Unique Characteristics of the Kinetoplast DNA Replication Machinery Provide Potential Drug Targets in Trypanosomatids

  • Dotan Sela
  • Neta Milman
  • Irit Kapeller
  • Aviad Zick
  • Rachel Bezalel
  • Nurit Yaffe
  • Joseph Shlomai
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)


Kinetoplast DNA (kDNA) is a remarkable DNA structure found in the single mitohondrion of flagellated protozoa of the order Kinetoplastida. In various parasitic species of the family Trypanosomatidae, it consists of 5,000-10,000 duplex DNA minicircles (0.5-10 kb) and 25-50 maxicircles (20-40 kb), which are linked topologically into a two dimensional DNA network. Maxicircles encode for typical mitochondrial proteins and ribosomal RNA, whereas minicircles encode for guide RNA (gRNA) molecules that function in the editing of maxicircles’ mRNA transcripts. The replication of kDNA includes the duplication of free detached minicircles and catenated maxicircles, and the generation of two progeny kDNA networks. It is catalyzed by an enzymatic machinery, consisting of kDNA replication proteins that are located at defined sites flanking the kDNA disk in the mitochondrial matrix (for recent reviews on kDNA see refs. 1-8).


Replication Origin Trypanosoma Brucei Flagellar Basal Body Kinetoplastid Parasite kDNA Minicircles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klingbeil MM, Drew ME, Liu Y et al. Unlocking the secrets of trypanosome kinetoplast DNA network replication. Protist 2001; 152(4):255–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Morris JC, Drew ME, Klingbeil MM et al. Replication of kinetoplast DNA: An update for the new millennium. Int J Parasitol 2001; 31(5–6):453–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med 2004; 4(6):623–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu B, Liu Y, Motyka SA et al. Fellowship of the rings: The replication of kinetoplast DNA. Trends Parasitol 2005; 21(8):363–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Lukes J, Guilbride DL, Votypka J et al. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot Cell 2002; l(4):495–502.CrossRefGoogle Scholar
  6. 6.
    Lukes J, Hashimi H, Zikova A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48(5):277–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Simpson L, Aphasizhev R, Gao G et al. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA 2004; 10(2): 159–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Stuart KD, Schnaufer A, Ernst NL et al. Complex management: RNA editing in trypanosomes. Trends Biochem Sci 2005; 30(2):97–105.PubMedCrossRefGoogle Scholar
  9. 9.
    Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: How to live without mitochondrial DNA. Int J Parasitol 2002; 32(9):1071–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Schnaufer A, Panigrahi AK, Panicucci B et al. An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 2001; 291(5511):2159–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Schnaufer A, Clark-Walker GD, Steinberg AG et al. The Fl-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 2005; 24(23):4029–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Das A, Gale Jr M, Carter V et al. The protein phosphatase inhibitor okadaic acid induces defects in cytokinesis and organellar genome segregation in Trypanosoma brucei. J Cell Sci 1994; 107(Pt12):3477–83.PubMedGoogle Scholar
  13. 13.
    Ploubidou A, Robinson DR, Docherty RC et al. Evidence for novel cell cycle checkpoints in trypanosomes: Kinetoplast segregation and cytokinesis in the absence of mitosis. J Cell Sci 1999; 112(Pt 24):4641–50.PubMedGoogle Scholar
  14. 14.
    Robinson DR, Gull K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 1991; 352(6337):731–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Pearson TW, Beecroft RP, Welburn SC et al. The major cell surface glycoprotein procyclin is a receptor for induction of a novel form of cell death in African trypanosomes in vitro. Mol Biochem Parasitol 2000; 111(2):333–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Welburn SC, Barcinski MA, Williams GT. Programmed cell death in trypanosomatids. Parasitol Today 1997; 13(l):22–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Perez-Morga D, Englund PT. The structure of replicating kinetoplast DNA networks. J Cell Biol 1993; 123(5): 1069–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferguson M, Torri AF, Ward DC et al. In situ hybridization to the Crithidia fasciculata kinetoplast reveals two antipodal sites involved in kinetoplast DNA replication. Cell 1992; 70(4):621–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Tittawella I. A simple procedure for detecting proteins that bind preferentially to kDNA networks. FEMS Microbiol Lett 1989; 51(3):347–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Tittawella I. Kinetoplast DNA-aggregating proteins from parasitic protozoan Crithidia fasciculata. FEBS Lett 1990; 260(l):57–61.CrossRefGoogle Scholar
  21. 21.
    Tittawella I. Identification of DNA-binding proteins in the parasitic protozoan Crithidia fasciculata and evidence for their association with the mitochondrial genome. Exp Cell Res 1993;206(1): 143–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Tittawella I, Carlsson L, Thornell LE. Two proteins involved in kinetoplast compaction [published erratum appears in FEBS Lett 1993 Dec 20;336(l):190]. FEBS Lett 1993; 333(l-2):5–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu C, Ray DS. Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc Natl Acad Sci USA 1993; 90(5):1786–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Xu CW, Hines JC, Engel ML et al. Nucleus-encoded histone H1-like proteins are associated with kinetoplast DNA in the trypanosomatid Crithidia fasciculata. Mol Cell Biol 1996; 16(2):564–76.PubMedGoogle Scholar
  25. 25.
    Lukes J, Hines JC, Evans CJ et al. Disruption of the Crithidia fasciculata KAP1 gene results in structural rearrangement of the kinetoplast disc. Mol Biochem Parasitol 2001;117(2): 179–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Braly P, Simpson L, Kretzer F. Isolation of kinetoplast-mitochondrial complexes from Leishmania tarentolae. J Protozool 1974; 21(5):782–90.PubMedGoogle Scholar
  27. 27.
    Gull K. The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 1999; 53:629–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Rauch CA, Perez-Morga D, Cozzarelli NR et al. The absence of supercoiling in kinetoplast DNA minicircles. EMBO J 1993; 12:403–11.PubMedGoogle Scholar
  29. 29.
    Chen J, Rauch CA, White JH et al. The topology of the kinetoplast DNA network. Cell 1995; 80(l):61–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Shapiro TA. Kinetoplast DNA maxicircles: Networks within networks. Proc Natl Acad Sci USA 1993; 90(16):7809–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferguson ML, Torri AF, Perez-Morga D et al. Kinetoplast DNA replication: Mechanistic differences between Trypanosoma brucei and Crithidia fasciculata. J Cell Biol 1994; 126(3):631–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Simpson L. The mitochondrial genome of kinetoplastid protozoa: Genomic organization, transcription, replication, and evolution. Annu Rev Microbiol 1987; 41:363–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Stuart K, Feagin JE. Mitochondrial DNA of kinetoplastida. Int Rev Cytol 1992; 141:65–88.PubMedCrossRefGoogle Scholar
  34. 34.
    Schneider A. Unique aspects of mitochondrial biogenesis in trypanosomatids. Int J Parasitol 2001; 31(13):1403–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Hancock K, Hajduk SL. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 1990; 265(31):19208–15.PubMedGoogle Scholar
  36. 36.
    Schneider A, Marechal-Drouard L. Mitochondrial tRNA import: Are there distinct mechanisms? Trends Cell Biol 2000; 10(12):509–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Horton TL, Landweber LF. Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 2002; 5(6):620–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Sturm NR, Simpson L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 1990; 61(5):879–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Fouts DL, Wolstenholme DR. Evidence for a partial RNA transcript of the small circular component of kinetoplast DNA of Crithidia acanthocephali. Nucleic Acids Res 1979; 6(12):3785–804.PubMedCrossRefGoogle Scholar
  40. 40.
    Rohrer SP, Michelotti EF, Torri AF et al. Transcription of kinetoplast DNA minicircles. Cell 1987; 49(5):625–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Shlomai J, Zadok A. Kinetoplast DNA minicircles of trypanosomatids encode for a protein product. Nucleic Acids Res 1984; 12(21):8017–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Singh N, Rastogi AK. Kinetoplast DNA minicircles of Leishmania donovani express a protein product. Biochim Biophys Acta 1999; l444(2):263–8.Google Scholar
  43. 43.
    Steinert M, Van Assel S. Sequence heterogeneity in kinetoplast DNA: Reassociation kinetics. Plasmid 1980; 3:7–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Barrios M, Riou G, Galibert F. Complete nucleotide sequence of minicircle kinetoplast DNA from Trypanosoma equiperdum. Proc Natl Acad Sci USA 1981; 78:3323–7.CrossRefGoogle Scholar
  45. 45.
    Borst P, Fase-Fowler F, Gibson WC. Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol 1987; 23:31–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Ray DS. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol 1989; 9(3): 1365–7.PubMedGoogle Scholar
  47. 47.
    Chen KK, Donelson JE. Sequences of two kinetoplast DNA minicircles of Tryptanosoma brucei. Proc Natl Acad Sci USA 1980; 77(5):2445–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Kidane GZ, Hughes D, Simpson L. Sequence heterogeneity and anomalous electrophoretic mobility of kinetoplast minicircle DNA from Leishmania tarentolae. Gene 1984; 27:265–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Sugisaki H, Ray DS. DNA sequence of Crithidia fasciculata kinetoplast minicircles. Mol Biochem Parasitol 1987; 23(3):253–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Ponzi M, Birago C, Battaglia PA. Two identical symmetrical regions in the minicircle structure of Trypanosoma lewisi kinetoplast DNA. Mol Biochem Parasitol 1984; 13(1): 111–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Degrave W, Fragoso SP, Britto C et al. Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi. Mol Biochem Parasitol 1988; 27(l):63–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Vallejo GA, Macedo AM, Chiari E et al. Kinetoplast DNA from Trypanosoma rangeli contains two distinct classes of minicirdes with different size and molecular organization. Mol Biochem Parasitol 1994; 67(2):245–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Kitchin PA, Klein VA, Englund PT. Intermediates in the replication of kinetoplast DNA minicircles. J Biol Chem 1985; 260(6):3844–51.PubMedGoogle Scholar
  54. 54.
    Ntambi JM, Englund PT. A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. J Biol Chem 1985; 260(9):5574–9.PubMedGoogle Scholar
  55. 55.
    Birkenmeyer L, Ray DS. Replication of kinetoplast DNA in isolated kinetoplasts from Crithidia fasciculata. Identification of minicircle DNA replication intermediates. J Biol Chem 1986; 261(5):2362–8.PubMedGoogle Scholar
  56. 56.
    Birkenmeyer L, Sugisaki H, Ray DS. Structural characterization of site-specific discontinuities associated with replication origins of minicircle DNA from Crithidia fasciculata. J Biol Chem 1987; 262(5):2384–92.PubMedGoogle Scholar
  57. 57.
    Sheline C, Melendy T, Ray DS. Replication of DNA minicirdes in kinetoplasts isolated from Crithidia fasciculata: Structure of nascent minicirdes. Mol Cell Biol 1989; 9(1): 169–76.PubMedGoogle Scholar
  58. 58.
    Sheline C, Ray DS. Specific discontinuities in Leishmania tarentolae minicirdes map within universally conserved sequence blocks. Mol Biochem Parasitol 1989; 37(2): 151–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Ryan KA, Englund PT. Replication of kinetoplast DNA in Trypanosoma equiperdum. Minicircle H strand fragments which map at specific locations. J Biol Chem 1989; 264(2):823–30.PubMedGoogle Scholar
  60. 60.
    Marini JC, Levene SD, Crothers DM et al. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 1982; 79:7664–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kitchin PA, Klein VA, Ryan KA et al. A highly bent fragment of Crithidia fasciculata kinetoplast DNA. J Biol Chem 1986; 261(24):11302–9.PubMedGoogle Scholar
  62. 62.
    Ntambi JM, Marini JC, Bangs JD et al. Presence of a bent helix in fragments of kinetoplast DNA minicirdes from several trypanosomatid species. Mol Biochem Parasitol 1984; 12(3):273–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Clayton DA. Replication of animal mitochondrial DNA. Cell 1982; 28(4):693–705.PubMedCrossRefGoogle Scholar
  64. 64.
    Clayton DA. Replication and transcription of vertebrate mitochondrial DNA.Annu Rev Cell Biol 1991; 7:453–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Shadel GS. Yeast as a model for human mtDNA replication. Am J Hum Genet 1999; 65(5):1230–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Clayton DA. Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res 2000; 255(l):4–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 1990; 95(Pt l):49–57.PubMedGoogle Scholar
  68. 68.
    Steinert M, Van Assel S. [Coordinated replication of nuclear and mitochondrial desoxyribonucleic acids in "Crithidia luciliae&quot]. Arch Int Physiol Biochim 1967; 75(2):370–1.PubMedGoogle Scholar
  69. 69.
    Cosgrove WB, Skeen MJ. The cell cycle in Crithidia fasciculata. Temporal relationships between synthesis of deoxyribonucleic acid in the nucleus and in the kinetoplast. J Protozool 1970; 17(2):172–7.PubMedGoogle Scholar
  70. 70.
    Simpson L, Braly P. Synchronization of Leishmania tarantolae by hydroxyurea. J Protozool 1970; 17:511–517.PubMedGoogle Scholar
  71. 71.
    Englund PT. The replication of kinetoplast DNA network in Crithidia fasciculata. Cell 1978; 14:157–168.PubMedCrossRefGoogle Scholar
  72. 72.
    Englund PT. Free minicirdes of kinetoplast DNA in Crithidia fasciculata. J Biol Chem 1979; 254:4895–900.PubMedGoogle Scholar
  73. 73.
    Ryan KA, Shapiro TA, Rauch CA et al. Replication of kinetoplast DNA in trypanosomes. Annu Rev Microbiol 1988; 42:339–58.PubMedCrossRefGoogle Scholar
  74. 74.
    Melendy T, Sheline C, Ray DS. Localization of a type II DNA topoisomerase to two sites at the periphery of the kinetoplast DNA of Crithidia Fasciculata. Cell 1988; 55:1083–1088.PubMedCrossRefGoogle Scholar
  75. 75.
    Abu-Elneel K. The initiation of Kinetoplast DNA replication in trypanosomatids: Specific protein-DNA interactions at the replication origin: The Hebrew University of Jerusalem, 2002.Google Scholar
  76. 76.
    Abu-Elneel K, Robinson DR, Drew ME et al. Intramitochondrial localization of universal minicircle sequence-binding protein, a trypanosomatid protein that binds kinetoplast minicircle replication origins. J Cell Biol 2001; 153(4):725–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Engel ML, Ray DS. The kinetoplast structure-specific endonuclease I is related to the 5' exo/endonuclease domain of bacterial DNA polymerase I and colocalizes with the kinetoplast topoisomerase II and DNA polymerase beta during replication. Proc Natl Acad Sci USA 1999; 96(15):8455–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Johnson CE, Englund PT. Changes in organization of Crithidia fasciculata kinetoplast DNA replication proteins during the cell cycle. J Cell Biol 1998; l43(4):911–9.CrossRefGoogle Scholar
  79. 79.
    Abeliovich H, Tzfati Y, Shlomai J. A trypanosomal CCHC-type zinc finger protein which binds the conserved universal sequence of kinetoplast DNA minicirdes: Isolation and analysis. of the complete cDNA from Crithidia fasciculata. Mol Cell Biol 1993; 13(12):7766–73.PubMedGoogle Scholar
  80. 80.
    Abu-Elneel K, Kapeller I, Shlomai J. Universal minicircle sequence-binding protein, a sequence-specific DNA-binding protein that recognizes the two replication origins of the kineto-plast DNA minicircle. J Biol Chem 1999; 274(19):13419–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Avrahami_D, Tzfati Y, Shlomai J. A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA. Proc Natl Acad Sci USA 1995; 92(23):10511–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Onn I, Milman-Shtepel N, Shlomai J. Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. Eukaryot Cell 2004; 3(2):277–87.PubMedCrossRefGoogle Scholar
  83. 83.
    Tzfati Y, Abeliovich H, Avrahami D et al. Universal minicircle sequence binding protein, a CCHC-type zinc finger protein that binds the universal minicircle sequence of trypanosomatids. Purification and characterization. J Biol Chem 1995; 270(36):21339–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Tzfati Y, Abeliovich H, Kapeller I et al. A single-stranded DNA-binding protein from Crithidia fasciculata recognizes the nucleotide sequence at the origin of replication of kinetoplast DNA minicircles. Proc Natl Acad Sci USA 1992; 89(15):6891–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Li C, Englund PT. A mitochondrial DNA primase from the trypanosomatid Crithidia fasciculata. J Biol Chem 1997; 272(33):20787–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell 2002; 10(l):175–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Melendy T, Ray DS. Novobiocin affinity purification of a mitochondrial type II topoisomerase from the trypanosomatid Crithidia fasciculata. J Biol Chem 1989; 264(3):1870–6.PubMedGoogle Scholar
  88. 88.
    Wang Z, Englund PT. RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J 2001; 20(17):4674–83.PubMedCrossRefGoogle Scholar
  89. 89.
    Torri AF, Englund PT. Purification of a mitochondrial DNA polymerase from Crithidia fasciculata. J Biol Chem 1992; 267(7):4786–92.PubMedGoogle Scholar
  90. 90.
    Torri AF, Englund PT. A DNA polymerase beta in the mitochondrion of the trypanosomatid Crithidia fasciculata. J Biol Chem 1995; 270(8):3495–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Torri AF, Kunkel TA, Englund PT. A beta-like DNA polymerase from the mitochondrion of the trypanosomatid Crithidia fasciculata. J Biol Chem 1994; 269(11):8165–71.PubMedGoogle Scholar
  92. 92.
    Hines JC, Engel ML, Zhao H et al. RNA primer removal and gap filling on a model minicircle replication intermediate. Mol Biochem Parasitol 2001; 115(l):63–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Engel ML, Ray DS. A structure-specific DNA endonuclease is enriched in kinetoplasts purified from Crithidia fasciculata. Nucleic Acids Res 1998; 26(20):4733–4738.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu Y, Motyka SA, Englund PT. Effects of RNA interference of Trypanosoma brucei structure-specific endonuclease-I on kinetoplast DNA replication. J Biol Chem 2005.Google Scholar
  95. 95.
    Sinha KM, Hines JC, Downey N et al. Mitochondrial DNA ligase in Crithidia fasciculata. Proc Natl Acad Sci USA 2004; 101(13):4361–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Downey N, Hines JC, Sinha KM et al. Mitochondrial DNA ligases of Trypanosoma brucei. Eukaryot Cell 2005; 4(4):765–74.PubMedCrossRefGoogle Scholar
  97. 97.
    Saxowsky TT, Choudhary G, Klingbeil MM et al. Trypanosoma brucei has two distinct mitochondrial DNA polymerase beta enzymes. J Biol Chem 2003; 8:8.Google Scholar
  98. 98.
    Chen J, Englund PT, Cozzarelli NR. Changes in network topology during the replication of kinetoplast DNA. EMBO J 1995; l4(24):6339–47.Google Scholar
  99. 99.
    Hoeijmakers JH, Weijers PJ. The segregation of kinetoplast DNA networks in Trypanosoma brucei. Plasmid 1980; 4(1):97–116.PubMedCrossRefGoogle Scholar
  100. 100.
    Robinson DR, Gull K. The configuration of DNA replication sites within the Trypanosoma brucei kinetoplast. J Cell Biol 1994; 126(3):641–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang Z, Drew ME, Morris JC et al. Asymmetrical division of the kinetoplast DNA network of the trypanosome. EMBO J 2002; 21(18):4998–5005.PubMedCrossRefGoogle Scholar
  102. 102.
    Ogbadoyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 2003; 14(5):1769–79.PubMedCrossRefGoogle Scholar
  103. 103.
    Soultanas P, Wigley DB. DNA helicases: ‘Inching forward’ [see comments]. Curr Opin Struct Biol 2000; 10(l):124–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Robinson DR, Sherwin T, Ploubidou A et al. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 1995; 128(6):1163–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Drew ME, Englund PT. Intramitochondrial location and dynamics of Crithidia fasciculata kinetoplast minicircle replication intermediates. J Cell Biol 2001; 153(4):735–44.PubMedCrossRefGoogle Scholar
  106. 106.
    Shapiro TA, Englund PT. The structure and replication of kinetoplast DNA. Annu Rev Microbiol 1995; 49:117–43.PubMedCrossRefGoogle Scholar
  107. 107.
    Shlomai J, Linial M. A nicking enzyme from trypanosomatids which specifically affects the topological linking of duplex DNA circles. Purification and characterization. J Biol Chem 1986; 261(34):16219–25.PubMedGoogle Scholar
  108. 108.
    Carpenter LR, Englund PT. Kinetoplast maxicircle DNA replication in Crithidia fasciculata and Trypanosoma brucei. Mol Cell Biol 1995; 15(12):6794–803.PubMedGoogle Scholar
  109. 109.
    Hajduk SL, Klein VA, Englund PT. Replication of kinetoplast DNA maxicircles. Cell 1984; 36:483–492.PubMedCrossRefGoogle Scholar
  110. 110.
    Grams J, Morris JC, Drew ME et al. A trypanosome mitochondrial RNA polymerase is required for transcription and replication. J Biol Chem 2002; 277(19):16952–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Kumar P, Wang CC. Depletion of anaphase-promoting complex or cyclosome (APC/C) subunit homolog APC1 or CDC27 of Trypanosoma brucei arrests the procyclic form in metaphase but the bloodstream form in anaphase. J Biol Chem 2005; 280(36):31783–91.PubMedCrossRefGoogle Scholar
  112. 112.
    Tu X, Wang CC. The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem 2004; 279(19): 20519–28.PubMedCrossRefGoogle Scholar
  113. 113.
    Tu X, Wang CC. Pairwise knockdowns of cdc2-related kinases (CRKs) in Trypanosoma brucei identified the CRKs for Gl/S and G2/M transitions and demonstrated distinctive cytokinetic regulations between two developmental stages of the organism. Eukaryot Cell 2005; 4(4):755–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Tu X, Wang CC. Coupling of posterior cytoskeletal morphogenesis to the Gl/S transition in the Trypanosoma brucei cell cycle. Mol Biol Cell 2005; 16(l):97–105.PubMedGoogle Scholar
  115. 115.
    Hammarton TC, Engstler M, Mottram JC. The Trypanosoma brucei cyclin, CYC2, is required for cell cycle progression through G1 phase and for maintenance of procyclic form cell morphology. J Biol Chem 2004; 279(23):24757–64.PubMedCrossRefGoogle Scholar
  116. 116.
    Li Z, Wang CC. Functional characterization of the 11 nonATPase subunit proteins in the trypanosome 19 S proteasomal regulatory complex. J Biol Chem 2002; 277(45):42686–93.PubMedCrossRefGoogle Scholar
  117. 117.
    McKean PG. Coordination of cell cycle and cytokinesis in Trypanosoma brucei. Curr Opin Microbiol 2003; 6(6):600–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Blow JJ, Dutta A. Preventing rereplication of chromosomal DNA. Nat Rev Mol Cell Biol 2005; 6(6):476–86.PubMedCrossRefGoogle Scholar
  119. 119.
    Forsburg SL. Eukaryotic MCM proteins: Beyond replication initiation. Microbiol Mol Biol Rev 2004; 68(l):109–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Kornberg A, Baker TA. DNA Replication. 2nd ed. San Francisco: Freeman, 1991.Google Scholar
  121. 121.
    Tzfati Y, Shlomai J. Genomic organization and expression of the gene encoding the universal minicircle sequence binding protein. Mol Biochem Parasitol 1998; 94(1):137–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Montemartini M, Kalisz HM, Kiess M et al. Sequence, heterologous expression and functional characterization of a novel tryparedoxin from Crithidia fasciculata. Biol Chem 1998; 379(8–9):1137–42.PubMedGoogle Scholar
  123. 123.
    Montemartini M, Nogoceke E, Singh M et al. Sequence analysis of the tryparedoxin peroxidase gene from Crithidia fasciculata and its functional expression in Escherichia coli. J Biol Chem 1998; 273(9):4864–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Montemartini M, Steinert P, Singh M et al. Tryparedoxin II from Crithidia fasciculata. Biofactors 2000; ll(l–2):65–6.Google Scholar
  125. 125.
    Nogoceke E, Gommel DU, Kiess M et al. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem 1997; 378(8):827–36.PubMedCrossRefGoogle Scholar
  126. 126.
    Hines JC, Ray DS. Periodic synthesis of kinetoplast DNA topoisomerase II during the cell cycle. Mol Biochem Parasitol 1997; 88(l–2):249–52.PubMedCrossRefGoogle Scholar
  127. 127.
    Pasion SG, Brown GW, Brown LM et al. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle. J Cell Sci 1994; 107(Pt 12):3515–20.PubMedGoogle Scholar
  128. 128.
    Mahmood R, Hines JC, Ray DS. Identification of cis and trans elements involved in the cell cycle regulation of multiple genes in Crithidia fasciculata. Mol Cell Biol 1999; 19(9):6174–82.PubMedGoogle Scholar
  129. 129.
    Mahmood R, Mittra B, Hines JC et al. Characterization of the Crithidia fasciculata mRNA cycling sequence binding proteins. Mol Cell Biol 2001; 21(l4):4453–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Avliyakulov NK, Hines JC, Ray DS. Sequence elements in both the intergenic space and the 3' untranslated region of the Crithidia fasciculata KAP3 gene are required for cell cycle regulation of KAP3 mRNA. Eukaryot Cell 2003; 2(4):671–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Mittra B, Sinha KM, Hines JC et al. Presence of multiple mRNA cycling sequence element-binding proteins in Crithidia fasciculata. J Biol Chem 2003; 278(29):26564–71.PubMedCrossRefGoogle Scholar
  132. 132.
    Hanke T, Ramiro MJ, Trigueros S et al. Cloning, functional analysis and post-transcriptional regulation of a type II DNA topoisomerase from Leishmania infantum. A new potential target for anti-parasite drugs. Nucleic Acids Res 2003; 31(l6):4917–28.PubMedCrossRefGoogle Scholar
  133. 133.
    Zick A, Onn I, Bezalel R et al. Assigning functions to genes: Identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements. Nucleic Acids Res 2005; 33(13):4235–42.PubMedCrossRefGoogle Scholar
  134. 134.
    Montemartini M, Kalisz HM, Hecht HJ et al. Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of Crithidia fasciculata. Eur J Biochem 1999; 264(2):516–24.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Dotan Sela
    • 1
  • Neta Milman
    • 1
  • Irit Kapeller
    • 1
  • Aviad Zick
    • 1
  • Rachel Bezalel
    • 1
  • Nurit Yaffe
    • 1
  • Joseph Shlomai
    • 1
  1. 1.Department of Parasitology The Kuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations