.PubMedCrossRefGoogle Scholar
  15. 16.
    Vasudevan G, Carter NS, Drew ME et al. Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci USA 1998; 95:9873–9878.PubMedCrossRefGoogle Scholar
  16. 17.
    Gourbal B, Sonuc N, Bhattacharjee H et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 2004; 279(30):31010–31017.PubMedCrossRefGoogle Scholar
  17. 18.
    Uzcategui NL, Szallies A, Pavlovic-Djuranovic S et al. Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J Biol Chem 2004; 279(4l):42669–42676.PubMedCrossRefGoogle Scholar
  18. 19.
    Montalvetti A, Rohloff P, Docampo R. A functional aquaporin colocalizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 2004; 279:38673–38682.PubMedCrossRefGoogle Scholar
  19. 20.
    Beitz E, Pavlovic-Djuranovic S, Yasui M et al. Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc Natl Acad Sci USA 2004; 101(5):1153–1158.PubMedCrossRefGoogle Scholar
  20. 21.
    Beitz E. Aquaporins from pathogenic protozoan parasites: Structure, function and potential for chemotherapy. Biol Cell 2005; 97(6):373–383.PubMedCrossRefGoogle Scholar
  21. 22.
    Frelet A, Klein M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 2006; 580:1064–1084.PubMedCrossRefGoogle Scholar
  22. 23.
    Klokouzas A, Shahi S, Hladky SB et al. ABC transporters and drug resistance in parasitic protozoa. Int J Antimicrob Agents 2003; 22(3):301–317.PubMedCrossRefGoogle Scholar
  23. 24.
    Ouellette M, Legare D, Papadopoulou B. Multidrug resistance and ABC transporters in parasitic protozoa. J Mol Microbiol Biotechnol 2001; 3(2):201–206.PubMedGoogle Scholar
  24. 25.
    Hendrickson N, Sifri CD, Henderson DM et al. Molecular characterization of the ldmdr1 multidrug resistance gene from Leishmania donovani. Mol Biochem Parasitol 1993; 60(l):53–64.PubMedCrossRefGoogle Scholar
  25. 26.
    Henderson DM, Sifri CD, Rodgers M et al. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol Cell Biol 1992; 12(6):2855–2865.PubMedGoogle Scholar
  26. 27.
    Dodge MA, Waller RF, Chow LM et al. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites. Mol Microbiol 2004; 51(6): 1563–1575.PubMedCrossRefGoogle Scholar
  27. 28.
    Akerman M, Shaked-Mishan P, Mazareb S et al. Novel motifs in amino acid permease genes from Leishmania. Biochem Biophys Res Commun 2004; 325(l):353–366.PubMedCrossRefGoogle Scholar
  28. 29.
    Bouvier LA, Silber AM, Galvao Lopes C et al. Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem Biophys Res Commun 2004; 321(3):547–556.PubMedCrossRefGoogle Scholar
  29. 30.
    Hasne MP, Ullman B. Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 2005; 280(15):15188–15194.PubMedCrossRefGoogle Scholar
  30. 31.
    Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T et al. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 2006; 60(l):30–38.PubMedCrossRefGoogle Scholar
  31. 32.
    Tetaud E, Barrett MP, Bringaud F et al. Kinetoplastid glucose transporters. Biochem J1997; 325:569–580.PubMedGoogle Scholar
  32. 33.
    Carter NS, Rager N, Ullman B. Purine and pyrimidine transport and metabolism. In: Marr JJ, Nilsen T, Komuniecki R, eds. Molecular and Medical Parasitology. London: Academic Press, 2003:197–223.CrossRefGoogle Scholar
  33. 34.
    Kong W, Engel K, Wang J. Mammalian nudeoside transporters. Curr Drug Metab 2004; 5:63–84.PubMedCrossRefGoogle Scholar
  34. 35.
    Joet T, Eckstein-Ludwig U, Morin C et al. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci USA 2003; 100(13):7476–7479.PubMedCrossRefGoogle Scholar
  35. 36.
    Wiemer EA, Ter Kuile BH, Michels PA et al. Pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei is mediated by a facilitated diffusion carrier. Biochem Biophys Res Commun 1992; 184(2):1028–1034.PubMedCrossRefGoogle Scholar
  36. 37.
    Wiemer EA, Michels PA, Opperdoes FR. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. Biochem J 1995; 312(Pt 2):479–484.PubMedGoogle Scholar
  37. 38.
    Nolan DP, Revelard P, Pays E. Overexpression and characterization of a gene for a Ca+2-ATPase of the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem 1994; 269:26045–26051.PubMedGoogle Scholar
  38. 39.
    Lu HG, Zhong L, Chang KP et al. Intracellular Ca+2 pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonensis amastigotes. J Biol Chem 1997; 272:9464–9473.PubMedCrossRefGoogle Scholar
  39. 40.
    Ma D, Russell DG, Beverley SM et al. Golgi GDP-mannose uptake requires Leishmania LPG2. J Biol Chem 1997; 272:3799–3805.PubMedCrossRefGoogle Scholar
  40. 41.
    Cunningham ML, Beverley SM. Pteridine salvage throughout the Leishmania infectious cycle: Implications for antifolate chemotherapy. Mol Biochem Parasitol 2001; 113:199–213.PubMedCrossRefGoogle Scholar
  41. 42.
    Richard D, Kundig C, Ouellette M. A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem 2002; 277(33):29460–29467.PubMedCrossRefGoogle Scholar
  42. 43.
    Burchmore RJS, Hart DT. Glucose transport in promastigotes and amastigotes of Leishmania mexicana: Characterization and comparison with host glucose transporters. Mol Biochem Parasitol 1995; 74:77–86.PubMedCrossRefGoogle Scholar
  43. 44.
    Hart DT, Coombs GH. Leishmania mexicana: Energy metabolism of amastigotes and promastigotes. Exp Parasitol 1982; 54:397–409.PubMedCrossRefGoogle Scholar
  44. 45.
    Schlein Y. Sandfly diet and Leishmania. Parasitol Today 1986; 2:175–177.PubMedCrossRefGoogle Scholar
  45. 46.
    Glew RH, Saha AK, Das S et al. Biochemistry of the Leishmania species. Microbiol Rev 1988; 52:412–432.PubMedGoogle Scholar
  46. 47.
    Burchmore RJ, Barrett MP. Life in vacuoles-nutrient acquisition by Leishmania amastigotes. Int J Parasitol 2001; 31(12):1311–1320.PubMedCrossRefGoogle Scholar
  47. 48.
    Burchmore RJS, Landfear SM. Differential regulation of multiple glucose transporter genes in the parasitic protozoan Leishmania mexicana. J Biol Chem 1998; 273:29118–29126.PubMedCrossRefGoogle Scholar
  48. 49.
    Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 2004; 447:480–489.PubMedCrossRefGoogle Scholar
  49. 50.
    Piper RC, Xu X, Russell DG et al. Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain. J Cell Biol 1995; 128:499–508.PubMedCrossRefGoogle Scholar
  50. 51.
    Burchmore RJS, Rodriguez-Contreras D, McBride K et al. Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 2003; 100(7):3901–3906.PubMedCrossRefGoogle Scholar
  51. 52.
    Ralton JE, Naderer T, Piraino HL et al. Evidence that intracellular ta 1-2 mannan Is a virulence factor in Leishmania parasites. J Biol Chem 2003; 278(42):40757–40763.Google Scholar
  52. 53.
    Maugeri DA, Cazzulo JJ, Burchmore RJ et al. Pentose phosphate metabolism in Leishmania mexicana. Mol Biochem Parasitol 2003; 130:117–125.PubMedCrossRefGoogle Scholar
  53. 54.
    Tovar J, Wilkinson S, Mottram JC et al. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA locus. Mol Microbiol 1998; 29:653–660.PubMedCrossRefGoogle Scholar
  54. 55.
    Landfear SM, Ullman B, Carter N et al. Nucleoside and nucleobase transporters in parasitic protozoa. Eukaryotic Cell 2004; 3:245–254.PubMedCrossRefGoogle Scholar
  55. 56.
    Sundaram M, Yao SYM, Ingram JC et al. Topology of a human equilibrative, nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter (hENT1) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem 2001; 276:45270–45275.PubMedCrossRefGoogle Scholar
  56. 57.
    Vasudevan G, Ullman B, Landfear SM. Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity. Proc Natl Acad Sci USA 2001; 98:6092–6097.PubMedCrossRefGoogle Scholar
  57. 58.
    Stein A, Vasudevan G, Carter N et al. Equilibrative nucleoside transporter family members from Leishmania donovani are electrogenic proton symporters. J Biol Chem 2003; 278:35127–35134.PubMedCrossRefGoogle Scholar
  58. 59.
    Valdés R, Vasudevan G, Conklin D et al. Transmembrane domain 5 of the LdNT1.l nucleoside transporter is an amphipathic helix that forms part of the nucleoside translocation pathway. Biochemistry 2004; 43:6793–6802.PubMedCrossRefGoogle Scholar
  59. 60.
    Arastu-Kapur S, Ford E, Ullman B et al. Functional analysis of an inosine-guanosine transporter from Leishmania donovani: The role of conserved residues, aspartate 389 and arginine 393. J Biol Chem 2003; 278(35):33327–33333.PubMedCrossRefGoogle Scholar
  60. 61.
    Arastu-Kapur S, Arendt CS, Purnat T et al. Second-site suppression of a nonfunctional mutation within the Leishmania donovani inosine-guanosine transporter. J Biol Chem 2005; 280(3):2213–2219.PubMedCrossRefGoogle Scholar
  61. 62.
    Cruz AK, Titus R, Beverley SM. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci USA 1993; 90:1599–1603.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Scott M.
    • 1
  1. 1.Department of Molecular Microbiology and ImmunologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations