Advertisement

Searching the Tritryp Genomes for Drug Targets

  • Peter J. Myler
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)

Abstract

The recent publication of the complete genome sequences of Leishmania major, Trypanosoma brucei and Trypanosoma cruzi revealed that each genome contains 8300-12,000 protein-coding genes, of which -6500 are common to all three genomes, and ushers in a new, post-genomic, era for trypanosomatid drug discovery. This vast amount of new information makes possible more comprehensive and accurate target identification using several new computational approaches, including identification of metabolic “choke-points”, searching the parasite proteomes for orthologues of known drug targets, and identification of parasite proteins likely to interact with known drugs and drug-like small molecules. In this chapter, we describe several databases (such as GENEDB, BRENDA, KEGG, METACYC, the THERAPEUTIC TARGET DATABASE, and CHEMBANK) and algorithms (including PATHOLOGIC, PATHWAY HUNTER TOOL, AND AUTODOCK) which have been developed to facilitate the bioinformatic analyses underlying these approaches. While target identification is only the first step in the drug development pipeline, these new approaches give rise to renewed optimism for the discovery of new drugs to combat the devastating diseases caused by these parasites.

Traditionally, drug discovery in the trypanosomatids (and other organisms) has proceeded from two different starting points: screening large numbers of existing compounds for activity against whole parasites or more focused screening of compounds for activity against defined molecular targets. Most existing anti-trypanosomatids drugs were developed using the former approach, although the latter has gained much attention in the last twenty years under the rubric of “rational drug design”. Until recently, one of the major bottlenecks in anti-trypanosomatid drug development has been our ability to identify good targets, since only a very small percentage of the total number of trypanosomatid genes were known. That has now changed forever, with the recent (July, 2005) publication of the “Tritryp” (Trypanosonm brucei, Trypanosoma cruzi and Leishmania major) genome sequences.1-4 This vast amount of information now makes possible several new approaches for target identffication and ushers in a post-genomic era for trypanosomatid drug discovery.

Keywords

Metabolic Network Enzyme Commission Trypanosoma Cruzi Human African Trypanosomiasis Trypanosoma Brucei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome, Trypanosoma brucei. Science 2005; 309:416–422.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Sayed NMA, Myler PJ, Bartholomeu D et al. The genome sequence of Trypanosoma cruzi, etiological agent of Chagas’ disease. Science 2005; 309(5733):409–415.PubMedCrossRefGoogle Scholar
  3. 3.
    Ivens AC, Peacock CS, Worthey EA et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309(5733):436–442.PubMedCrossRefGoogle Scholar
  4. 4.
    El-Sayed NMA, Myler PJ, Blandin G et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309(5733):404–409.PubMedCrossRefGoogle Scholar
  5. 5.
    Haag J, O’hUigin C, Overath P. The molecular phylogeny of trypanosomes: Evidence for an early divergence of the Salivaria. Mol Biochem Parasitol 1998; 91(1):37–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Stevens JR, Noyes HA, Schofield CJ et al. The molecular evolution of Trypanosomatidae. Adv Parasitol 2001; 48:1–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell DA, Thomas S, Sturm N. Transcription in kinetoplastid protozoa: Why be normal? Microbes Infect 2003; 5(13):1231–1240.PubMedCrossRefGoogle Scholar
  8. 8.
    Myler PJ, Audleman L, deVos T et al. Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Nad Acad Sci USA 1999; 96(6):2902–2906.CrossRefGoogle Scholar
  9. 9.
    Martinez-Calvillo S, Yan S, Nguyen D et al. Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell 2003; 11(5):1291–1299.PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez-Calvillo S, Nguyen D, Stuart K et al. Transcription initiation and termination on Leishmania major chromosome 3. Eukaryot Cell 2004; 3(2):506–517.PubMedCrossRefGoogle Scholar
  11. 11.
    Vanhamme L, Pays E. Control of gene expression in trypanosomes. Microbiol Rev 1995; 59(2):223–240.PubMedGoogle Scholar
  12. 12.
    Lodes MJ, Merlin G, deVos T et al. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol 1995; 15(12):6845–6853.PubMedGoogle Scholar
  13. 13.
    Perry K, Agabian N. mRNA processing in the Trypanosomatidae. Experientia 1991; 47:118–128.PubMedCrossRefGoogle Scholar
  14. 14.
    Das A, Zhang Q, Palenchar JB et al. Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol Cell Biol 2005; 25(16):7314–7322.PubMedCrossRefGoogle Scholar
  15. 15.
    Schimanski B, Nguyen TN, Giinzl A. Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. Mol Cell Biol 2005; 25(16):7303–7313.PubMedCrossRefGoogle Scholar
  16. 16.
    Palenchar JB, Liu W, Palenchar PM et al. A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent SL RNA transcription and cell viability. Eukaryot Cell 2006; 5(2):293–300.PubMedCrossRefGoogle Scholar
  17. 17.
    Schimanski B, Brandenburg J, Nguyen TN et al. A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei. Nucl Acids Res 2006; 34(6): 1676–1684.PubMedCrossRefGoogle Scholar
  18. 18.
    Anantharaman V, Aravind L, Koonin EV. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr Opin Chem Biol 2003; 7(1): 12–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Clayton CE. Life without transcriptional control? From fly to man and back again. EMBO J 2002; 21(8):1881–1888.PubMedCrossRefGoogle Scholar
  20. 20.
    Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell 2002; 10(l):175–186.PubMedCrossRefGoogle Scholar
  21. 21.
    Parsons M, Worthey EA, Ward PN et al. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 2005; 6(1):127.PubMedCrossRefGoogle Scholar
  22. 22.
    Pink R, Hudson A, Mouries MA et al. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005; 4(9):727–740.PubMedCrossRefGoogle Scholar
  23. 23.
    Fairlamb AH. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol 2003; 19(11):488–494.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SH, Stephens JL, Paul KS et al. Fatty Acid synthesis by elongases in trypanosomes. Cell 2006; 126(4):691–699.PubMedCrossRefGoogle Scholar
  25. 25.
    Albert MA, Haanstra JR, Hannaert V et al. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 2005; 280(31):28306–28315.PubMedCrossRefGoogle Scholar
  26. 26.
    Lakhdar-Ghazal F, Blonski C, Willson M et al. Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem 2002; 2(5):439–456.PubMedCrossRefGoogle Scholar
  27. 27.
    Goto S, Nishioka T, Kanehisa M. LIGAND: Chemical database for enzyme reactions. Bioinformatics 1998; l4(7):591–599.CrossRefGoogle Scholar
  28. 28.
    Kanehisa M. A database for post-genome analysis. Trends Genet 1997; 13(9):375–376.PubMedCrossRefGoogle Scholar
  29. 29.
    Kanehisa M, Goto S, Hattori M et al. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res 2006; 34(Database issue):D354–D357.PubMedCrossRefGoogle Scholar
  30. 30.
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1):27–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Kanehisa M, Goto S, Kawashima S et al. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32(Database issue):D277–D280.PubMedCrossRefGoogle Scholar
  32. 32.
    Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics 2002; 18(Suppl1): S225–S232.PubMedGoogle Scholar
  33. 33.
    Yeh I, Hanekamp T, Tsoka S et al. Computational analysis of Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery. Genome Res 2004; 14(5):917–924.PubMedCrossRefGoogle Scholar
  34. 34.
    Karp PD, Ouzounis CA, Moore-Kochlacs C et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005; 33(19):6083–6089.PubMedCrossRefGoogle Scholar
  35. 35.
    Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 2003; 19(2):270–277.PubMedCrossRefGoogle Scholar
  36. 36.
    Covert MW, Schilling CH, Famili I et al. Metabolic modeling of microbial strains in silico. Trends Biochem Sci 2001; 26(3): 179–186.PubMedCrossRefGoogle Scholar
  37. 37.
    Gaasterland T, Selkov E. Reconstruction of metabolic networks using incomplete information. Proc Int Conf Intell Syst Mol Biol 1995; 3:127–135.PubMedGoogle Scholar
  38. 38.
    Overbeek R, Larsen N, Pusch GD et al. WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 2000; 28(1): 123–125.PubMedCrossRefGoogle Scholar
  39. 39.
    Krieger CJ, Zhang P, Mueller LA et al. MetaCyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004; 32(Database issue):D438–D442.PubMedCrossRefGoogle Scholar
  40. 40.
    Rahman SA, Schomburg D. Observing local and global properties of metabolic pathways: ‘Load points’ and ‘choke points’ in the metabolic networks. Bioinformatics 2006; 22(14):1767–1774.PubMedCrossRefGoogle Scholar
  41. 41.
    Rahman SA, Advani P, Schunk R et al. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 2005; 21(7):1189–1193.PubMedCrossRefGoogle Scholar
  42. 42.
    Klamt S, Gilles ED. Minimal cut sets in biochemical reaction networks. Bioinformatics 2004; 20(2):226–234.PubMedCrossRefGoogle Scholar
  43. 43.
    Lipinski CA, Lombardo F, Dominy BW et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(l–3):3–26.PubMedCrossRefGoogle Scholar
  44. 44.
    Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002; l(9):727–730.CrossRefGoogle Scholar
  45. 45.
    Hardy LW, Peet NP. The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discov Today 2004; 9(3): 117–126.PubMedCrossRefGoogle Scholar
  46. 46.
    Zheng CJ, Han LY, Yap CW et al. Therapeutic targets: Progress of their exploration and investigation of their characteristics. Pharmacol Rev 2006; 58(2):259–279.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen X, Ji ZL, Chen YZ. TTD: Therapeutic Target Database. Nucleic Acids Res 2002; 30(1):412–415.PubMedCrossRefGoogle Scholar
  48. 48.
    Han L, Cui J, Lin H et al. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 2006; 6(14):4023–4037.PubMedCrossRefGoogle Scholar
  49. 49.
    Cai CZ, Han LY, Ji ZL et al. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 2003; 31(13):3692–3697.PubMedCrossRefGoogle Scholar
  50. 50.
    Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: Applications of AutoDock. J Mol Recognit 1996; 9(1):1–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Jenwitheesuk E, Samudrala R. Identifying inhibitors of the SARS coronavirus proteinase. Bioorg Med Chem Lett 2003; 13(22):3989–3992.PubMedCrossRefGoogle Scholar
  52. 52.
    Jenwitheesuk E, Samudrala R. Virtual screening of HIV-1 protease inhibitors against human cytomegalovirus protease using docking and molecular dynamics. AIDS 2005; 19(5):529–531.PubMedCrossRefGoogle Scholar
  53. 53.
    Jenwitheesuk E, Wang K, Mittler JE et al. PIRSpred: A web server for reliable HIV-1 protein-inhibitor resistance/susceptibility prediction. Trends Microbiol 2005; 13(4): 150–151.PubMedCrossRefGoogle Scholar
  54. 54.
    Jenwitheesuk E, Samudrala R. Identification of potential multitarget antimalarial drugs. JAMA 2005; 294(12):1490–1491.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Peter J. Myler
    • 1
  1. 1.Seattle Biomedical Research InstituteWashingtonUSA

Personalised recommendations