Genomics Opportunities, New Crops and New Products

  • Nahla Bassil
  • Kimberly Lewers
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The ultimate goal of genomic technology is to benefit consumers by generating new or better crops and products. Such technology transfer is possible through direct transfer of genes that encode desirable traits. The two techniques that effect gene transfer include transgenic biotechnology and marker assisted selection (MAS) using molecular markers associated with economically important traits. In the Rosaceae family, durable genetic resistance to Plum pox virus (PPV, genus Potyvirus) that causes the devastating sharka disease of Prunus has been demonstrated through genetic engineering (reviewed by Scorza and Ravelonandro, 2006). However, due to limited public acceptance of transgenic fruits, the most immediately deployable technologies will emphasize the development of new and improved Rosaceae germplasm and possible products obtained through MAS, if any. In this chapter we will also discuss the potential trends in genomic technology transfer to breeding programs and provide an overview of marker applications in crop species discussed later in this volume.


Powdery Mildew Marker Assisted Selection Root Knot Nematode Sweet Cherry Sour Cherry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baenziger PS (2006) Plant breeding training in the U.S.A. HortScience 41: 28–29Google Scholar
  2. Bergougnoux V, Claverie M., Bosselut N, Lecouls AC , Salesses G, Dirlewanger E, Esmenjaud D (2002) Marker-assisted selection of the Ma gene from Myrobalan plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hort 592: 223–228Google Scholar
  3. Bošković RI, Wolfram B, Tobutt KR, Cerović R, Sonneveld T (2006) Inheritance and interactions of incompatibility alleles in the tetraploid sour cherry. Theor Appl Gen 112: 315–326CrossRefGoogle Scholar
  4. Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Gen 106: 703–714Google Scholar
  5. Bus et al., 2008a Chapter 20 This bookGoogle Scholar
  6. Bus V, Chagné D, Bassett H, Bowatte D, Calenge F, Celton JM, Durel CE, Malone M, Patocchi A, Ranatunga A, Rikkerink E, Tustin D, Zhou J, Gardiner S (2008b) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4: 223–236Google Scholar
  7. Byrne D (2007) Molecular marker use in perennial plant breeding. Acta Hort 751: 163–167Google Scholar
  8. Caffier V, and Parisi L (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breeding 126: 319–322CrossRefGoogle Scholar
  9. Cevik V, and King G (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Gen 105: 346–354Google Scholar
  10. Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Gen 93: 222–227CrossRefGoogle Scholar
  11. Cheng J, Han Z, Xu X, Li T (2006) Isolation and identification of the pollen-expressed polymorphic F-box genes linked to the S-locus in apple (Malus × domestica). Sex Plant Reprod 19: 175–183CrossRefGoogle Scholar
  12. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Gen 109: 1318–1327CrossRefGoogle Scholar
  13. Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141: 181–190CrossRefGoogle Scholar
  14. Costa F, Van de Weg W, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7 , a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4: 575–586CrossRefGoogle Scholar
  15. Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Gen 92: 873–879CrossRefGoogle Scholar
  16. Fargette M, Phillips MS, Block VC, Waugh R, Trudgill DL (1996) An RFLP study of relationships between species, populations, and resistance breaking lines of tropical Meloidogyne. Fundam Appl Nematol 19: 193–200Google Scholar
  17. Frey K (1996) National plant breeding study: I. Human and financial resources devoted to plant breeding research and development in the United States in 1994. Spec. Rep. No. 98. Iowa Agric. Home Economics Exp. Stn., Ames, IAGoogle Scholar
  18. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Genome mapping and molecular breeding, vol. 4. Kole C (ed) Springer, Heidelberg, pp 1–62Google Scholar
  19. Guner N, and Wehner TC (2003) Survey of U.S. land-grant universities for training of plant breeding students. Crop Sci 43: 1938–1944CrossRefGoogle Scholar
  20. Halász J, Hegedüs A, Hermán R, Stefanovits-Bányai É, Pedryc A (2005) New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145: 57–66CrossRefGoogle Scholar
  21. Hancock JF and Stuber C (2008) Sustaining public plant breeding to meet future national needs. HortScience 43: 298–299Google Scholar
  22. Hauck NR, Ikeda K, Tao R, Iezzoni AF (2006a) The mutated S1-haplotype in sour cherry has an altered S-haplotype-specific F-box protein gene. J Hered 97: 514–520Google Scholar
  23. Hauck NR, Yamane H, Tao R, Iezzoni AF (2006b) Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172: 1191–1198Google Scholar
  24. Haymes KM, Van de Weg WE, Arens P, Maas JL, Vosman B, Nijs APMD (2000) Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and North American strawberry genotypes. J Am Soc Hort Sci 125: 330–339Google Scholar
  25. Hemmat M, Weeden NF, Conner PJ, and Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hort Sci 122: 347–349Google Scholar
  26. Hokanson SC, and Maas JL (2001) Strawberry biotechnology. Plant Breed Rev 21: 139–180Google Scholar
  27. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck N, Nakano R, Sassa H, Iezzoni A, Kohn J, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16: 235–243CrossRefGoogle Scholar
  28. Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Scientia Hort 107: 254–258CrossRefGoogle Scholar
  29. Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M (2003) Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Gen 106: 1266–1272Google Scholar
  30. James C, Clarke J, Evans K (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Gen 110: 175–181CrossRefGoogle Scholar
  31. Janick J, Cummins JN, Brown SK, and Hemmat M (1996) Apples. In: Fruit Breeding, Tree and Tropical Fruits. J Janick and JN. Moore, eds. Wiley, New York, pp. 1–77Google Scholar
  32. Jie Q, Shupeng G, Jixiang Z, Manru G, Huairui S (2005) Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis. Biotechnol Lett 27: 1205–1209CrossRefPubMedGoogle Scholar
  33. Kakui H, Tsuzuki T, Koba T, Sassa H (2007) Polymorphism of SFBB –γ and its use for S genotyping in Japanese pear (Pyrus pyrifolia). Plant Cell Report 26: 1619–1625CrossRefGoogle Scholar
  34. Kao T-h, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16: S72–83CrossRefPubMedGoogle Scholar
  35. Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50: 568–577CrossRefPubMedGoogle Scholar
  36. Kim MY, Song KJ, Hwang J-H, Shin Y-U, and Lee HJ (2003) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill). J Hort Sci Biotechnol 78: 512–517Google Scholar
  37. Kim H-T, Hirata Y, Kim H-J, Nou I-S (2006) The presence of a new S-RNase allele (S10) in Asian pear (Pyrus pyrifolia (Burm; Nakai)). Genet Resour Crop Evol 53: 1375–1383CrossRefGoogle Scholar
  38. Kim HT, Kakui H, Koba T, Hirata Y, Sassa H (2007) Cloning of a new S-RNase and development of a PCR-RFLP system for determination of the S-genotypes of Japanese pear. Breed Sci 57: 159–164CrossRefGoogle Scholar
  39. Lapins KO (1976) Inheritance of compact growth type in apple. J Am Soc Hort Sci 101: 133–135Google Scholar
  40. Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (2004) Marker-assisted selection of Prunus rootstocks for the wide-spectrum root-knot nematode resistance conferred by the Ma gene from Myrobalan plum (Prunus cerasifera). Mol Breed 13: 113–124CrossRefGoogle Scholar
  41. Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Gen 99: 328–335CrossRefGoogle Scholar
  42. Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Gen 95: 1325–1334CrossRefGoogle Scholar
  43. Lerceteau-Köhler E, Guérin G, Denoyes-Rothan B (2005) Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theor Appl Gen 111: 862–870CrossRefGoogle Scholar
  44. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Gen 106: 1497–1508Google Scholar
  45. López M, Vargas F, Batlle I (2006) self-(in)compatibility almond genotypes: A review. Euphytica 150: 1–16CrossRefGoogle Scholar
  46. Luby JJ and Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36: 872–879Google Scholar
  47. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Gen 97: 60–73CrossRefGoogle Scholar
  48. Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21: 448–458CrossRefPubMedGoogle Scholar
  49. McCubbin AG, Kao T-h (2000) Molecular recognition and response in pollen and pistil interactions. Ann Rev Cell Develop Biol 16: 333–364CrossRefGoogle Scholar
  50. Melounová M, Vejl P, Sedlák P, Blažek J, Zoufalá J, Milec Z, and Blažková H (2005) Alleles controlling apple skin colour and incompatibility in new Czech apple varieties with different degrees of resistance against Venturia inaequalis CKE. Plant Soil Environ 51: 65–73Google Scholar
  51. Moriya Y, Yamamoto K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T (2007) Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles. Plant Cell Report 26: 345–354CrossRefGoogle Scholar
  52. Morris M, Edmeades G, and Pehu E (2006) Building capacity for international plant breeding: What roles for the public and private sectors? HortScience 41: 30–39Google Scholar
  53. Ogundiwin EA, Peace CP, Nicolet M, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genomes 4: 543–554CrossRefGoogle Scholar
  54. Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH (2007) Molecular genetic dissection of chilling injury in peach fruit. Acta Hort 738: 633–638Google Scholar
  55. Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T (2008) Deletion of a 236 kb region around S4- RNase in a stylar-part mutant S4 sm -haplotype of Japanese pear. Plant Mol Biol 66: 389–400CrossRefPubMedGoogle Scholar
  56. Oraguzie NC, Volz RK, Whitworth CJ, Bassett HCM, Hall AJ, Gardiner SE (2007) Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol Technol 44: 212–219CrossRefGoogle Scholar
  57. Ortega E, Bošković R, Sargent D, Tobutt K (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276: 413–426CrossRefPubMedGoogle Scholar
  58. Peace et al. (2008) Chapter 3- This bookGoogle Scholar
  59. Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, and Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hort 738: 639–646Google Scholar
  60. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for Freestone and Melting Flesh in peach. Mol Breed 16: 21–31CrossRefGoogle Scholar
  61. Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3: 311–317CrossRefGoogle Scholar
  62. Plant Research International, P.O. Box 16, 6700 AA Wageningen, The NetherlandsGoogle Scholar
  63. Romero C, Vilanova S, Burgos L, Martínez-Calvo J, Vicente M, Llácer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification ofS-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56: 145–157CrossRefPubMedGoogle Scholar
  64. Rubio-Cabetas MJ, Lecouls AC, Salesses G, Bonnet A, Minot JC, Voisin R, Esmenjaud D (1998) Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breed 117: 567–571CrossRefGoogle Scholar
  65. Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, Bonnet A (1999) Response of the Ma genes from Myrobalan plum to Meloidogyne hapla and M. mayaguensis. HortScience 34: 1266–1268Google Scholar
  66. Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: Multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175: 1869–1881CrossRefPubMedGoogle Scholar
  67. Scorza R, and Ravelonandro M (2006) Control of Plum pox virus through the use of genetically modified plants. EPPO Bullet 36: 337–340CrossRefGoogle Scholar
  68. Sicard O, Marandel G, Soriano J, Lalli D, Lambert P, Salava J, Badenes M, Abbott A, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4: 359–365CrossRefGoogle Scholar
  69. Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Gen 107: 1059–1070CrossRefGoogle Scholar
  70. Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17: 37–51CrossRefPubMedGoogle Scholar
  71. Soriano J, Vera-Ruiz E, Vilanova S, Martínez-Calvo J, Llácer G, Badenes M, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4: 391–402CrossRefGoogle Scholar
  72. Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes: Online firstGoogle Scholar
  73. Tan XF, Zhang L, Wuyun TN, Yuan DY, Cao YF, Jiang AF, Liang WJ, Zeng YL (2007) Molecular identification of two new self-incompatible alleles (S-alleles) in Chinese pear (Pyrus bretschneideri). Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Ba 33(1): 61–70Google Scholar
  74. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Gen 113: 743–752CrossRefGoogle Scholar
  75. Tian Y-K, Wang C-H, Zhang J-S, James C, Dai H-Y (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145: 181–188CrossRefGoogle Scholar
  76. Tsukamoto T, Hauck N, Tao R, Jiang N, Iezzoni A (2006) Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus). Plant Mol Biol 62: 371–383CrossRefPubMedGoogle Scholar
  77. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibilityl of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15: 771–781CrossRefPubMedGoogle Scholar
  78. Van de Weg WE, Voorrips RE, Finkers R, Kodde LP, Jansen J and Bink MCAM (2004) Pedigree genotyping: A new pedigree-based approach of QTL identification and allele mining. Acta Hort 663: 45–50Google Scholar
  79. Xu ML, and Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162: 1995–2006PubMedGoogle Scholar
  80. Yamamoto T, and Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Scientia Hort 96: 81–90CrossRefGoogle Scholar
  81. Yamane H, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2003a) Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54: 2431–2437Google Scholar
  82. Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003b) A pollen-expressed gene for a novel protein with an f-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44: 764–769Google Scholar
  83. Zhang SL, Huang SX, Kitashiba H, Nishio T (2007) Identification of S-haplotype-specific F-box gene in Japanese plum (Prunus salicina Lindl.). Sex Plant Reprod 20: 1–8CrossRefGoogle Scholar
  84. Zhebentyayeva T, Reighard G, Lalli D, Gorina V, Krška B, Abbott A (2008) Origin of resistance to plum pox virus in apricot: what new AFLP and targeted SSR data analyses tell. Tree Genet Genomes 4: 403–417CrossRefGoogle Scholar
  85. Zhu Y, Barritt B (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus ×domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4: 555–562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nahla Bassil
    • 1
  • Kimberly Lewers
    • 1
  1. 1.USDA ARS, National Clonal Germplasm RepositoryCorvallisUSA

Personalised recommendations