Arsenite Resistance in Leishmania and Possible Drug Targets

  • Gaganmeet Singh
  • K. G. Jayanarayan
  • Chinmoy S. Dey
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 625)


Parasitic infections are of enormous public health importance. Leishmaniasis is currently regarded as the second-most dreaded parasitic disease after malaria (WHO). Visceral leishmaniasis or kala-azar, caused by Leishmania donovani, is the most fatal form of leishmaniasis afflicting millions of people worldwide. No vaccination is available against leishmaniasis and fast spreading drug resistance in these parasitic organisms is posing a major medical threat. All these emphasize the need for new drugs and molecular targets along with reappraisal of existing therapeutics. Identification and characterization of cellular targets and answering the problem of drug resistance in Leishmania has always been the main thrust of protozoal research worldwide. Model drug resistance phenotypes against drugs, viz. arsenite (an antimony related metal ion, the first line of treatment against leishmaniasis), have been widely used to address and understand mechanism of drug resistance. The present discussion is an attempt to understand the different factors associated with arsenite resistance in Leishmania.


Visceral Leishmaniasis Sodium Arsenite Leishmania Donovani Antimicrotubule Agent Protozoan Parasite Leishmania 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    Russo R, Laguna F, Lopez-Velez R et al. Visceral leishmaniasis in those infected with HIV: Clinical aspects and other opportunistic infections. Ann Trop Med Parasitol 2003; 97:99–105.PubMedCrossRefGoogle Scholar
  2. 3.
    Croft SL, Coombs GH. Leishmaniasis-current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003; 19:502–508.PubMedCrossRefGoogle Scholar
  3. 4.
    Croft SL. Monitoring drug resistance in leishmaniasis. Trop Med Int Health 2001; 6:899–905.PubMedCrossRefGoogle Scholar
  4. 5.
    Oullette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: Drugs in clinic, resistance and new developments. Drug Resist Updat 2004; 7:257–66.CrossRefGoogle Scholar
  5. 6.
    Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis 2003; 2:14.PubMedCrossRefGoogle Scholar
  6. 7.
    Detke S, Katakura K, Chang KP. DNA amplification in arsenite resistant Leishmania. Exp Cell Res 1989; 180:161–170.PubMedCrossRefGoogle Scholar
  7. 8.
    Ouellette M, Hettema E, Wust D et al. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J 1991; 10:1009–1016.PubMedGoogle Scholar
  8. 9.
    Callahan HL, Beverley SM. Heavy metal resistance: A new role for P-glycoproteins in Leishmania. J Biol Chem 1991; 266:18427–30.PubMedGoogle Scholar
  9. 10.
    Sho-Tone L, Tarn C, Wang CY. Characterization of sequence changes in kinetoplast DNA maxicircles of drug-resistant Leishmania. Mol Biochem Parasitol 1992; 56:197–208.CrossRefGoogle Scholar
  10. 11.
    Prasad V, Kaur J, Dey CS. Arsenite-resistant Leishmania donovani promastigotes express an enhanced membrane P-type adenosine triphosphatase activity that is sensitive to verapamil treatment. Parasitol Res 2000; 86:661–664.PubMedCrossRefGoogle Scholar
  11. 12.
    Beverley SM. Gene amplification in Leishmania. Annu Rev Microbiol 1991; 45:417–44.PubMedCrossRefGoogle Scholar
  12. 13.
    Ouellette M, Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol 1991; 142:737–746.PubMedCrossRefGoogle Scholar
  13. 14.
    Segovia M. Leishmania gene amplification: A mechanism of drug resistance. Ann Trop Med Parasitol 1994; 88:123–30.PubMedGoogle Scholar
  14. 15.
    Schallig HD, Oskam L. Molecular biological applications in the diagnosis and control of leishmaniasis and parasite identification. Trop Med Int Health 2002; 7:641–51.PubMedCrossRefGoogle Scholar
  15. 16.
    Ouellette M, Papadopoulou B. Mechanism of drug resistance in Leishmania. Parasitol Today 1993; 9:150–153.PubMedCrossRefGoogle Scholar
  16. 17.
    Grondin K, Papadopoulou B, Ouellette M. Homologous recombination between direct repeats sequences yields P-glycoprotein containing circular amplicons in arsenite resistant Leishmania. Nucleic Acids Res 1993; 21:1895–1901.PubMedCrossRefGoogle Scholar
  17. 18.
    Detke S, Chaudhuri G, Kink JA et al. DNA amplification in tunicamycin-resistant Leishmania mexicana. Multicopies of a single 63-kilobase supercoiled molecule and their expression. J Biol Chem 1988; 263:3418–3424.PubMedGoogle Scholar
  18. 19.
    Beverley SM, Coderre JA, Santi DV et al. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell 1984; 38:431–439.PubMedCrossRefGoogle Scholar
  19. 20.
    Ouellette M, Fase-Fowler F, Borst P. The amplified H circle of methotrexate resistant Leishmania contains a novel P-glycoprotein gene. EMBO J 1990; 9:1027–1033.PubMedGoogle Scholar
  20. 21.
    Callahan HL, Beverley SM. Heavy metal resistance: A new role for P-glycoproteins in Leishmania. J Biol Chem 1991; 266:18427–30.PubMedGoogle Scholar
  21. 22.
    Papadopoulou B, Roy G, Dey S et al. Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J Biol Chem 1994; 269:11980–6.PubMedGoogle Scholar
  22. 23.
    Dey S, Papadopoulou B, Haimeur A et al. High level resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol 1994; 67:49–57.PubMedCrossRefGoogle Scholar
  23. 24.
    Grondin K, Haimeur A, Mukhopadhyay R et al. Coamplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 1997; 6:3057–3065.CrossRefGoogle Scholar
  24. 25.
    Singh AK, Liu HY, Lee ST. Atomic absorption spectrophotometric measurement of intracellular arsenite in arsenite-resistant Leishmania. Mol Biochem Parasitol 1994; 66:161–164.PubMedCrossRefGoogle Scholar
  25. 26.
    Papadopoulou B, Roy G, Dey S et al. Gene disruption of the P-glycoprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun 1996; 224:772–778.PubMedCrossRefGoogle Scholar
  26. 27.
    Dey S, Ouellette M, Lightbody J et al. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA 1996; 93:2192–2197.PubMedCrossRefGoogle Scholar
  27. 28.
    Mukhopadhyay R, Dey S, Xu N et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA 1996; 93:10383–10387.PubMedCrossRefGoogle Scholar
  28. 29.
    Kaur J, Dey CS. Putative P-glycoprotein expression in arsenite-resistant Leishmania donovani down-regulated by verapamil. Biochem Biophys Res Commun 2000; 271:615–619.PubMedCrossRefGoogle Scholar
  29. 30.
    Lin YC, Hsu JY, Chiang SC et al. Distinct overexpression of cytosolic and mitochondrial tryparedoxin peroxidases results in preferential detoxification of different oxidants in arsenite-resistant Leishmania amazonensis with and without DNA amplification. Mol Biochem Parasitol 2005; 142:66–75.PubMedCrossRefGoogle Scholar
  30. 31.
    Jayanarayan KG, Dey CS. Microtubules: Dynamics, drug interaction and drug resistance in Leishmania. J Clin Pharm Therapeut 2002; 27:313–320.CrossRefGoogle Scholar
  31. 32.
    Werbovetz KA, Brendle JJ, Sackett DL. Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol Biochem Parasitol 1999; 98:53–65.PubMedCrossRefGoogle Scholar
  32. 33.
    Croft SL. Recent developments in the chemotherapy of leishmaniasis. Trends Pharmacol Sci 1988; 9:376–381.PubMedCrossRefGoogle Scholar
  33. 34.
    Seeback T, Hemphill A, Lawson D. The Cytoskeleton of trypanosomes. Parasitol Today 1990; 6:49–52.PubMedCrossRefGoogle Scholar
  34. 35.
    Prasad V, Kumar SS, Dey CS. Resistance to arsenite modulates levels of alpha-tubulin and sensitivity to paclitaxel in Leishmania donovani. Parasitol Res 2000; 86:838–842.PubMedCrossRefGoogle Scholar
  35. 36.
    Prasad V, Dey CS. Tubulin is hyperphosphorylated on serine and tyrosine residues in arsenite-resistant Leishmania donovani promastigotes. Parasitol Res 2000; 86:876–880.PubMedCrossRefGoogle Scholar
  36. 37.
    Jayanarayan KG, Dey CS. Resistance to arsenite modulates expression of beta-and gamma-tubulin and sensitivity to paclitaxel during differentiation of Leishmania donovani. Parasitol Res 2002; 88:754–759.PubMedCrossRefGoogle Scholar
  37. 38.
    Jayanarayan KG, Dey CS. Altered expression, polymerisation and cellular distribution of alpha-/beta-tubulins and apoptosis-like cell death in arsenite resistant Leishmania donovani promastigotes. Int J Parasitol 2004; 34:915–925.PubMedCrossRefGoogle Scholar
  38. 39.
    Dumontet C. Mechanism of action and resistance to tubulin binding agents. Expert Opinion Inves Drugs 2000; 9:779–788.CrossRefGoogle Scholar
  39. 40.
    Rodionov V, Nadezhdina E, Boriy G. Centrosomal control of microtubule dynamics. Proc Natl Acad Sci USA 1999; 96:115–120.PubMedCrossRefGoogle Scholar
  40. 41.
    Margolis RL, Wilson L. Microtubule treadmilling: What goes around comes around. Bioessays 1998; 20:830–836.PubMedCrossRefGoogle Scholar
  41. 42.
    Little M, Seehaus T. Comparative analyses of tubulin sequences. Comp Biochem Physiol 1988; 90:655–670.CrossRefGoogle Scholar
  42. 43.
    Ojima I. A new paclitaxel photoaffinity analog with a 3-(4-benzoylphenyl)propanoyl probe for characterization of drug-binding sites on tubulin and P-glycoprotein. J Med Chem 1995; 38:3891–3894.PubMedCrossRefGoogle Scholar
  43. 44.
    Jayanarayan KG, Dey CS. Altered tubulin dynamics, localization and post-translational modifications in sodium arsenite resistant Leishmania donovani in response to paclitaxel, trifluralin and a combination of both and induction of apoptosis-like cell death. Parasitology 2005; 131:215–230.PubMedCrossRefGoogle Scholar
  44. 45.
    Werbovetz KA. Tubulin as an antiprotozoal drug target. Mini Rev Med Chem 2002; 2:519–529.PubMedCrossRefGoogle Scholar
  45. 46.
    Havens CG, Bryant N, Asher L et al. Cellular effects of leishmanial tubulin inhibitors on Leishmania donovani. Mol Biochem Parasitol 2000; 110:223–36.PubMedCrossRefGoogle Scholar
  46. 47.
    Wang JC. Cellular roles of DNA topoisomerases: A molecular prospective. Nat Rev Mol Cell Biol 2002; 3:430–440.PubMedCrossRefGoogle Scholar
  47. 48.
    Schneider E, Hsiang YH, Liu LF. DNA topoisomerases as antitumor drug targets. Adv Pharmacol 1991; 21:149–183.CrossRefGoogle Scholar
  48. 49.
    Heisig P. Inhibitors of bacterial topoisomerases: Mechanisms of action and resistance and clinical aspects. Planta Med 2001; 67:3–12.PubMedCrossRefGoogle Scholar
  49. 50.
    Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med 2004; 4:623–647.PubMedCrossRefGoogle Scholar
  50. 51.
    Lee ST, Tarn C, Wang CY. Characterization of sequence changes in kinetoplast DNA maxicircles of drug-resistant Leishmania. Mol Biochem Parasitol 1992; 56:197–207.PubMedCrossRefGoogle Scholar
  51. 52.
    Lee ST, Tarn C, Chang KP. Characterization of the switch of kinetoplast DNA minicircle dominance during development and reversion of drug resistance in Leishmania. Mol Biochem Parasitol 1993; 58:187–203.PubMedCrossRefGoogle Scholar
  52. 53.
    Lee ST, Liu HY, Lee SP et al. Selection for arsenite resistance causes reversible changes in minicircle composition and kinetoplast organization in Leishmania mexicana. Mol Cell Biol 1994; 14:587–596.PubMedGoogle Scholar
  53. 54.
    Pu QQ, Bezwoda WR. Alkylator resistance in human B lymphoid cell lines: (2). Increased levels of topoisomerase II expression and function in a melphalan-resistant B-CLL cell line. Anticancer Res 2000; 20:2569–22578.PubMedGoogle Scholar
  54. 55.
    Jayanarayan KG, Dey CS. Overexpression and increased DNA topoisomerase II-like enzyme activity in arsenite resistant Leishmania donovani. Microbiol Res 2003; 158:55–58.PubMedCrossRefGoogle Scholar
  55. 56.
    Singh G, Jayanarayan KG, Dey CS. Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite resistant Leishmania donovani. Mol Biochem Parasitol 2005; 141:57–69.PubMedCrossRefGoogle Scholar
  56. 57.
    Shapiro TA, Englund PT. The structure and replication of kinetoplast DNA. Annu Rev Microbiol 1995; 49:117–143.PubMedCrossRefGoogle Scholar
  57. 58.
    Larsen AK, Escargueil AE, Skladanowski A. Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 2003; 99:167–181.PubMedCrossRefGoogle Scholar
  58. 59.
    Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48:3010–3015.PubMedCrossRefGoogle Scholar
  59. 60.
    Guimond C, Trudel N, Brochu C et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 2003; 31:5886–5896.PubMedCrossRefGoogle Scholar
  60. 61.
    Drummelsmith J, Brochu V, Girard I et al. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics 2003; 2:146–155.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Gaganmeet Singh
    • 1
  • K. G. Jayanarayan
    • 2
  • Chinmoy S. Dey
    • 3
  1. 1.Department of BiotechnologyNational Institute of Pharmaceutical Education and ResearchPunjabIndia
  2. 2.Department of NeuroscienceMayo ClinicJacksonvilleUSA
  3. 3.Department of BiotechnologyNational Institute of Pharmaceutical Education and Research (NIPER), Sec. 67Punjab-160 062India

Personalised recommendations