Genomics of Almond

  • Pere Arús
  • Thomas Gradziel
  • M. Margarida Oliveira
  • Ryutaro Tao
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The evolution of the cultivated almond closely parallels in both time and place, the emergence of agrarian societies in Asia and the adjoining Mediterranean regions. Archaeological studies in present day Israel have documented the collection and use of almond by early human communities as far back as 23,000 BC (Weiss et al., 2004).


Quantitative Trait Locus Cleave Amplify Polymorphic Sequence Sweet Cherry Prunus Species Japanese Apricot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ainsley P, Collins G, and Sedgley M (2000) Adventitious shoot regeneration from leaf explants of almond (Prunus dulcis Mill.). In Vitro Cellular and Developmental Biology 36: 470–474Google Scholar
  2. Ainsley P, Collins G, and Sedgley M (2001a) Factors affecting Agrobacterium-mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.). Plant Cell Rep 76: 522–528Google Scholar
  3. Ainsley PJ, Hammerschlag FA, Bertozzi T, Collins GG, and Sedgley M (2001b) Regeneration of almond from immature seed cotyledons. Plant Cell Tiss Org Cult 67: 221–226Google Scholar
  4. Anderson MA, Cornish EC, Mau SL, Willams EG, Hoggart R, Atkinson A, Bönig I, Grego B, Simpson R, Roche PJ, Haley JD, Penschow JD, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, and Clarke AE (1986) Cloning of DNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321: 38–44Google Scholar
  5. Aranzana MJ, Carbó J, and Arús P (2003) Microsatellite variability in peach [Prunus persica (L) Batsch.]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106: 1341–1352PubMedGoogle Scholar
  6. Aranzana MJ, Howad W, and Arús P (2007) The extent of linkage disequilibrium in peach: a first approach. XII Eucarpia Symposium on Fruit Breeding and Genetics. Zaragoza (Abstract)Google Scholar
  7. Archilletti T, Lauri P, and Damiano C (1995) Agrobacterium-mediated transformation of almond leaf pieces. Plant Cell Rep 14, 267–272Google Scholar
  8. Arulsekar S, Parfitt DE, and Kester DE (1986) Comparison of isozyme variability in peach and almond cultivars. J Hered 77:272–274Google Scholar
  9. Arumuganathan K, and Earle ED (1991) Nuclear DNA content of some important plant species. Plant Molec Biol Rep 9: 208–218Google Scholar
  10. Arús P, Olarte C, Romero M, and Vargas F (1994) Linkage analysis of ten isozyme genes in F1 segregating almond progenies. J Amer Soc Hort Sci 119:339–344Google Scholar
  11. Arús P, Ballester J, Jáuregui B, Joobeur T, Truco MJ, and de Vicente MC (1998) The European Prunus mapping project: update on marker development in almond. Acta Hortic 484: 325–330Google Scholar
  12. Arús P, Howad W, and Mnejja M (2005a) Marker development and marker-assisted selection in temperate fruit trees. In: Proceedings of the International Congress “In the wake of the double helix: from the green revolution to the gene revolution”. Avenue Media, Bologna, Italy, pp 309–325Google Scholar
  13. Arús P, Yamamoto T, Dirlewanger E, and Abbott AG (2005b) Synteny in the Rosaceae. In: Plant Breed Reviews, Vol. 27. John Wiley & Sons Inc., New York, USA, pp 175–211Google Scholar
  14. Ballester J (1998) Localització i anàlisi de caràcters d’interès agronòmic de l’ametller. Universitat Autònoma de Barcelona. Ph.D. ThesisGoogle Scholar
  15. Ballester J, Bošković R, Batlle I, Arús P, Vargas F, and de Vicente MC (1998) Location of the self-incompatibility gene in the almond linkage map. Plant Breed 117: 69–72Google Scholar
  16. Ballester J, Socias i Company R, Arús P, and de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120: 268–270Google Scholar
  17. Barbazuk WB, Emrich SJ, Chen HD, Li L, and Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51: 910–918PubMedGoogle Scholar
  18. Barbé L (1993) Favoriser le renouveau de la culture de l’amandier. Arboriculture Fruitière 358: 21–31Google Scholar
  19. Barckley KK, Uratsu SL, Gradziel TM, and Dandekar AM (2006) Mutidimensional analysis of S-alleles from cross-incompatible groups of California almond cultivars. J Amer Soc Hort Sci 131:632–636Google Scholar
  20. Bartolozzi F, Warburton ML, Arulsekar S, and Gradziel TM (1998) Genetic characterization and relatedness among California almond cultivars and breeding lines detected by ramdonly amplified polymorphic DNA (RAPD) analysis. J Amer Soc Hort Sci 123: 381–387Google Scholar
  21. Bimal R, and Jha KK (1985) Role of cytokinin in shoot bud differentiation from endosperm of Prunus amygdalus Baill. J Plant Anat Morphol 2:63–66Google Scholar
  22. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, and Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedGoogle Scholar
  23. Bošković R, and Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90: 245–250Google Scholar
  24. Bošković R, Tobutt KR, Batlle I, and Duval H (1997) Correlation of stylar ribonuclease zymograms and incompatibility genotypes in almond. Euphytica 90:245–250Google Scholar
  25. Broothaerts W, Janssens GA, Proost P, and Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511PubMedGoogle Scholar
  26. Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81(1):68–71Google Scholar
  27. Campalans A, Pagès M, and Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Phys 21:633–643Google Scholar
  28. Carmona MJ, Cubas P, and Martínez-Zapater JM (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Phys 130:68–77Google Scholar
  29. Cheng JH, Han ZH, Xu XF, and Li TZ (2006) Isolation and identification of the pollen-expressed polymorphic F-box genes linked to S-locus in apple (Malus x domestica). Sex Plant Reprod 19:175–183Google Scholar
  30. Costa MS, Miguel CM, and Oliveira MM (2006) An improved selection strategy and the use of acetosyringone in shoot induction medium increase almond transformation efficiency by 100-fold. Plant Cell Tissue Organ Cult 85 :205–209Google Scholar
  31. Crossa-Raynaud P, and Grasselly C (1985) Existence de groupes d’interstérilité chez I’amandier. Options Méditerranéennes 1985-I:43–45Google Scholar
  32. Damiano C, Archilleti T, Caboni E, Lauri P, Falasca G, Mariotti D, and Ferraiolo, G (1995) Agrobacterium-mediated transformation of almond: in vitro rooting through localized infection of A. rhizogenes. Acta Hortic 392:161–169Google Scholar
  33. de Nettancourt D (2001) Incompatibility and incongruity in wild and cultvated plants. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  34. Denisov VP (1988) Almond Genetic Resources in the USSR and their use in production and breeding. Acta Hort 224: 299–306Google Scholar
  35. Dicenta F, and García JE (1993a) Inheritance of self-compatibility in almond. Heredity 70: 313–317Google Scholar
  36. Dicenta F, and García JE (1993b) Inheritance of kernel flavour in almond. Heredity 70:308–312Google Scholar
  37. Dicenta F, García JE, and Carbonell EA (1993a) Heritability of flowering, productivity and maturity in almond. J. Hortic Sci 68:113–120Google Scholar
  38. Dicenta F, García JE, and Carbonell EA (1993b) Heritability of fruit characters in almond. J. Hortic Sci 68:121–126Google Scholar
  39. Dicenta F, Martínez-Gómez P, Martinez-Pato E, and Gradziel T (2003) Screening for Aspergillus flavus resistance in almond. HortScience 38:266–268Google Scholar
  40. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, and Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31Google Scholar
  41. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, and Arús P (2004a) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Nat Acad Sci USA 101:9891–9896Google Scholar
  42. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, and Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid -- location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838Google Scholar
  43. Eduardo I, Arús P, and Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148PubMedGoogle Scholar
  44. Entani T, Iwano M, Shiba H, Che FS, Isogai A, and Takayama S (2003) Comparative analysis of the self-incompatibility (S-)locus region of Prunus mume: Identification of a pollen expressed F-box gene with allelic diversity. Genes Cells 8:203–213PubMedGoogle Scholar
  45. Felipe AJ (2000) El Almendro, I. El material vegetal., University of Zaragoza, SpainGoogle Scholar
  46. Garcia-Mas J, Messeguer R, Arús P, and Puigdomènech P (1992) The extensin from Prunus amygdalus. Plant Physiol 100: 1603–1604PubMedGoogle Scholar
  47. Felipe AJ, and Socias i Company R (1992) Almond Germplasm. HortScience 27:718, 863Google Scholar
  48. Garcia-Mas J, Messeguer R, Arús P, and Puigdomènech P (1995) Molecular characterization of cDNAs corresponding to genes expressed during almond (Prunus amygdalus) embryo development. Plant Molec Biol 27:205–210Google Scholar
  49. Ghorbel R, La-Malfa S, López MM, Petit A, Navarro L, and Peña L (2001) Additional copies of vir G from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiol Molec Plant Pathol 58:103–110Google Scholar
  50. Godini A (2000) About the possible relationship between Amygdalus webbii Spach. and Amygdalus communis L. Nucis Newsl 9:17–19Google Scholar
  51. Godini A (2002) Almond fruitfulness and role of self-fertility. Acta Hort 591:191–203Google Scholar
  52. Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, and McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810PubMedGoogle Scholar
  53. Goldsworthy A, and Street HE (1965) The carbohydrate nutrition of tomato roots: VIII. The mechanism of the inhibition by D-mannose of the respiration of excised roots. Ann Bot 29, 45–58Google Scholar
  54. Gómez-Aparisi J, Carrera M, Felipe AJ, and Socias i Company, R (2001) ‘Garnem’, ‘Monegro’ y ‘Felinem’: Nuevos patrones híbridos almendro x melocotonero resistentes a nematodos y de hoja roja para frutales de hueso. Inf Técn Econ Agrar 97:282–288Google Scholar
  55. Gradziel TM, and Wang D (1994) Susceptibility of California almond cultivars to aflatoxigenic Aspergillus flavus. HortScience 29:33–35Google Scholar
  56. Gradziel TM, and Kester DE (1994) Breeding for resistance to Aspergillus flavus in almond. Acta Hort 373:111–117Google Scholar
  57. Gradziel TM, and Kester DE (1998) Breeding for self-fertility in California almond cultivars. Acta Hort 470:109–117Google Scholar
  58. Gradziel TM, Mahoney N, and Abdallah A (2000) Aflatoxin production among almond genotypes is not related to either kernel composition or Aspergillus flavus growth rate. HortScience 34:937–939Google Scholar
  59. Gradziel TM, Martínez-Gómez P, and Dandekar AM (2001a) The use of S-allele specific PCR analysis to improve breeding efficiency for self-fertility in almond. HortScience 36: 440–440Google Scholar
  60. Gradziel TM, Martínez-Gómez P, Dicenta F, and Kester DE (2001b) The utilization of related almond species for almond variety improvement. J Am Pomol Soc 55:100–109Google Scholar
  61. Gradziel TM, and Martínez-Gómez P (2002) Shell seal breakdown in almond is associated with the site of secondary ovule abortion. J Am Soc Hort Sci 127:69–74Google Scholar
  62. Gradziel TM, Martínez-Gómez P, Dandekar A, Uratsu S, and Ortega E (2002) Multiple genetic factors control self-fertility in almond. Acta Hort 591:221–227Google Scholar
  63. Gradziel TM (2003a) Almond Species as Sources of New Genes for Peach ImprovementGoogle Scholar
  64. Gradziel TM (2003b) Interspecific hybridizations and subsequent gene introgression within Prunus subgenus. Acta Hort 622:249–255Google Scholar
  65. Grant-Downton RT, and Dickinson HG (2006) Epigenetics and its Implications for Plant Biology 2. The Epigenetic Epiphany: Epigenetics, Evolution and Beyond. Ann Bot 97:11–27PubMedGoogle Scholar
  66. Grasselly C (1972) L’Amandier; caractères morphologiques et physiologiques des variétés, modalité de leurs transmissions chez les hybrides de première génération. University of BordeauxGoogle Scholar
  67. Grasselly C (1978) Observations sur l’utilisation d’un mutant d’amandier á floraison tardive dans un programme d’hybridation Ann Amélior Plant 28:685–695Google Scholar
  68. Grasselly C, and Crossa-Raynaud P (1980) L`amandier. G.P. Maisonneuve et Larose. Paris, XII 446 ppGoogle Scholar
  69. Gur A, Semel Y, Cahaner A, and Zamir D (2004) Real Time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9:107–109PubMedGoogle Scholar
  70. Hartmann HT, Kester DE, Geneve RL, and Davies FT (2002) Plant Propagation: Principles and Practices. Prentice HallGoogle Scholar
  71. Hauagge R, Kester DE, and Asay RA (1987) Isozyme variation among California almond cultivars: I. Inheritance. J Amer Soc Hort Sci 112(4):687–693Google Scholar
  72. Herrero M, and Felipe AJ (1975) Pollinisation de ľamandier. Incompatibilité pollen-style. 2e Colloque GREMPA, Montepellier-Nimes, Septembre 1975Google Scholar
  73. Hesse CO (1975) Peaches. In: Advances in Fruit Breeding. Temperate fruits. Purdue University Press, West Lafayette, USA, pp 285–335Google Scholar
  74. Horiuchi H, Yanai K, Takagi M, Yano K, Wakabayashi E, Sanda A, Mine S, Ohgi K, and Irie M (1988) Primary strucuture of a base non-specific ribonuclease from Rhizopus niveus. J Biochem 103: 408–409PubMedGoogle Scholar
  75. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, and Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309.PubMedGoogle Scholar
  76. Howad W, and Arús P (2007) QTL analysis of blooming time in peach. XV Plant and Animal Genome Conference. San Diego.
  77. Igic B, and Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13167–13171PubMedGoogle Scholar
  78. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, and Tao R (2004) Primary strucutural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod. 16:235–243Google Scholar
  79. Ikeda K, Ushijima K, Yamane H, Tao R, Hauck NR, Sebolt AM, and Iezzoni AF (2005) Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17: 289–296Google Scholar
  80. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, and Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176Google Scholar
  81. Joobeur T (1998) Construccıón de un mapa de marcadores moleculares y análisis genético de caracteres agronómicos en Prunus. PhD thesis, Universitat de LleidaGoogle Scholar
  82. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, and Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041Google Scholar
  83. Joobeur T, Periam N, de Vicente MC, King G, and Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655PubMedGoogle Scholar
  84. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, and Main D  (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research.  BMC Bioinformatics. 5:130PubMedGoogle Scholar
  85. Kao TH, and Tsukamoto T (2004) The molecular and genetic basis of S-RNase-based self-incompatibility. Plant Cell 16 [Suppl]: S72–S83PubMedGoogle Scholar
  86. Kakui H, Tsuzuki T, Koba T, and Sassa H (2007) Polymorphism of SFBB and its use for S genotyping in Japanese pear (Pyrus pyrifolia). Plant Cell Rep 26: 1619–1625PubMedGoogle Scholar
  87. Kawata Y, Sakiyama F, and Tmaoki H (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 176: 683–697PubMedGoogle Scholar
  88. Kester DE, Gradziel TM, and Grasselly C (1991) Almonds (Prunus). In: Genetic resources of temperate fruit and nut crops. International Society for Horticultural Science, The Netherlands, pp 701–758Google Scholar
  89. Kester DE, Gradziel TM, and Micke WC (1994) Identifying pollen incompatibility groups in California almond cultivars. J Amer Soc Hort Sci 119: 106–109Google Scholar
  90. Kester DE, and Gradziel TM (1996) Almonds (Prunus). In: Fruit Breeding. John Wiley & Sons, Inc., New York, USA, pp 1–97Google Scholar
  91. Kester DE, Raddi P, and Asay R (1977a) Correlation among chilling requirements for germination, blooming and leafing in almond (Prunus amygdalus Batsch.) within and among seedling populations in almond J Am Soc Hort Sci 102: 145–148Google Scholar
  92. Kester DE, Hansche PE, Beres V, and Asay RN (1977b) Variance components and heritability of nut and kernel traits in almond. J Amer Soc Hort Soc 102: 264–266Google Scholar
  93. Kester DE, Shackel KA, Micke WC, Viveros M, and Gradziel TM (2004) Noninfectious bud failure in ‘Carmel’ almond: I. Pattern of development in vegetative progeny trees. J Amer Soc Hort Sci 129: 244–249Google Scholar
  94. Ladizinsky G (1999) On the origin of almond. Gen Resour Crop Evol 46: 143–147Google Scholar
  95. Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, and Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50: 29–72PubMedGoogle Scholar
  96. Liu CN, Li XQ, and Gelvin SB (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Molec Biol 20: 1071–1087Google Scholar
  97. Liu J, Yu J, McIntosh L, Kende H, and Zeevaart JAD (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Phys 125: 1821–1830Google Scholar
  98. López M, Mnejja M, Rovira M, Collins G, Vargas FJ, Arús P, and Batlle I (2004) Self-incompatibility genotypes in almond re-evaluated by PCR, stylar ribonucleases, sequencing analysis and controlled pollinations. Theor Appl Genet 109: 954–964PubMedGoogle Scholar
  99. López M, Mnejja M, Romero MA, Vargas FJ, Arús P, and Batlle I (2005) Use of Sf-specific PCR for early selection of self-compatible seedlings in almond breeding. Options Méditerraneeennes 63: 269–274Google Scholar
  100. López M, Vargas FJ, and Batlle I (2006) Self-(in)compatibility almond genotypes: A review. Euphytica 150: 1–16Google Scholar
  101. Ma RC, and Oliveira MM (2002) Evolution analysis of S-RNase genes from Rosaceae species. Mol Gent Genomics 267: 71–78Google Scholar
  102. Marcotrigiano M, and Gradziel TM (1997) Genetic mosaics and plant improvement. In: Plant Breed Rev, Vol. 15 pp 43–84Google Scholar
  103. Martínez-Gómez P, and Gradziel TM (2003) Sexual polyembryony in almond. Sex Plant Reprod 16: 135–139Google Scholar
  104. Martínez-Gómez P, Arulsekar S, Potter D, and Gradziel TM (2003a) Relationships among peach, almond, and related species as detected by simple sequence repeat markers. J Amer Soc Hort Sci 128: 667–671Google Scholar
  105. Martinez-Gomez P, Arulsekar S, Potter D, and Gradziel TM (2003b) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat(SSR) markers. Euphytica 131: 313–322Google Scholar
  106. Martínez-Gómez P, Rubio M, Dicenta F, and Gradziel TM (2004) Resistance to Plum Pox Virus (Dideron isolate RB3.30) in a group of California almonds and transfer of resistance to peach. J Amer Soc Hort Sci 129: 544–548Google Scholar
  107. Martins M, and Oliveira MM (2005) Cloning and characterization of NBS resistance gene candidate sequences in almond. Acta Hortic 663: 157–160Google Scholar
  108. Martins M, Sarmento D, Batlle I, Vargas F, and Oliveira MM (2001) Search for molecular markers linked to Fusicoccum tolerance in almond. Acta Hortic 577: 87–90Google Scholar
  109. Martins M, Sarmento D, Batlle I, Vargas F, and Oliveira MM (2005) Development of SCAR/CAPS markers linked to tolerance/sensitivity to Fusicoccum in almond. Options Méditerranéennes CIHEAM/IAMZ 63: 187–191Google Scholar
  110. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, and Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957PubMedGoogle Scholar
  111. McClure BA, and Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224: 233–245PubMedGoogle Scholar
  112. McCubbin AG, and Kao TH (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16: 333–364PubMedGoogle Scholar
  113. Mehra A, and Mehra PN (1974) Organogenesis and plantlet formation in vitro in almond. Bot Gazette 135: 61–73Google Scholar
  114. Miguel CM (1998) Adventitious regeneration and genetic transformation of almond (Prunus dulcis Mill.). Ph.D. Dissertation, Faculdade de Ciências, Universidade de Lisboa, PortugalGoogle Scholar
  115. Miguel CM, and Oliveira MM (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18: 387–393Google Scholar
  116. Miguel CM, Druart P, and Oliveira MM (1996) Shoot regeneration from adventitious buds induced on juvenile and adult almond (Prunus dulcis Mill.) explants. In Vitro Cellular Develop Biol-Plant 32: 148–153Google Scholar
  117. Mnejja M, Garcia-Mas J, Howad W, and Arús P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molec Ecol Notes 5: 531–535Google Scholar
  118. Mowrey D, and Werner DJ (1990) Phylogenetic relationships among species of prunus as inferred by isozyme markers. Theor Appl Genet 80: 129–133Google Scholar
  119. Niklasson M (ed.) (1989) The European almond catalogue. Alnarp, Nordic Gene BankGoogle Scholar
  120. Oliveira MM, Miguel CM, and Costa M (2008) Almond. In: Transgenics and Molecular Tailoring in Plants, Vol.4 – Temperate Fruits and Nuts. Blackwell Publishing. (in press)Google Scholar
  121. Ortega E, Boskovic RI, Sargent DJ, and Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Gen Genomics 276: 413–426Google Scholar
  122. Peace CP, Crisosto CH, and Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Molec Breed 161: 21–31Google Scholar
  123. Picañol R, Howad W, Alegre S, Batlle I, and Arús P (2007) Towards the creation of a peach-almond near-isogenic line (NIL) collection. XII Eucarpia Symposium on Fruit Breeding and Genetics. (Abstract)Google Scholar
  124. Potter D (2003) Molecular phylogenetic studies in Rosaceae. In: Plant Genome: Biodiversity and Evolution, Vol. 1, Part A: Phanerogams. Science Publishers, Inc. Enfield (SA), Plymouth (UK), pp 319–351Google Scholar
  125. Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins TP, and Xue Y (2004) The F-box protein AhSLF-S 2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16: 2307–2322PubMedGoogle Scholar
  126. Ramesh S, Kaiser B, Franks T, Collins G, and Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25: 21–828Google Scholar
  127. Rikhter AA (1969) Ways and methods of almond breeding (in Russian). Tr Gos Nikit Bot Sad 43:81–94Google Scholar
  128. Romero MA, and Vargas FJ (1981) Contribution for the knowledge of almond sensitivity to Fusicoccum amygdali Del. Options Mediterranéennes, Série Études I: 143–147Google Scholar
  129. Rosengarten F (1984) The book of edible nuts. Walker and Company, New YorkGoogle Scholar
  130. Rouhi V, Samson R, Lemeur R, and van Damme P (2007) Photosynthetic gas exchange characteristics in three different almond species during drought stress. Environ Exper Bot 59: 117–129Google Scholar
  131. Rugini E (1986) Almond. In: Handbook of Plant Cell Culture, Vol. 4. Macmillan, New York, USA, pp 574–611Google Scholar
  132. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, and Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126: 310–318Google Scholar
  133. Santos AM, Oliver MJ, Sanchez AM, Payton P, Saibo N, and Oliveira MM (2007) Adventitious Shoot Regeneration in Prunus dulcis – a Molecular Approach to the Regeneration Process. Acta Hort 738: 663–668Google Scholar
  134. Sassa H, Hirano H, and Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33: 811–814Google Scholar
  135. Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, and Ikehashi H (1996). Self-incompatibility (S) alleles of the Rosaceae encodes members of a distinct class of the T2/S rubonuclease superfamily. Mol Gen Genet 250: 547–557PubMedGoogle Scholar
  136. Sassa H, Kakui H, Miyamoto H, Suzuki M, Hanada Y, Ushijima K, Kusaba M, Hirano H, and Koba K (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S-haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175: 1869–1881PubMedGoogle Scholar
  137. Schirra M (1997) Postharvest technology and utilization of almonds. Hort Rev 20: 267–292Google Scholar
  138. Seirlis G, Mourras A, and Salesses G (1979) Tentatives de culture in vitro d’anthères et de fragments d’organes chez le Prunus. Ann Amélior Plantes 29: 145–161Google Scholar
  139. Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, and Kao TH (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429: 302–305PubMedGoogle Scholar
  140. Silva C, Garcia-Mas J, Sánchez AM, Arús P, and Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110: 959–968PubMedGoogle Scholar
  141. Silva C, Sanchez AM, and Oliveira MM (2007) Isolation of full-length cDNAs with putative functions in almond (Prunus dulcis Mill.) flowering. Acta Hort 738: 675–682Google Scholar
  142. Socias i Company R, and Felipe AJ (1988) Self-compatibility in almond: Transmission and recent advances. Acta Hort 224: 307–317Google Scholar
  143. Socias i Company R (1990) Breeding self-compatible almonds. Plant Breed Rev 8: 313–338Google Scholar
  144. Socias i Company R, Felipe AJ, and Gómez Aparisi J (1996) Genetics of late blooming in almond. Acta Hortic 484: 261–266Google Scholar
  145. Socias i Company R (1998) Fruit tree genetics at a turning point: the almond example. Theor Appl Genet 96: 588–601Google Scholar
  146. Socias i Company R (2002) The relationship of Prunus webbii and almond revisited. Nucis-Newsl 11: 17–19Google Scholar
  147. Socias i Company R, Kodad O, Alonso JM, and Gradziel TM (2008) Almond Quality: A Breeding Perspective. In: Horticultural Reviews, Vol. 34. John Wiley & Sons Inc. New York, USA, pp 197–238Google Scholar
  148. Spiegel-Roy P, and Kochba J (1981) Inheritance of nut and kernel traits in almond (Prunus amygdalus Batsch.) Euphytica 30: 167–174Google Scholar
  149. Suelves M, and Puigdomènech P (1997) Different lipid transfer protein mRNA accumulate in distinct parts of Prunus amygdalus flower. Plant Sci 129: 49–56Google Scholar
  150. Suelves M, and Puigdomènech P (1998a) Molecular cloning of the cDNA encoding for (R)-(+)- mandelinitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206: 388–393Google Scholar
  151. Suelves M, and Puigdomènech P (1998b) Specific mRNA accumulation of a gene codig for an O-methyltransferase in almond (Prunus amygdalus Batsch.) flower tissues. Plant Sci 134: 79–88Google Scholar
  152. Sung SK, and An G (1997) Molecular cloning and characterization of a MADS-box cDNA clone of the Fuji apple. Plant Cell Phys 38: 484–489Google Scholar
  153. Sung SK, Yu GH, and An G (1999) Characterization of MdMADS2 a member of the SQUAMOSA subfamily of genes, in apple. Plant Phys 120: 969–978Google Scholar
  154. Takayama S, and Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56: 467–489PubMedGoogle Scholar
  155. Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, and Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor Appl Genet 101: 344–349Google Scholar
  156. Tanksley SD, Young ND, Paterson AH, and Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. BioTechnology 7: 257–263Google Scholar
  157. Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM, and Sugiura A (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant Cell Physiol 38: 304–311PubMedGoogle Scholar
  158. Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, and Mori H (1999) Molecular typing of S-alleles trough identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Amer Soc Hort Sci 124: 224–233Google Scholar
  159. Testolin R, Messina R, Lain O, Marrazzo T, Huang G, and Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4: 459–461Google Scholar
  160. Tufts WP, and Philp GL (1922) Almond pollination. California Agric Experimental Station Bull. 35Google Scholar
  161. Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, and Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260: 261–268PubMedGoogle Scholar
  162. Ushijima K, Sassa H, Tamura M, Kusaba M, Tao R, Gradziel TM, Dandekar AM, and Hirano H (2001) Characterization of the S-locus region of almond (Prunus dulcis): Analysis of a somaclonal mutant and a cosmid contig for an S haplotype. Genetics 158: 379–386PubMedGoogle Scholar
  163. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, and Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15: 771–781PubMedGoogle Scholar
  164. Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, and Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39: 573–586PubMedGoogle Scholar
  165. Vargas FJ, Romero MA, and Batlle I (2001) Kernel taste inheritance in almond. Options Méditerr 56: 129–134Google Scholar
  166. Verde I, Quarta R, Cedrola C, and Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592: 291–297Google Scholar
  167. Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomenech P, Vargas F, and Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91: 964–971Google Scholar
  168. Walton EF, Podivinsky E, and Wu RM (2001) Bimodal pattern of floral gene expression over the two seasons that kiwifruit flowers develop. Physiol Plantarum 111: 36–404Google Scholar
  169. Wang Y, Wang X, McCubbin AG, and Kao TH (2003) Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata. Plant Mol Biol 53: 565–580PubMedGoogle Scholar
  170. Watkins R (1979) Cherry, plum, peach, apricot and almond. Prunus spp. In: Evolution of crop plants. Longman, London, pp 242–247Google Scholar
  171. Weiss E, Wetterstrom W, Nadel D, and Bar-Yosef O (2004) The broad spectrum revisited:evidence from plant remains. Proc Natl Acad Sci USA 101: 9551–9555PubMedGoogle Scholar
  172. Xie H, Sui Y, Chang FQ, and Xu Y (2006) SSR allelic variation in almond (Prunus dulcis Mill.) Theor Appl Genet 112: 366–372PubMedGoogle Scholar
  173. Xu Y, Ma RC, Hua X, Liu JT, and Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47: 1091–1104PubMedGoogle Scholar
  174. Xue Y, Carpenter R, Dickinson HG, and Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8: 805–814PubMedGoogle Scholar
  175. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, and Sasaki T (2000) Hd1, a major photoperiod sensitive quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473–2483PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pere Arús
    • 1
  • Thomas Gradziel
    • 2
  • M. Margarida Oliveira
    • 1
  • Ryutaro Tao
    • 2
  1. 1.IRTACentre de Recerca en Agrigenòmica CSIC-IRTA-UABSpain
  2. 2.IRTAUniversity of California, Department of Plant ScienceUSA

Personalised recommendations