Application of Genetic Markers in Rosaceous Crops

  • Vincent G.M. Bus
  • Daniel Esmenjaud
  • Emily Buck
  • François Laurens
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Genetic markers can assist plant breeders to improve their breeding outcomes in several ways, from assessing genetic diversity of the germplasm used in breeding to marker assisted selection (MAS) to variety protection (Charcosset and Moreau, 2004). Major investments in genomic research over the last 15 years have made a wealth of markers available to breeders for MAS, sometimes called marker assisted breeding (MAB), for traits of interest in the different rosaceous crops.


Quantitative Trait Locus Simple Sequence Repeat Marker Marker Assisted Selection Root Knot Nematode Fusarium Head Blight Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott AG, Arús P, and Scorza R (2007) Peach. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fuits and Nuts. Springer, Berlin, pp 137–156Google Scholar
  2. Albani MC, Battey NH, and Wilkinson MJ (2004) The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theor Appl Genet 109: 571–579PubMedCrossRefGoogle Scholar
  3. Aldwinckle HS, Gustafson HL, and Lamb RC (1976) Early determination of genotypes for apple scab resistance by forced flowering of test cross progenies. Euphytica 25: 185–191CrossRefGoogle Scholar
  4. Alexander HM, and Bramel-Cox PJ (1991) Sustainability of genetic resistance. In: Sleper DA, Barker TC, Bramel-Cox PJ (eds) Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods. Crop Science Society of America, Madison, WI, pp 11–27Google Scholar
  5. Andersen JR, and Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8: 554–560PubMedCrossRefGoogle Scholar
  6. Arús P, and Gardiner S (2007) Genomics for improvement of rosaceae temperate tree fruit. In: Varshney R, Tuberosa R (eds) Genomics-Assisted Crop Improvement. Springer, New York, pp 307–357Google Scholar
  7. Baldi P, Patocchi A, Zini E, Toller C, Velasco R, and Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109: 231–239PubMedCrossRefGoogle Scholar
  8. Barckley KK, Uratsu SL, Gradziel TM, and Dandekar AM (2006) Multidimensional analysis of S-alleles from cross-incompatible groups of California almond cultivars. J Amer Soc Hort Sci 131: 632–636Google Scholar
  9. Barritt BH, Crandall PC, and Bristow PR (1979) Breeding for root-rot resistance in red raspberry. J Am Soc Hort Sci 104: 92–94Google Scholar
  10. Batley J, and Edwards D (2007) SNP applications in plants. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association Mapping in Plants. Springer, New York, pp 95–102CrossRefGoogle Scholar
  11. Bink M, Voorrips R, van de Weg E, and Jansen H (2008) Statistical tools for QTL mapping in multiple, pedigreed populations. Acta Hort (in press)Google Scholar
  12. Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel C-E, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, and Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4: 233–236CrossRefGoogle Scholar
  13. Bus V, Ranatunga C, Gardiner S, Bassett H, and Rikkerink E (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding program. Acta Hort 538: 541–547Google Scholar
  14. Bus V, van de Weg WE, Durel C-E, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek M, Schouten H, and Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hort 663: 57–62Google Scholar
  15. Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, and Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595: 43–47Google Scholar
  16. Bus VGM (2006) Gene-for-gene relationships and durable resistance to apple scab. In: Mercer CF (ed) Proceedings of 13th Australasian Plant Breeding Conference. Breeding for Success: Diversity in Action. Christchurch, NZ, pp 1159–1169Google Scholar
  17. Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, and Plummer KM (2005a) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166: 1035–1049Google Scholar
  18. Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens F, Meulenbroek EJ, Plummer K (2005b) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Molec Breed 15: 103–116Google Scholar
  19. Bus V, Rikkerink E, Aldwinckle HS, Caffier V, Durel C-E, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B, Luby J, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, and van de Weg E. (2008) A proposal for the nomenclature of Venturia inaequalis races. Acta Hort (in press)Google Scholar
  20. Byrne DH (2003) Marker-assisted selection. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of Rose Science. Elsevier, Oxford, UK, pp 350–357Google Scholar
  21. Byrne DH (2007) Molecular marker use in perennial plant breeding. Acta Hort 751: 163–167Google Scholar
  22. Calenge F, Drouet D, Denancé C, van de Weg WE, Brisset MN, Paulin J-P, and Durel C-E (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111: 128–135Google Scholar
  23. Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, and Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight ioslates of Venturia inaequalis. Phytopathology 94: 370–379PubMedCrossRefGoogle Scholar
  24. Calenge F, van der Linden CG, van de Weg E, Schouten HJ, van Arkel G, Denancé C, and Durel C-E (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110: 660–668Google Scholar
  25. Campalans A, Pages M, and Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol 21: 633–643PubMedGoogle Scholar
  26. Celton J-M, Tustin DS, Chagné D, and Gardiner SE (2008) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes (in press)Google Scholar
  27. Cevik V, and King GJ (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105: 346–354PubMedCrossRefGoogle Scholar
  28. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, and Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8: Article 212PubMedCrossRefGoogle Scholar
  29. Chaïb J, Lecomte L, Buret M, and Causse M (2006) Stability over genetic background, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112: 934–944PubMedCrossRefGoogle Scholar
  30. Charcosset A, and Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137: 81–94CrossRefGoogle Scholar
  31. Cheng FS, Brown SK, Weeden NF, and Aldwinckle HS (1995) Molecular markers for scab resistance from ‘Nova Easygro’ apple. Plant Genome III Conference, San Diego, CA.
  32. Chevalier M, Lespinasse Y, and Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40: 249–256CrossRefGoogle Scholar
  33. Christopher M, Mace E, Jordan D, Rodgers D, McGowan P, Delacy I, Banks P, Sheppard J, Butler D, and Poulsen D (2007) Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica 154: 307–316CrossRefGoogle Scholar
  34. Cipriani G, Lot G, Huang WG, Mazzarro MT, Peterlunger E, and Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species application in Prunus. Theor Appl Genet 99: 65–72CrossRefGoogle Scholar
  35. Clarke JB, Sargent DJ, Bošković RI, Belaj A, and Tobutt KR (2008) A cherry map from the inter-specific cross Prunus avium ‘Napolean’ x P. nipponica based on microsatellite, gene-specific and isozyme markers. Tree Genet Genomes DOI 10.1007/s11295-008-0166-9Google Scholar
  36. Claverie M, Bosselut N, Lecouls AC, Voisin R, Poizat C, Dirlewanger E, Kleinhentz M, Lafargue B, Laigret F, and Esmenjaud D (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108: 765–773Google Scholar
  37. Claverie M, Dirlewanger E, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, and Esmenjaud D (2004b) High resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109: 1318–1327Google Scholar
  38. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R., Kleinhentz M, Lafargue B, Rosso MN, Abad P, Chalhoub C, and Esmenjaud D (2006) The Ma gene from Myrobalan plum (Prunus cerasifera Ehr.) conferring a complete-spectrum resistance to root-knot nematodes (Meloidogyne spp.) is a member of a TIR-NBS-LRR gene cluster. 28th Symposium of the European Society of Nematology, Blagoevgrad, Bulgaria, 5–9 June 2006Google Scholar
  39. Coart E, Van Glabeke S, De Loose M, Larsen AS, and Roldán-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Molec Ecol 15: 2171–2182CrossRefGoogle Scholar
  40. Collard BCY, Jahufer MZZ, Brouwer JB, and Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169–196CrossRefGoogle Scholar
  41. Consortium TWTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678CrossRefGoogle Scholar
  42. Cook M, and Gardiner S (2004) Development of a fully automated system to extract DNA from difficult plant tissues for genomics research. Plant & Animal Genome XII, San Diego, CA.
  43. Cook R, and Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and Practice of Nematode Control in Crops. Academic Press, Sydney, pp 179–231Google Scholar
  44. Costa F, Alba R, Soglio V, Schouten HJ, Gianfranceschi L, Costa G, Sansavini S, and Giovannoni J (2008a) Comparative translational genomics to target candidate genes impacting on fruit quality in apple (Malus x domestica Borkh.). Acta Hort (in press)Google Scholar
  45. Costa F, van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi, and Sansavini S (2008b) Map position and functional allelic diversity of Md-Exp7 , a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586Google Scholar
  46. Crowe A (1975) ‘Nova Easgro’ apple. Fruit Varieties J 29: 26Google Scholar
  47. Daubeny H, Pepin HS, and Levesque CA (1992) Breeding for resistance to aphids and root rot in red raspberry. Acta Hort 317: 187–190Google Scholar
  48. Davis TM, Denoyes-Rothan B, and Lerceteau-Köhler E (2007) Strawberry. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fuits and Nuts. Springer, Berlin, pp 189–205Google Scholar
  49. Dayteg C, Tuveson S, Merker A, Jahoor A, and Kolodinska-Brantestam A (2007) Automation of DNA marker analysis for molecular breeding in crops: practical experience of a plant breeding company. Plant Breed 126: 410–415CrossRefGoogle Scholar
  50. Dayton DF, Shay JR, and Hough LF (1953) Apple scab resistance from R12740-7A, a Russian apple. Proc Am Soc Hort Sci 62: 334–340Google Scholar
  51. Dayton DF, and Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hort Sci 92: 89–94Google Scholar
  52. Dekkers JC, and Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3: 22–32PubMedCrossRefGoogle Scholar
  53. Denoyes B, and Baudry A (1995) Species identification and pathogenicity study of French Collentotrichum strains isolated from strawberry using morphological, and cultural characteristics. Phytopathology 85: 53–57CrossRefGoogle Scholar
  54. Denoyes-Rothan B, Guérin G, Lerceteau-Köhler E, and Risser G (2005) Inheritance of a race-specific resistance to Colletotrichum acutatum in Fragaria × ananassa. Phytopathology 95: 405–412PubMedCrossRefGoogle Scholar
  55. Denoyes-Rothan B, Lerceteau-Köhler E, Guérin G, Bosseur S, Bariac J, Martin E, and Roudeillac P (2004) QTL Analysis for resistances to Colletotrichum acutatum and Phytophthora cactorum in octoploid strawberry (Fragaria × ananassa). Acta Hort 663: 147–151Google Scholar
  56. Dilworth E, and Frey JG (2000) A rapid method for high throughput DNA extraction from plant material for PCR amplification. Plant Molec Biol Rep 18: 61–64CrossRefGoogle Scholar
  57. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, and Esmenjaud D (2004a) Microsatellite genetic linkage maps of Myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109: 827–838Google Scholar
  58. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS 101: 9891–9896Google Scholar
  59. Dirlewanger E, Kleinhentz M, Xiloyannis C, Dichio B, Claverie M, Bosselut N, Howad W, Voisin R, Gomez-Aparisi J, Rubio-Cabetas MJ, Poessel JL, Di Vito M, Arús P, Laigret F, and Esmenjaud D (2004c) Breeding for a new generation of Prunus rootstocks based on marker-assisted selection: a European initiative. Acta Hort 663: 829–833Google Scholar
  60. Dirlewanger E, Claverie J, Wünsch A, and Iezzoni AE (2007) Cherry. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fuits and Nuts. Springer, Berlin, pp 103–118Google Scholar
  61. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, and Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3: 239–249CrossRefGoogle Scholar
  62. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, and Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Molec Breed 14: 407–418CrossRefGoogle Scholar
  63. Dreher K, Khairallah M, Ribaut J-M, and Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Molec Breed 11: 221–234CrossRefGoogle Scholar
  64. Duncan JM, and Cooke DEL (2002) Work on raspberry root rot at the Scottish Crop Research Institute. Acta Hort 585: 271–277Google Scholar
  65. Dunemann F, Kahnau R, and Schmidt H (1994) Genetic relationships in Malus evaluated by RAPD ‘fingerprinting’ of cultivars and wild species. Plant Breed 113: 150–159CrossRefGoogle Scholar
  66. Durel C-E, Parisi L, Laurens F, van de Weg WE, Liebhard R, and Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46: 224–234PubMedCrossRefGoogle Scholar
  67. Edward KJ, Poole RL, and Barker GL (2008) SNP discovery in plants. In: Henry RJ (ed) Plant Genotyping II, SNP Technology. CAB International, Wallingford, UK, pp 1–29CrossRefGoogle Scholar
  68. Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, and Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49: 1238–1245PubMedCrossRefGoogle Scholar
  69. Esmenjaud D (2004) Breeding for durable resistance to RKN in perennials: a European initiative for Prunus rootstocks. In: Cook R, Hunt DJ (eds) Nematology Monographs and Perspectives 2. Proceedings International Congress of Nematology IV, Tenerife, Spain, 2002. Brill Press, Leiden, Netherlands, pp 279–287Google Scholar
  70. Esmenjaud D, and Dirlewanger E (2007) Plum. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fruits and Nuts. Springer, Berlin, pp 119–136Google Scholar
  71. Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Genet 92: 873–879CrossRefGoogle Scholar
  72. Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter- and intraspecific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hortic Sci 119: 94–100Google Scholar
  73. Esmenjaud D, Minot JC, Voisin R, Pinochet J, Simard MH, and Salesses G (1997) Differential response to root-knot nematodes in Prunus species and correlative genetic implications. J Nematol 29: 370–380PubMedGoogle Scholar
  74. Esmenjaud D, Scotto La Massese C, Salesses G. Minot JC, and Voisin R (1992) Method and criteria to evaluate resistance to Meloidogyne arenaria in Prunus cerasifera Ehr. Fund Appl Nematol 15: 385–389Google Scholar
  75. Esmenjaud D, Voisin R, Van Ghelder C, Bosselut N, Lafargue B, Di Vito M, Dirlewanger E, Poëssel JL, and Kleinhentz M (2008) Genetic dissection of resistance to root-knot nematodes Meloidogyne spp. in plum, peach, almond and apricot, from various segregating interspecific Prunus progenies. Tree Genet Genomes (in press)Google Scholar
  76. Finn CE, Moore PP, and Kempler C (2005) Rasberry cultivars: what’s new? What’s succeeding? Where are breeding programs heading? Acta Hort 777: 33–40Google Scholar
  77. Flachowsky H, Peil A, Sopanen T, Elo A, and Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breed 126: 137–145CrossRefGoogle Scholar
  78. Flaishman MA, Cohen Y, Freiman A, Golubowicz S, Korchinsky R, Shlizerman L, and Yablowicz Z (2008) Development of a fast and compact breeding system in pear by the use of juvenile-free transgenic plants. Act Hort (in press)Google Scholar
  79. Folta KM, and Davies TM (2006) Strawberry genes and genomics Critic Rev Plant Sci 25: 399–415CrossRefGoogle Scholar
  80. Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, and Hokanson SC (2003) Collection, maintenance, characterization, and utilization of wild apples of Central Asia. Hort Rev 29: 1–61Google Scholar
  81. Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, and Smith KF (2008) Functionally associated molecular genetic markers for temperate pasture plant improvement. In: Henry RJ (ed) Plant Genotyping II, SNP Technology. CAB International, Wallingford, UK, pp 154–186CrossRefGoogle Scholar
  82. Freeman S (2008) Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. Hort Sci 43: 66–68Google Scholar
  83. Frey JE, Frey B, Sauer C, and Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123: 554–557CrossRefGoogle Scholar
  84. Frisch M, and Melchinger AE (2001) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41: 1716–1725CrossRefGoogle Scholar
  85. Gao Z, van de Weg W (2006) The Vf gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151: 123–133CrossRefGoogle Scholar
  86. Gardiner S, Bus V, Volz R, and Bassett H (2006) Marker assisted selection in apple breeding internationally. In: Mercer CF (ed) Proc 13th Australasian Plant Breeding Conference. Breeding for Success: Diversity in Action. Christchurch, NZ, pp 681–686Google Scholar
  87. Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, and Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622: 141–151Google Scholar
  88. Gardiner SE, Bassett HCM, Madie C, and Noiton DAM (1996a) Isozyme, randomly amplified polymorphic DNA (RAPD), and restriction fragment-length polymorphism (RFLP) markers used to deduce a putative parent for the ‘Braeburn’ apple. J Am Soc Hort Sci 121: 996–1001Google Scholar
  89. Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, and Rikkerink EHA (1996b) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93: 485–493Google Scholar
  90. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, and Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fruits and Nuts. Springer, Berlin, pp 1–62Google Scholar
  91. Gerlach HK, and Stosser R (1998) Kettenreaktionen im Obstbau: Sortenidentifizierung mit Hilfe des DNA-Fingerprinting. Erwerbsobstbau 40: 103–106Google Scholar
  92. Gessler C (1989) Genetics of the interaction Venturia inaequalisMalus: the conflict between theory and reality. IOBC wprs Bulletin 12(6): 168–190Google Scholar
  93. Gianfranceschi L, Koller B, Seglias N, Kellerhals M, and Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93: 199–204CrossRefGoogle Scholar
  94. Gimelfarb A, and Lande R (1995) Marker-assisted selection and marker-QTL associations in hybrid populations. Theor Appl Genet 91: 522–528CrossRefGoogle Scholar
  95. Giongo L, Bergamini A, Rigatti R, and Komjanc M (2001) Marker assisted selection for scab resistant apple. Acta Hort 546: 581–589Google Scholar
  96. Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, and Mohaptra TM (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127: 131–139CrossRefGoogle Scholar
  97. Graham J, and Smith K (2002) DNA markers for use in raspberry breeding. Acta Hort 585: 51–56Google Scholar
  98. Graham J, Smith K, Tierney I, Mackenzie K, and Hackett CA (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botrytis and spur blight, rust and cane spot. Theor Appl Genet 112: 818–831PubMedCrossRefGoogle Scholar
  99. Gu WK, Weeden NF, Yu J, and Wallace DH (1995) Large-scale, cost-effective screening of PCR products in marker-assisted selection applications. Theor Appl Genet 91: 465–470CrossRefGoogle Scholar
  100. Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, and Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus x domestica Borkh.) as revealed by SSR-based fingerprinting. J Hort Sci Biotech 81 39–44Google Scholar
  101. Gupta PK, Varshney RK, Sharma PC, and Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118: 369–390CrossRefGoogle Scholar
  102. Gupta PK, Rustgi S, and Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101: 5–18PubMedCrossRefGoogle Scholar
  103. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, and Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109: 1702–1709PubMedCrossRefGoogle Scholar
  104. Han Y, Gasic K, Marron B, Beever JE, and Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89: 630–637PubMedCrossRefGoogle Scholar
  105. Han YP, and Korban SS (2008) An overview of the apple genome through BAC end sequence ananlysis. Plant Molec Biol 67: 581–588CrossRefGoogle Scholar
  106. Handoo ZA, Nyczepir AP, Esmenjaud D, van der Beek JG, Castagnone-Sereno P, Carta LK, Skantar AM, and Higgins JA (2004) Morphological, molecular and differential-host characterization of Meloidogyne floridensis n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing peach in Florida. J Nematol 36: 20–35PubMedGoogle Scholar
  107. Harada T, Matsukawa K, Sato T, Ishikawa R, Niizeki M, and Saito K (1993) DNA-RAPDs detect genetic variation and paternity in Malus. Euphytica 65: 87–91CrossRefGoogle Scholar
  108. Harris SA, Robinson JP, and Juniper BE (2002) Genetic clues to the origin of the apple. Trends in Genet 18: 426–430CrossRefGoogle Scholar
  109. Harrison RE, McNicol RJ, Cooke DEL, and Duncan JM (1998) Recent developments in Phytopthora fragariae var. rubi research at the Scottish Crop Research Institute. Acta Hort 505: 327–240Google Scholar
  110. Hemmat M, Brown SK, and Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hort Sci 127: 365–370Google Scholar
  111. Hillel J, Schaap T, Haberfield A, Jeffreys A, Plotzky Y, Cahaner A, and Lavi U (1990) DNA fingerprints applied to gene introgression in breeding programs. Genetics 124: 783–789PubMedGoogle Scholar
  112. Hittalmani S, Parco A, Mew TV, Zeigler RS, and Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100: 1121–1128CrossRefGoogle Scholar
  113. Hokanson SC, Lamboy WF, Szewc-McFadden AK, and McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118: 281–294CrossRefGoogle Scholar
  114. Hokanson SC, McFerson JR, Forsline PL, Lamboy WF, Luby JJ, Djangaliev A, and Aldwinckle HS (1997) Collecting and managing wild Malus germplasm in its center of diversity. Hort Sci 32: 173–176Google Scholar
  115. Hokanson SC, Szewc-McFadden AK, Lamboy WF, and McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. core subset selection. Theor Appl Genet 97: 671–683CrossRefGoogle Scholar
  116. Hormaza JI, Yamane H, and Rodrigo J (2007) Apricot. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fuits and Nuts. Springer, Berlin, pp 171–187Google Scholar
  117. Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158: 1363–1379PubMedGoogle Scholar
  118. Hospital F, and Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147: 1469–1485PubMedGoogle Scholar
  119. Hospital F, Goldringer I, and Openshaw S (2000) Efficient marker-based recurrent selection for multiple quantitative trait loci. Genetic Research 75: 357–368CrossRefGoogle Scholar
  120. Hough LF, Shay JR, and Dayton DF (1953) Apple scab resistance from Malus floribunda Sieb. J Am Soc Hort Sci 62: 341–347Google Scholar
  121. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, and Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171: 1305–1309PubMedCrossRefGoogle Scholar
  122. Huaracha EM, Xu ML, Gasic K, Pauwels E, Putte AVd, Keulemans JW, and Korban SS (2004) Phenotypic reaction and genetic analysis using AFLP-derived SCARs for resistance to apple scab. J Phytopathol 152: 260–266CrossRefGoogle Scholar
  123. Iezzoni AF, Andersen RL, Schmidt H, Tao R, Tobutt KR, and Wiersma PA (2005) Proceedings of the s-allele workshop at the 2001 International Cherry Symposium. Acta Hort 667: 25–35Google Scholar
  124. Irwin D (2008) The MassARRAY system for plant genomics. In: Henry RJ (ed) Plant Genotyping II, SNP Technology. CAB International, Wallingford, UK, pp 98–113CrossRefGoogle Scholar
  125. Iyer-Pascuzzi AS, and McCouch SR (2007) Functional markers for xa5-mediated resistance in rice (Oryza sativa, L.). Molec Breed 19: 291–296CrossRefGoogle Scholar
  126. Jaccoud D, Peng K, Feinstein D, and Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29: e25PubMedCrossRefGoogle Scholar
  127. Jennings SN, and Brennan RM (2002) Improvement of raspberry cultivars in Scotland. Acta Hort 585: 179–183Google Scholar
  128. Johnson R (2000) Classical plant breeding for durable resistance to diseases. J Plant Pathol 82: 3–7Google Scholar
  129. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer Battle I, Quarta R, Dirlewanger E, and Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97: 1034–1041CrossRefGoogle Scholar
  130. Kasem S, Rice N, and Henry RJ (2008) DNA extraction from plant tissue. In: Henry RJ (ed) Plant Genotyping II, SNP Technology. CAB International, Wallingford, UK, pp 2 19–271Google Scholar
  131. Kearsey MJ (1997) Genetic resources and plant breeding. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and Plant Genetic Resources. Conservation and Use. CAB International, Wallingford, UK, pp 175–202Google Scholar
  132. Kellerhals M, Spuhler M, Patocchi A, and Frey J (2008) Selection efficiency in apple breeding. Acta Hort (in press)Google Scholar
  133. Kempler C, Daubeny H, and Harding B (2002) Recent progress in breeding red raspberries in British Columbia, Canada. Acta Hort 585: 47–50Google Scholar
  134. Kenis K, Keulemans J, and Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes DOI 10.1007/s11295-008-0140-6.Google Scholar
  135. Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, and Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50: 568–577PubMedCrossRefGoogle Scholar
  136. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, and Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the International Congress In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution, May 27–31, 2003, Bologna, Italy. Avenue Media, pp 443–461Google Scholar
  137. Kimura T, Sawamura Y, Kotobuki K, Matsuta N, Hayashi T, Ban Y, and Yamamoto T (2003) Parentage analysis in pear cultivars characterized by SSR markers. J Jpn Soc Hort Sci 72: 182–189CrossRefGoogle Scholar
  138. King GJ, Alston FH, Brown LM, Chevreau E, Evans KM, Dunemann F, Janse J, Laurens F, Lynn JR, Maliepaard C, Manganaris AG, Roche P, Schmidt H, Tartarini S, Verhaegh J, and Vrielink R (1998) Multiple field and glasshouse assessments increase the reliability of linkage mapping of the Vf source of scab resistance in apple. Theor Appl Genet 96: 699–708CrossRefGoogle Scholar
  139. King GJ, Lynn JR, Dover CJ, Evans KM, and Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102: 1227–1235CrossRefGoogle Scholar
  140. King GJ, Tartarini S, Brown L, Gennari F, and Sansavini S (1999) Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor Appl Genet 99: 1039–1046CrossRefGoogle Scholar
  141. Knapp SJ (1998) Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci 38: 1164–1174CrossRefGoogle Scholar
  142. Knight VH (1991) Use of the Salmonberry, Rubus spectbilis Pursh, in red raspberry breeding. J Hort Sci 66: 575–581.Google Scholar
  143. Kochba J, and Spiegel-Roy P (1975) Inheritance to the root-knot nematode (Meloidogyne javanica Chitwood) in bitter almond progenies. Euphytica 24: 453–457CrossRefGoogle Scholar
  144. Kochba J, and Spiegel-Roy P (1976) ‘Alnem 1’, ‘Alnem 88’, ‘Alnem 201’ almonds: nematode-resistant rootstock seed source. Hort Science 11: 270Google Scholar
  145. Koller B, Lehmann A, McDermott JM, and Gessler C (1993) Identification of apple cultivars using RAPD markers. Theor Appl Genet 85: 901–904CrossRefGoogle Scholar
  146. Kroymann J, and Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435: 95–98PubMedCrossRefGoogle Scholar
  147. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotech Adv 17: 143–182CrossRefGoogle Scholar
  148. Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polák J, Krška B, and Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genet Genomes 4: 481–493CrossRefGoogle Scholar
  149. Lande R (1992) Marker-assisted selection in relation to traditional methods of plant breeding. In: Stalker HT, Murphy JP (eds) Plant Breeding in the 1990s. Proceedings of the Symposium on Plant Breeding in the 1990s, CAB International, Wallingford, pp 437–451Google Scholar
  150. Lande R, and Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756PubMedGoogle Scholar
  151. Laurens F (1999) Review of the current apple breeding programmes in the world: objectives for scion cultivar improvement. Acta Hort 484: 163–170Google Scholar
  152. Lawson DM, Lunde CF, and Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Molec Breed 3: 307–317CrossRefGoogle Scholar
  153. Layne REC (1987) Peach rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for Fruit Crops. John Wiley and Sons, New York, pp 185–216Google Scholar
  154. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, and Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109: 658–668PubMedCrossRefGoogle Scholar
  155. Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, and Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet 99: 328–336CrossRefGoogle Scholar
  156. Lecouls AC, Rubio-Cabetas MJ, Voisin R, Bonnet A, Duval H, Salesses G, Dirlewanger E and Esmenjaud D (2004) Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Molec Breed 13: 113–124CrossRefGoogle Scholar
  157. Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, and Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 85: 1325–2334CrossRefGoogle Scholar
  158. Lerceteau-Köhler E, Guérin G, and Denoyes-Rothan B (2005) Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theor Appl Genet 111: 862–870PubMedCrossRefGoogle Scholar
  159. Lerceteau-Köhler E, Roudeillac P, Markocic M, Guérin G, Praud K, Denoyes-Rothan B (2002) The use of molecular markers for durable resistance breeding in the cultivated strawberry (Fragaria × ananassa). Acta Hort 567: 615–618Google Scholar
  160. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, and Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Molec Biol 52: 511–526Google Scholar
  161. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, and Gessler C (2003b) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ x ‘Discovery’ progeny. Phytopathol 93: 493–501Google Scholar
  162. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, and Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinic Chem 50:1156–1164CrossRefGoogle Scholar
  163. Linde M, Hattendorf A, Kaufmann H, and Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113: 1081–1092PubMedCrossRefGoogle Scholar
  164. Liu P, Zhu J, and Lu Y (2004) Marker-assisted selection in segregating generations of self-fertilizing crops. Theor Appl Genet 109: 370–376PubMedGoogle Scholar
  165. Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW (2000) Inheritance of resistance to root-knot nematodes in Prunus rootstocks. Hort Sci 35: 1344–1346Google Scholar
  166. Luby J, Forsline P, Aldwinckle H, Bus V, and Geibel M (2001) Silk road apples – collection, evaluation, and utilization of Malus sieversii from Central Asia. Hort Science 36: 225–231Google Scholar
  167. Luby JJ, Bedford DS, and Forsline PL (2004) Winter hardiness in the U.S. Department of Agriculture Malus core collection. Acta Hort 663: 605–608Google Scholar
  168. Luby JJ, and Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? Hort Science 36: 872–879Google Scholar
  169. Ma R-C, and Oliveira MM (2002) Evolutionary analysis of S-RNase genes from Rosaceae species. Molec Genet Genomics 267: 71–78CrossRefGoogle Scholar
  170. Mace ES, Buhariwalla HK, and Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Molec Biol Rep 21: 459a–459 h.CrossRefGoogle Scholar
  171. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schnidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, and King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97: 60–73CrossRefGoogle Scholar
  172. Martínez-Gómez P, Sánchez-Pérez R, Dicenta F, Howad W, Arús P, and Gradziel TM (2007) Almond. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Fuits and Nuts. Springer, Berlin, pp 229–242Google Scholar
  173. Michelmore RW, Paran I, and Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88: 9828–9832PubMedCrossRefGoogle Scholar
  174. Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhadia CR, and Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Molec Breed 3: 87–103CrossRefGoogle Scholar
  175. Montgomery J, Wittwer CT, Palais R, and Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2: 59–66PubMedCrossRefGoogle Scholar
  176. Moreau L, Charcosset A, and Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137: 111–118CrossRefGoogle Scholar
  177. Moreau L, Lemarie S, Charcosset A, and Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40: 329–337CrossRefGoogle Scholar
  178. Morris M, Dreher K, Ribaut J-M, and Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Molec Breed 11: 235–247CrossRefGoogle Scholar
  179. Naik S, Hampson C, Gasic K, Bakkeren G, and Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 49: 959–968PubMedCrossRefGoogle Scholar
  180. Nestby R, and Heiberg N (1995) Genetic variation for resistance to Phytophthora fragariae var. rubi in red raspberries. Euphytica 81: 143–149CrossRefGoogle Scholar
  181. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Bhawana N, Ross GS, Snowden KC, Souleyre EJF, Walton EF, and Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141: 147–166PubMedCrossRefGoogle Scholar
  182. Nocente F, Gazza L, and Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155: 329–336CrossRefGoogle Scholar
  183. Nybom H (2003) DNA fingerprinting. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of Rose Science. Elsevier, Oxford, UK, pp 318–325Google Scholar
  184. Nybom H, and Schaal BA (1990) DNA “fingerprints” applied to paternity analysis in apples (Malus x domestica). Theor Appl Genet 79: 763–768Google Scholar
  185. Nybom H, Sehic J, and Garkava-Gustavsson L (2008) Self-incompatibility alleles of 104 apple cultivars grown in Northern Europe. J Hort Sci Biotech 83: 339–344Google Scholar
  186. Nyczepir AP (1991) Nematode management strategies in stone fruits in the United States. J Nematol 23: 334–341PubMedGoogle Scholar
  187. Nyczepir AP, and Halbrendt JM (1993) Nematode pests of deciduous fruit and nut trees. In: Evans K, Trudgill DL, Webster JM (eds) Plant Parasitic Nematodes in Temperate Agriculture. CAB International, Oxon, pp 381–425Google Scholar
  188. Oliveira CM, Mota M, Monte-Corvo L, Goulao L, and Silva DM (1999) Molecular typing of Pyrus based on RAPD Markers. Scientia Hort 79: 163–174CrossRefGoogle Scholar
  189. Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, and Iezzoni A (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference. Tree Genet Genomes DOI 10.1007/s11295-008-0161-1Google Scholar
  190. Oraguzie NC, Gardiner SE, Bassett HCM, Stefanati M, Ball RD, Bus VGM, and White AG (2001) Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hort Sci 126: 318–328Google Scholar
  191. Oraguzie NC, Iwanami H, Soejima J, Harada T, and Hall A (2004a) Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus x domestica Borkh.). Theor Appl Genet 108: 1526–1533Google Scholar
  192. Oraguzie NC, Rikkerink E, Gardiner S, Bus V, Currie A, Rusholme R, and Volz R (2004b) A review of developments in breeding techniques and gene technology tools for new cultivar development in apple. Recent Res Dev Genet Breed 1: 223–257Google Scholar
  193. Oraguzie NC, Rikkerink EHA, Gardiner SE, and de Silva HN (2007a) Association Mapping in Plants. Springer, New YorkGoogle Scholar
  194. Oraguzie NC, Wilcox PL, Rikkerink EHA, and de Silva HN (2007b) Linkage disequilibrium. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (eds) Association Mapping in Plants. Springer, New York, pp 11–39Google Scholar
  195. Oraguzie NC, Yamamoto T, Soejima J, Suzuki T, and de Silva HN (2005) DNA fingerprinting of apple (Malus spp.) rootstocks using simple sequence repeats. Plant Breed 124: 197–202CrossRefGoogle Scholar
  196. Ortega E, and Dicenta F (2003) Inheritance of self-compatibility in almond: breeding strategies to assure self-compatibility in the progeny. Theor Appl Genet 106: 904–911PubMedGoogle Scholar
  197. Paran I, and Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19: 303–306PubMedCrossRefGoogle Scholar
  198. Pasquer F, Frey B, and Frey JE (2008) Identification of cherry incompatibility alleles by microarray. Plant Breed Doi:10.1111/j.1439-0523.2007.01476.xGoogle Scholar
  199. Paterson AH, Tanksley SD, and Sorrells ME (1991) DNA markers in plant improvement. Adv in Agron 46: 39–90CrossRefGoogle Scholar
  200. Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, and Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48: 630–636PubMedCrossRefGoogle Scholar
  201. Pattemore JA, Trau M, and Henry RJ (2008) Nanotechnology: the future of cost-effectiive plant genotyping. In: Henry RJ (ed) Plant Genotyping II, SNP Technology. CAB International, Wallingford, UK, pp 133–153CrossRefGoogle Scholar
  202. Pattison JA, Samuelian SK, and Weber CA (2007) Inheritance of Phytophthora root rot resistance in red raspberry by generation means and molecular linkage analysis. Theor Appl Genet 115: 225–236PubMedCrossRefGoogle Scholar
  203. Peace CP, Crisosto CH, and Gradziel TM (2005) Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Molec Breed 16: 21–31CrossRefGoogle Scholar
  204. Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 10: 621–630Google Scholar
  205. Picañol R, Lozano L, Alegre S, Bonany J, Arús P, and Howad W (2008) QTL analysis of peach fruit quality: map construction in three breeding progenies with SSR markers. Acta Hort (in press)Google Scholar
  206. Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam A, Sodhi YS, and Pental D (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106: 607–614PubMedGoogle Scholar
  207. Qi J, Gai S, Zhang J, Gu M, and H Shu (2005) Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis. Biotech Lett 27: 1205–1209CrossRefGoogle Scholar
  208. Rajapakse S (2003) Molecular markers. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of Rose Science. Elsevier, Oxford, UK, pp 334–341Google Scholar
  209. Rammah A, and Hirschmann H (1988) Meloidogyne mayaguensis n. sp. (Meloidogynidae), a root-knot nematode from Puerto Rico. J Nematol 20: 58–69PubMedGoogle Scholar
  210. Ramming DW, and Tanner O (1983) Nemared peach rootstock. Hort Science 18: 376Google Scholar
  211. Ramming DW, and Cociu V (1991) Plum (Prunus). In: Moore JV, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hort 290: 239–288Google Scholar
  212. Ramos-Cabrer AM, Díaz-Hernández MB, and Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hort Sci Biotech 82: 257–265Google Scholar
  213. Ribaut J-M, and Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Experim Bot 58: 351–360CrossRefGoogle Scholar
  214. Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, and StClair DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated (L. esculentum) and evaluation of QTL phenotypic effects. Molec Breed 8: 217–233CrossRefGoogle Scholar
  215. Roche P, Alston FH, and Maliepaard C (1997) RFLP and RAPD linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94: 528–533CrossRefGoogle Scholar
  216. Rubio-Cabetas MJ, Lecouls AC, Salesses G, Bonnet A, Minot JC, Voisin R, and Esmenjaud D (1998) Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breed 117: 567–571CrossRefGoogle Scholar
  217. Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, and Bonnet A (1999) Response of the Ma genes from Myrobalan plum to Meloidogyne hapla and M. mayaguensis. Hort Science 34: 1266–1268Google Scholar
  218. Samuelian SK, Baldo AM, Pattison JA, and Weber CA (2008) Isolation and linkage mapping of NBS-Lrr resistance gene analogs in red raspberry (Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes. Tree Genet Genomes DOI 10.1007/s11295-008-0160-2Google Scholar
  219. Sanzol J, and Robbins TP (2008) Combined analysis of S-alleles in European pear by pollinations and PCR-based S-genotyping; correlation between S-phenotypes and S-RNase genotypes. J Amer Soc Hort Sci 133: 213–224Google Scholar
  220. Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, and Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175: 1869–1881PubMedCrossRefGoogle Scholar
  221. Sasser JN, Freckman DW (1987) A world perspective in nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on Nematology. Society of Nematologists, Hyattsville, MD, pp 7–14Google Scholar
  222. Scotto La Massèse C, Grasselly C, Minot JC, and Voisin R (1984) Différence de comportement de 23 clones et hybrides de Prunus à l’égard de quatre espèces de Meloidogyne. Rev Nematol 7: 265–270Google Scholar
  223. Servin B, Martin OC, Mézard M, and Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168: 513–523PubMedCrossRefGoogle Scholar
  224. Sharpe RH, Hesse CO, Lownsbery BA, Perry VG, and Hansen CJ (1969) Breeding peaches for root-knot nematode resistance. J Am Soc Hortic Sci 94: 209–212Google Scholar
  225. Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes ML, Abbott A, and Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4: 359–365CrossRefGoogle Scholar
  226. Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C-E, Costa F, Yamamoto T, Koller B, Gessler C, and Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2: 202–224CrossRefGoogle Scholar
  227. Simpson DW, Winterbottom CQ, Bell JA, and Maltoni ML (1994) Resistance to a single UK isolate of Colletotrichum acutatum in strawberry germplasm from Northern Europe. Euphytica 77: 161–164CrossRefGoogle Scholar
  228. Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102: 1011–1015CrossRefGoogle Scholar
  229. Sjulin TM (2008) Special problems in nursery propagation of day-neutral strawberry cultivars susceptible to Colletotrichum acutatum. Hort Science 43: 78–80Google Scholar
  230. Smith BJ (2008) Epidemiology and pathology of strawberry anthraconose: a North American perspective. Hort Science 43: 69–73Google Scholar
  231. Smith S, and Helentjaris T (1996) DNA fingerprinting and plant variety protection. In: Paterson AH (ed) Genome Mapping in Plants. R.G. Landes Company, Austin, TX, pp 95–110Google Scholar
  232. Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, and Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4: 391–402CrossRefGoogle Scholar
  233. Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martínez-Goméz P, and Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156: 327–344CrossRefGoogle Scholar
  234. Spelman R, and Bovenhuis H (1998) Genetic response from marker assisted selection in an outbred population for differing marker bracket sizes and with two identified quantitative trait loci. Genetics 148: 1389–1396PubMedGoogle Scholar
  235. Spiegler G, and Thoss H (1993) Breeding for resistance to Phytophthora root rot in red raspberries. Acta Hort 352: 477–484Google Scholar
  236. Stankiewicz-Kosyl M, Nowicka A, Krajewski P, Tomala K, Soska A, Laurens F, Govan C, Lateaur M, Costa F, Tartarini S, Guerra W, Lewandowski M, Rutkovski K, Zurawicz E, Gianfranceschi L, Durel C-E, Mathis F, Barbaro E, Mott D, Patocchi A, Gobbin D, Fernandez F, Evans K, Dunemann F, Boudichevskaja A, Jansen J, and van de Weg E (2008) QTL analysis of acidity in apple using pedigree-based approach. Acta Hort (in press)Google Scholar
  237. Stushnoff C, McSay AE, Forsline PL, and Luby J (2003) Diversity of phenolic antioxidant content and radical scavenging capacity in the USDA Apple Germplasm core collection. Acta Hort 623: 305–311Google Scholar
  238. Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, and Mor H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Amer Soc Hort Sci 124: 224–233Google Scholar
  239. Tao R, Habu T, Yamane H, Sugiura A, and Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). Hort Science 35: 1121–1123Google Scholar
  240. Tartarini S, Costa F, Guerra W, Hoeller I, Evans K, Fernandez F, Kellerhals M, Eigenmann C, Korbin M, Keller S, and van de Weg E (2008) Marker-assisted breeding (MAB) for fruit firmness and acidity. Acta Hort (in press)Google Scholar
  241. Tartarini S, Sansavini S, Vinatzer B, Gennari F, and Domizi C (2000) Efficiency of marker assisted selection (MAS) for the Vf scab resistance gene. Acta Hort 538: 549–552Google Scholar
  242. Teng Y, Tanabe K, Tamura F, and Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J Hort Sci Biotech 76: 771–779Google Scholar
  243. Teng Y, Tanabe K, Tamura F, and Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hort Sci 127: 262–270Google Scholar
  244. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, and Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113: 743–752PubMedCrossRefGoogle Scholar
  245. Testolin R, Marrazzo MT, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, and Sansavini S (2000) Microsatellite DNA in peach (Prunus persica (L) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43: 512–520PubMedCrossRefGoogle Scholar
  246. Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An Advanced treatise on Meloidogyne, Vol I. North Carolina State University Graphics, Raleigh, NC, pp 113–126Google Scholar
  247. van de Weg WE, Voorrips RE, Finkers R, Kodde LP, Jansen J, and Bink MCAM (2004) Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Hort 663: 45–50Google Scholar
  248. van de Weg WE, Jansen H, Bink M, Voorrips RE, Durel C-E, Laurens F, Dunemann F, Evans K, Patocchi A, Guerra W, Komjanc M, Lateur M, Kellerhals M, Ryder C, Sansavini S, Tomala K, Zurawicz E, and Gianfranceschi L (2008) QTL mapping in multiple, pedigreed populations: the concept and the framework of statistical procedures. Acta Hort (in press)Google Scholar
  249. Varshney RK, Graner A, and Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10: 621–630PubMedCrossRefGoogle Scholar
  250. Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Chron Bot 13: 1–364Google Scholar
  251. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, and Sansavini S (2001) Apple contrains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. MPMI 14: 508–515PubMedCrossRefGoogle Scholar
  252. Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, and Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Molec Breed 123: 1–6Google Scholar
  253. Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, and Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hort Sci 131: 408–417Google Scholar
  254. Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, and Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hort Sci 130: 203–210Google Scholar
  255. Volk GM, Richards CM, Reilley AA, Henk AD, Reeves PA, Forsline PL, and Aldwinckle HS (2008) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and southern Russia. J Amer Soc Hort Sci 133: 383–389Google Scholar
  256. Volz RK, Rikkerink E, Austin P, Lawrence T, and Bus VGM (2008) “Fast-breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hort (in press)Google Scholar
  257. Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10: 610–614.PubMedCrossRefGoogle Scholar
  258. Weber CA, Pattison J, and Samuelin S (2008) Marker assisted selection for resistance to root rot in red raspberry caused by Phytophthora fragariae var. rubi. Acta Hort 777: 311–315Google Scholar
  259. Weebadde CK, Wang D, Finn CE, Lewers KS, Luby JJ, Buchakra J, Sjulin TM, and Hancock JF (2008) Using a linage mapping approach to identify QTL for day-neutrality in the octoploid strawberry. Plant Breed 127: 94–101Google Scholar
  260. Wiedow C (2006) Characterization of phenotypic and molecular diversity in offsprings of Malus sieversii (Lebed.) Roem. as basis for a core collection of apple genetic resources. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, GermanyGoogle Scholar
  261. Wilcox PL, Echt CE, and Burdon RD (2007) Gene-assisted selection: applications of association genetics for forest tree breeding. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association Mapping in Plants. Springer, New York, pp 211–247CrossRefGoogle Scholar
  262. Wilcox WF, Scott PH, Hamm PB, Kennedy DM, Duncan JM, Brasier CM, and Hansen EM (1993) Identity of a Phytophthora species attacking raspberry in Europe and North America. Mycol Res 97: 817–831CrossRefGoogle Scholar
  263. Wilcox WF, Pritts MP, and Kelly MJ (1999) Integrated control of Phytophthora root rot of red raspberry. Plant Disease 83: 1149–1154CrossRefGoogle Scholar
  264. Wilde F, Korzun V, Ebmeyer E, Geiger HH, and Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Molec Breed 19: 357–370CrossRefGoogle Scholar
  265. Wilde F, Schon CC, Korzun V, Ebmeyer E, Schmolke M, Hartl L, and Miedaner T (2008) Marker-based introduction of three quantitative-trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117: 29–35PubMedCrossRefGoogle Scholar
  266. Winterbottom CQ (1991). Resistance of strawberry to Colletotrichum acutatum. Master Thesis of Science, University of California.Google Scholar
  267. Xie C, and Xu S (1998) Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity: 489–498Google Scholar
  268. Xu M, and Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162: 1995–2006PubMedGoogle Scholar
  269. Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Scientia Hortic 96:81–90CrossRefGoogle Scholar
  270. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, and Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663: 51–56Google Scholar
  271. Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, and Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reprod 13: 251–257CrossRefGoogle Scholar
  272. Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Molec Breed 5: 505–510CrossRefGoogle Scholar
  273. Yousef GG, and Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41: 645–655CrossRefGoogle Scholar
  274. Yu K, Park SJ, and Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119: 411–415CrossRefGoogle Scholar
  275. Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krška B, and Abbott AG (2008a) Origin of resistance to plum pox virus in apricot: what new AFLP and targeted SSR analyses tell. Tree Genet Genomes 4: 403–417Google Scholar
  276. Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, and Abbott AG (2008b). A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes, DOI 10.1007/s11295-008-0147-zGoogle Scholar
  277. Zhu Y, and Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4: 555–562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vincent G.M. Bus
    • 1
  • Daniel Esmenjaud
    • 1
  • Emily Buck
    • 1
  • François Laurens
    • 1
  1. 1.The Horticulture and Food Research Institute of New Zealand LtdHawkes Bay Research CentreNew Zealand

Personalised recommendations