Skip to main content

The Origin of Mercury’s Internal Magnetic Field

  • Chapter
Mercury

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 26))

  • 883 Accesses

Abstract

Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Réme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999)

    Article  ADS  Google Scholar 

  • O. Aharonson, M.T. Zuber, S. Solomon, Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004)

    Article  ADS  Google Scholar 

  • K.A. Anderson, D.E. Wilhelms, Correlation of lunar farside magnetized regions with ringed impact basins. Earth Planet. Sci. Lett. 46, 107–112 (1979)

    Article  ADS  Google Scholar 

  • J. Arkani-Hamed, Magnetization of Martian lower crust: Revisited. J. Geophys. Res. 112(E11), 5008 (2007)

    Article  Google Scholar 

  • N. Artemieva, L. Hood, B. Ivanov, Impact demagnetization of the Martian crust: Primaries versus secondaries. Geophys. Res. Lett. 32, L22204 (2005)

    Article  ADS  Google Scholar 

  • J. Aubert, Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 53–67 (2005)

    Article  MATH  ADS  Google Scholar 

  • S.I. Braginsky, P.H. Roberts, Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995)

    Article  ADS  Google Scholar 

  • D. Breuer et al., Interior evolution of Mercury. Space Sci. Rev. (2007). doi:10.1007/s11214-007-9228-9

    Google Scholar 

  • D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. (Planets) 108, 8–1 (2003)

    Google Scholar 

  • M. Buske, U.R. Christensen, (2007). Three-dimensional convection models for the thermal evolution of the martian interior (2007, in prep.)

    Google Scholar 

  • L. Carporzen, S. Gilder, R. Hart, Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005)

    Article  ADS  Google Scholar 

  • U. Christensen, J. Wicht, Numerical dynamo simulations, in Core Dynamics, Treatise on Geophysics (Elsevier, 2007)

    Google Scholar 

  • U. Christensen, P. Olson, G.A. Glatzmaier, Numerical modeling of the geodynamo: A systematic parameter study. Geophys. J. Int. 138, 393–409 (1999)

    Article  ADS  Google Scholar 

  • U.R. Christensen, A deep rooted dynamo for Mercury. Nature 444, 1056–1058 (2006)

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Article  ADS  Google Scholar 

  • U.R. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004)

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, F.H. Busse, P. Cardin, E. Dormy, S. Gibbons, G.A. Glatzmaier, Y. Honkura, C.A. Jones, M. Kono, M. Matsushima, A. Sakuraba, F. Takahashi, A. Tilgner, J. Wicht, K. Zhang, A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25–34 (2001)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, N.F. Ness, Magnetic field and interior, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (The University of Arizona Press, Tucson, 1988), pp. 494–513

    Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Rme, Tectonic implications of Mars crustal magnetism. Proc. Nat. Acad. Sci. 102, 42 (2005)

    Article  Google Scholar 

  • V. Conzelmann, Thermische Evolutionsmodelle des Planeten Merkur berechnet unter der Anwendung verschiedener Viskositätsgesetzte. Ph.D. thesis, Westfälische Wilhelms Universität Münster (1999)

    Google Scholar 

  • M. Fujimoto, W. Baumjohann, K. Kabin, R. Nakamura, J.A. Slavin, N. Terada, L. Zelenyi, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9245-8

    Google Scholar 

  • G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model resvisisted. Planet. Space Sci. 50, 757–762 (2002)

    Article  ADS  Google Scholar 

  • Glassmeier, K.-H., Grosser, J., Auster, H.-U., Constantinescu, D., Narita, Y., Stellmach, S., Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev. (2007). doi:10.1007/s11214-007-9244-9

    Google Scholar 

  • S.A. Hauk, A.J. Dombard, R.J. Phillips, S.C. Solomon, Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222, 713–728 (2004)

    Article  ADS  Google Scholar 

  • M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, A numerical study of dynamo action as a function of sperical shell geometry. Phys. Earth Planet. Interiors 236, 542–557 (2005)

    Google Scholar 

  • R. Hollerbach, On the theory of the geodynamo. Phys. Earth Planet. Interiors 98, 163–185 (1996)

    Article  ADS  Google Scholar 

  • R. Hollerbach, C.A. Jones, Influence of the Earth’s inner core on geomagnetic fluctuations and reversals. Nature 365, 541–543 (1993)

    Article  ADS  Google Scholar 

  • L.L. Hood, A. Zakharian, J. Halekas, D.L. Mitchell, R.P. Lin, M. Acuña, A.B. Binder, Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. 106, 27,825–27,839 (2001)

    ADS  Google Scholar 

  • W. Kuang, J. Bloxham, An Earth-like numerical dynamo model. Nature 389, 371–374 (1997)

    Article  ADS  Google Scholar 

  • C. Kutzner, U.R. Christensen, From stable dipolar to reversing numerical dynamos. Phys. Earth Planet. Interiors 131, 29–45 (2002)

    Article  ADS  Google Scholar 

  • C. Kutzner, U.R. Christensen, Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int. 157, 1105–1118 (2004)

    Article  ADS  Google Scholar 

  • B. Langlais, M.E. Purucker, M. Mandea, The crustal magnetic field of Mars. J. Geophys. Res. 109 (2004).

    Google Scholar 

  • V. Lesur, S. Maus, A global lithospheric magnetic field model with reduced noise level in the polar regions. Geophys. Res. Lett. 33 (2006)

    Google Scholar 

  • J.R. Lister, B.A. Buffett, The strength and efficiency of thermal and compositional convection n the geodynamo. Phys. Earth Planet. Interiors 91, 17–30 (1995)

    Article  Google Scholar 

  • J.G. Luhmann, The solar wind interaction with Venus. Space Sci. Rev. 44, 241 (1986)

    Article  ADS  Google Scholar 

  • M. Mandea, M. Purucker, Observing, modeling, and interpreting magnetic fields of the solid Earth. Surv. Geophys. 26, 415–459 (2005)

    Article  ADS  Google Scholar 

  • M. Mandea, E. Bellanger, J.-L. Le Mouël, A geomagnetic jerk for the end of 20th century? Earth Planet. Sci. Lett. 183, 369–373 (2000)

    Article  ADS  Google Scholar 

  • J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Large longitude libration of Mercury reveals a molten core. Science 316, 710–00 (2007)

    Article  ADS  Google Scholar 

  • S. Maus, M. Rother, C. Stolle, W. Mai, S. Choi, H. Lühr, D. Cooke, C. Roth, Third generation of the potsdam magnetic model of the earth (POMME). Geochem. Geophys. Geosyst. 7, 7008 (2006)

    Article  Google Scholar 

  • N.F. Ness, The magnetic field of Mercury. Phys. Earth Planet. Interiors 20, 209–217 (1979)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tofner-Clausen, S. Choi, Geophys. J. Int. 166, 67–75 (2006)

    Article  ADS  Google Scholar 

  • P. Olson, U.R. Christensen, Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006)

    Article  ADS  Google Scholar 

  • P. Olson, U. Christensen, G.A. Glatzmaier, Numerical modeling of the geodynamo: Mechanism of field generation and equilibration. J. Geophys. Res. 104, 10,383–10,404 (1999)

    ADS  Google Scholar 

  • J. Rotvig, C.A. Jones, Rotating convection-driven dynamos at low Ekman number. Phys. Rev. E 66(5), 056308 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • S.K. Runcorn, An acient lunar magnetic dipole field. Nature 253, 701–703 (1975)

    Article  ADS  Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (The University of Arizona Press, Tucson, 1988), pp. 651–666

    Google Scholar 

  • G. Siscoe, N.F. Ness, C.M. Yeates, Substorms on Mercury? J. Geophys. Res. 80, 4359 (1975)

    Article  ADS  Google Scholar 

  • T. Spohn, M.H. Acuña, D. Breuer, M. Golombek, R. Greeley, A. Halliday, E. Hauber, R. Jaumann, F. Sohl, Geophysical constraints on the evolution of Mars. Space Sci. Rev. 96, 231–262 (2001)

    Article  ADS  Google Scholar 

  • T. Spohn, F. Sohn, K. Wieczerkowski, V. Conzelmann, The interior structure of Mercury: What we know, what we expect from BepiColombo. Planet. Space Sci. 49, 1561–1570 (2001)

    Article  ADS  Google Scholar 

  • S. Stanley, J. Bloxham, W.E. Hutchison, M.T. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 341–353 (2005)

    Article  Google Scholar 

  • S. Stellmach, U. Hansen, Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70(5), 056312 (2004)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Mercury’s magnetic field: A thermoelectric dynamo? Earth Planet. Sci. Lett. 82, 114–120 (1987)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Dynamo action in a rotating spherical shell at high Rayleigh numbers. Phys. Fluids 17, 076601 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33, L10202 (2006)

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Y. Honkura, Dynamo action and its temporal variation inside the tangent cylinder in MHD dynamo simulations. Phys. Earth Planet. Interiors 140, 53–71 (2003)

    Article  ADS  Google Scholar 

  • R. Tyler, L. Mysak, J. Oberhuber, Electromagnetic fields generated by a three dimensional global ocean circulation. J. Geophys. Res. 102, 5531–5551 (1997)

    Article  ADS  Google Scholar 

  • R. Tyler, A. Maus, H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow. Science 299, 239–241 (2003)

    Article  ADS  Google Scholar 

  • B.P. Weiss, S.S. Kim, J.L. Kirschvink, R.E. Kopp, M. Sankaran, A. Kobayashi, A. Komeili, Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth Planet. Sci. Lett. 224, 73–89 (2004)

    Article  ADS  Google Scholar 

  • J. Wicht, Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Interiors 132, 281–302 (2002)

    Article  ADS  Google Scholar 

  • J. Wicht, Palaeomagnetic interpretation of dynamo simulations. Geophys. J. Int. 162, 371–380 (2005)

    Article  ADS  Google Scholar 

  • J. Wicht, P. Olson, A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem. Geophys. Geosyst. 5, 3 (2004)

    Article  Google Scholar 

  • J.-P. Williams, F. Nimmo, Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32, 97 (2004)

    Article  ADS  Google Scholar 

  • K.-K. Zhang, F.H. Busse, Finite amplitude convection and magnetic field generation in in a rotating spherical shell. Geophys. Astrophys. Fluid Dyn. 44, 33–53 (1988)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Wicht, J., Mandea, M., Takahashi, F., Christensen, U.R., Matsushima, M., Langlais, B. (2008). The Origin of Mercury’s Internal Magnetic Field. In: Balogh, A., Ksanfomality, L., von Steiger, R. (eds) Mercury. Space Sciences Series of ISSI, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77539-5_5

Download citation

Publish with us

Policies and ethics