Skip to main content

Functional Molecular Biology Research in Fragaria

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

The most economically important strawberry species is the octoploid Fragaria × ananassa, grown worldwide over a wide range of latitudes for fresh market and processing industry. The small-fruited diploid F. vesca and the musky-flavored hexaploid F. moschata are grown on a much smaller scale only for local fresh markets and pastry industry. The largely unexploited genetic pool contain species and genotypes differing for important breeding traits such as: fruit size, aroma, firmness and chemical composition; dioecy/hermaphroditism; response to photoperiod; resistance to pathogens and pests; hardiness, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Takeda F (1990) Cellulase activity and ethylene in ripening strawberry and apple fruits. Sci Hortic 42: 269–275

    CAS  Google Scholar 

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, and Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21: 177–181

    CAS  PubMed  Google Scholar 

  • Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, and O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12: 647–661

    CAS  PubMed  Google Scholar 

  • Aharoni A, de Vos CHR, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, and O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28: 319–332

    CAS  PubMed  Google Scholar 

  • Aharoni A, de Vos RCH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, and Goodenowe DB (2002a) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass spectrometry. OMICS 6: 217–234

    Google Scholar 

  • Aharoni A, Keizer LCP, Van Den Broeck HC, Blanco-Portales R, Muñoz-Blanco J, Bois G, Smit P, De Vos RCH, and O’Connell AP (2002b) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol 129: 1019–1031

    Google Scholar 

  • Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, and Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16: 3110–3131

    CAS  PubMed  Google Scholar 

  • Albani MC, Battey NH, and Wilkinson MJ (2004) The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theor Appl Genet 109: 571–579

    CAS  PubMed  Google Scholar 

  • Alm R, Ekefjard A, Krogh M, Hakkinen J, and Emanuelsson C (2007) Proteomic variation is as large within as between strawberry varieties. J Proteome Res 6: 3011–3020

    CAS  PubMed  Google Scholar 

  • Almeida JRM, D’Amico E, Preuss A, Carbone F, de Vos RCH, Deiml B, Mourgues F, Perrotta G, Fischer TC, Bovy AG, Martens S, Rosati C (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Arch Biochem Biophys 465: 61–71

    CAS  PubMed  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61: 221–294

    CAS  PubMed  Google Scholar 

  • Anttonen MJ, Hoppula KI, Nestby R, Verheul MJ, and Karjalainen RO, (2006) Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria x ananassa Duch.) fruits. J Agric Food Chem 54: 2614–2620

    CAS  PubMed  Google Scholar 

  • Archbold DD, Dennis FG (1984) Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development. J Am Soc Hort Sci 109: 330–335

    CAS  Google Scholar 

  • Arroyo FT, Moreno J, Daza P, Boianova L, and Romero F (2007) Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. J Agric Food Chem 55: 5701–5707

    CAS  PubMed  Google Scholar 

  • Bakker J, Bridle P, and Bellworthy SJ (1994) Strawberry juice colour: a study of the quantitative and qualitative pigment composition of juices from 39 genotypes. J Sci Food Agric 64: 31–37

    CAS  Google Scholar 

  • Balogh A, Koncz T, Tisza V, Kiss E, and Heszky L (2005) The effect of 1-MCP on the expression of several ripening-related genes in strawberries. HortScience 40: 2088–2090

    CAS  Google Scholar 

  • Barritt BH, Shanks CH Jr (1980) Breeding strawberries for resistance to the aphids Chaetosiphon fragaefolii and C. thomasi. HortScience 15: 287–288

    Google Scholar 

  • Barritt BH, Shanks CH Jr (1981) Parent selection in breeding strawberries resistant to two-spotted spider mites. HortScience 16: 323–324

    Google Scholar 

  • Battey NH, Tooke F (2002) Molecular control and variation in the floral transition. Curr Op Plant Biol 5: 62–68

    CAS  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, and Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135: 1865–1878

    CAS  PubMed  Google Scholar 

  • Blanco-Portales R, Medina-Escobar N, López-Ráez JA, González-Reyes JA, Villalba JM, Mojano E, Caballero JL, and Muñoz-Blanco J (2002) Cloning, expression and immunolocalization pattern of a cynnamyl alcohol dehydrogenase gene from strawberry (Fragaria × ananassa cv. Chandler). J Exp Bot 53: 1723–1734

    CAS  PubMed  Google Scholar 

  • Bood KG, Zabetakis I (2002) The biosynthesis of strawberry flavor (II): Biosynthetic and molecular biology studies. J Food Sci 67: 2–8

    CAS  Google Scholar 

  • Bustamante CA, Rosli HG, Añon MC, Civello PM, and Martínez GA (2006) ß-Xylosidase in strawberry fruit: isolation of a full length gene and analysis of its expression and enzymatic activity in cultivars with contrasting firmness. Plant Sci 171: 497–504

    CAS  Google Scholar 

  • Carbone F, Mourgues F, Biasioli F, Gasperi F, Märk TD, Rosati C, and Perrotta G (2006) Comparative analysis of gene expression of strawberry fruit and correlation with profiles of volatile compounds and other quality traits in different genotypes. Mol Breed 18: 127–142

    CAS  Google Scholar 

  • Castillejo C, de la Fuente JI, Iannetta P, Botella MA, and Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55: 909–918

    CAS  PubMed  Google Scholar 

  • Chandler CK, Mertely JC, and Peres N (2006) Resistance of selected strawberry cultivars to anthracnose fruit rot and Botrytis fruit rot. Acta Hort 708: 123–126

    Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116: 865–869

    CAS  Google Scholar 

  • Cipriani G, Testolin R (2004) Isolation and characterization of microsatellite loci in Fragaria. Mol Ecol Notes 4: 366–368

    CAS  Google Scholar 

  • Civello PM, Powell ALT, Sabehat A, and Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121: 1273–1279

    CAS  PubMed  Google Scholar 

  • da Silva FL, Escribano-Bailόn MT, Pérez Alonso JJ, Rivas-Gonzalo JC, and Santos-Buelga C (2007) Anthocyanin pigments in strawberry. LWT – Food Sci Technol 40: 374–382

    Google Scholar 

  • Darrow GM (1966) The strawberry: history, breeding, and physiology. 1st ed. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Davey MW, Kenis K, and Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142: 343–351

    CAS  PubMed  Google Scholar 

  • Davies KM, Schwinn KE (2006) Molecular biology and biotechnology of flavonoid biosynthesis. In: Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton FL, pp 143–218

    Google Scholar 

  • de la Fuente J, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, and Valpuesta V (2006) The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. J Exp Bot 57: 2401–2411

    PubMed  Google Scholar 

  • Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor Appl Genet 103: 316–322

    CAS  Google Scholar 

  • Denoyes-Rothan B, Guérin G, Lerceteau-Köhler E, and Risser G (2005) Inheritance of a race-specific resistance to Colletotrichum acutatum in Fragaria x ananassa. Phytopathology 95: 405–412

    PubMed  Google Scholar 

  • Dotto MC, Martínez GA, and Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Bioch 44: 301–307

    CAS  Google Scholar 

  • Døving A, Måge F, and Vestrheim S (2005) Methods for testing strawberry fruit firmness: a review. Small Fruits Rev 4: 11–34

    Google Scholar 

  • Duangsrisai S, Yamada K, Bantog NA, Shiratake K, Kanayama Y, and Yamaki S (2007) Presence and expression of NAD+-dependent sorbitol dehydrogenase and sorbitol-6-phosphate dehydrogenase genes in strawberry. J Hort Sci Biotechnol 82: 191–198

    CAS  Google Scholar 

  • Eshghi S, Tafazoli E (2007) Possible role of cytokinins in flower induction in strawberry. Am J Plant Physiol 2: 167–174

    CAS  Google Scholar 

  • Faedi W, Mourgues F, and Rosati C (2002) Strawberry breeding and varieties: situation and perspectives. Acta Hort 567: 51–59

    Google Scholar 

  • Famiani F, Cultrera NG, Battistelli A, Casulli V, Proietti P, Standardi A, Chen ZH, Leegood RC, and Walker RP (2005) Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. J Exp Bot 56: 2959–2969

    CAS  PubMed  Google Scholar 

  • Figueroa CR, Pimentel P, Gaete-Eastman C, Moya M, Herrera R, Caligari PDS, Moya-León MA (2008) Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit. Postharvest Biol Technol 49: 210–220

    CAS  Google Scholar 

  • Filippone MP, Diaz Ricci J, Mamaní de Marchese A, Farías RN, and Castagnaro A (1999) Isolation and purification of a 316 Da preformed compound from strawberry (Fragaria ananassa) leaves active against plant pathogens. FEBS Lett 459: 115–118

    CAS  PubMed  Google Scholar 

  • Folta KM, Davis TM (2006) Strawberry genes and genomics. Crit Rev Plant Sci 25: 399–415

    CAS  Google Scholar 

  • Folta KM, Staton M, Stewart PJ, Jung S, Bies DH, Jesdurai C, and Main D (2005) Expressed sequence tags (ESTs) and simple sequence repeat (SSR) markers from octoploid strawberry (Fragaria × ananassa). BMC Plant Biol 5: 12

    PubMed  Google Scholar 

  • Fossen T, Rayyan S, and Andersen ØM (2004) Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols. Phytochemistry 65: 1421–1428

    CAS  PubMed  Google Scholar 

  • Gil-Ariza DJ, I Amaya I, Botella MA, Muñoz-Blanco J, Caballero JL, López-Aranda JM, Valpuesta V, and Sánchez-Sevilla JF (2006) EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria × ananassa) are useful for diversity studies and varietal identification among Fragaria species. Mol Ecol Notes 6: 1195–1197

    CAS  Google Scholar 

  • Giménez G, Ballington JR (2002) Inheritance of resistance to Colletotrichum acutatum Simmonds on runners of garden strawberry and its backcrosses. HortScience 37: 686–690

    Google Scholar 

  • Given NK, Venis MA, and Grierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climateric fruit. Planta 174: 402–406

    CAS  Google Scholar 

  • Griesser M, Hoffmann T, Bellido ML, Rosati C, Fink B, Kurtzer R, Aharoni A, Muñoz-Blanco J, and Schwab W (2008) Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol 146: 1528–1539

    CAS  PubMed  Google Scholar 

  • Gulen H, Eris A (2004) Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci 166: 739–744

    CAS  Google Scholar 

  • Häkkinen SH, Törrönen AR (2000) Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique. Food Res Int 33: 517–524

    Google Scholar 

  • Halbwirth H, Puhl I, Haas U, Jesik K, Treutter D, and Stich K (2006) Two-phase flavonoid formation in developing strawberry (Fragaria × ananassa) fruit. J Agr Food Chem 54: 1479–1485

    CAS  Google Scholar 

  • Hammerschlag F, Garcés S; Koch-Dean M, Ray S, Lewers K, Maas J, and Smith BJ (2006) In vitro response of strawberry cultivars and regenerants to Colletotrichum acutatum. Plant Cell Tiss Org 84: 255–261

    Google Scholar 

  • Hampel D, Mosandl A, and Wüst M (2006) Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage; 2H labeling studies. J Agric Food Chem 54: 1473–1478

    CAS  PubMed  Google Scholar 

  • Hancock JF, Luby JJ, Dale A, Callow PW, Serce S, and El-Shiek (2002) Utilizing wild Fragaria virginiana in strawberry cultivar development: inheritance of photoperiod sensitivity, fruit size, gender, female fertility and disease resistance. Euphytica 136: 177–184

    Google Scholar 

  • Hannum SM (2004) Potential impact of strawberries on human health: a review of science. Crit Rev Food Sci 44: 1–17

    CAS  Google Scholar 

  • Harpster MH, Brummell DA, and Dunsmuir P (1998) Expression analysis of a ripening-specific, auxin-repressed endo-1,4-betaglucanase gene in strawberry. Plant Physiol 118: 1307–1316

    CAS  PubMed  Google Scholar 

  • Harrison EP, McQueen Mason SJ, and Manning K (2001) Expression of six expansin genes in relation to extension activity in developing strawberry fruit. J Exp Bot 52: 1437–1446

    CAS  PubMed  Google Scholar 

  • Haymes KM, Henken B, Davis TM, and van de Weg WE (1997) Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor Appl Genet 94: 1097–1101

    CAS  Google Scholar 

  • Haymes KM, van de Weg WE, Arens P, Maas JL, Vosman B, and Den Nijs APM (2000) Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and North American strawberry genotypes. J Am Soc Hortic Sci 125: 330–339

    CAS  Google Scholar 

  • Heide OM, Sonsteby A (2007) Interactions of temperature and photoperiod in the control of flowering of latitudinal and altitudinal populations of wild strawberry (Fragaria vesca). Physiol Plant 130: 280–289

    CAS  Google Scholar 

  • Hernández I, Molenaar D, Beekwilder J, Bouwmeester HJ, and van Hylckama Vlieg JET (2007) Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microb 73: 1544–1552

    Google Scholar 

  • Hernanz D, Recamales AF, Meléndez-Martínez AJ, González-Miret ML, and Heredia FJ (2007) Assessment of the differences in the phenolic composition of five strawberry cultivars (Fragaria x ananassa Duch.) grown in two different soilless systems. J Agric Food Chem 55: 1846–1852

    CAS  PubMed  Google Scholar 

  • Hjernø K, Alm R, Canbäck B, Matthiesen R, Trajkovski K, Björk L, Roespstorff P, and Emanuelsson C (2006) Down-regulation of the strawberry Bet v 1-homologous allergen in concert with the flavonoid biosynthesis pathway in colorless strawberry mutant. Proteomics 6: 1574–1587

    PubMed  Google Scholar 

  • Hoffmann T, Kalinowski G, and Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48: 818–826

    CAS  PubMed  Google Scholar 

  • Hokanson SC, Maas JL (2001) Strawberry biotechnology. In : Plant breeding reviews, Vol. 21. John Wiley and Sons Inc., New York, pp 139–180

    Google Scholar 

  • Hou ZX, Huang WD (2005) Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222: 678–687

    CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, and Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2: 381–387

    CAS  PubMed  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci 174: 446–455

    CAS  Google Scholar 

  • Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, and Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130: 729–739

    CAS  PubMed  Google Scholar 

  • Jetti RR, Yang E, Kurnianta A, Finn C, and Qian MC (2007) Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J Food Sci 72: S487–496

    CAS  PubMed  Google Scholar 

  • Jewell GG, Rantsios A, and Scholey J (1973) Factors influencing the breakdown of fruit in strawberry jam. J Texture Stud 4: 363–370

    Google Scholar 

  • Jiménéz-Bermúdez S, Redondo Nevado J, Muñoz-Blanco J, Caballero JL, Lopez Aranda JM, Valpuesta V, Pliego Alfaro F, Quesada MA, and Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128: 751–775

    PubMed  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, and Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucl Acids Res 36: D1034–D1040

    CAS  PubMed  Google Scholar 

  • Kalt W, Forney CF, Martin A, and Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agr Food Chem 47: 4638–4644

    CAS  Google Scholar 

  • Kappers I, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, and Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309: 2070–2072

    CAS  PubMed  Google Scholar 

  • Karlsson AL, Alm R, Ekstrand B, Fjelkner-Modig S, Schiött A, Bengtsson U, Björk L, Hjernø K, Roepstorff P, and Emanuelsson CS (2004) Bet v 1 homologues in strawberry identified as IgE-binding proteins and presumptive allergens. Allergy 59: 1277–1284

    CAS  PubMed  Google Scholar 

  • Keniry A, Hopkins CJ, Jewell E, Morrison B, Spangenberg GC, Edwards D, and Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers from Fragaria × ananassa expressed sequences. Mol Ecol Notes 6: 319–322

    CAS  Google Scholar 

  • Kennedy JA, Jones GP (2001) Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem 49: 1740–1746

    CAS  PubMed  Google Scholar 

  • Khammuang S, Dheeranupattana, Hanmuangja P, and Wongroung S (2005) Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry. Songklanakarin J Sci Technol 27: 693–703

    Google Scholar 

  • Klein D, Fink B, Arold B, Eisenreich W, and Schwab W (2007) Functional characterization of enone oxidoreductases from strawberry and tomato fruit. J Agric Food Chem 55: 6705–6711

    CAS  PubMed  Google Scholar 

  • Knee M, Sargent JA, and Osborne DJ (1977) Cell wall metabolism in developing strawberry fruit. J Exp Bot 28: 377–396

    CAS  Google Scholar 

  • Kurokura T, Inaba Y, and Sugiyama N (2006) Histone H4 gene expression and morphological changes on shoot apices of strawberry (Fragaria x ananassa Duch.) during floral induction. Sci Hortic 110: 192–197

    CAS  Google Scholar 

  • Landmann C, Fink B, and Schwab W (2007) FaGT2: a multifunctional enzyme from strawberry (Fragaria x ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta 226: 417–428

    CAS  PubMed  Google Scholar 

  • Larsen M, Poll L, and Olsen CE (1992) Evaluation of the aroma composition of some strawberry (Fragaria ananassa Duch) cultivars by use of odour threshold values. Z Lebensm Unters Forsch 195: 536–539

    CAS  Google Scholar 

  • Lazarus CM, MacDonald H (1996) Characterization of a strawberry gene for auxin-binding protein, and its expression in insect cells. Plant Mol Biol 31: 267–277

    CAS  PubMed  Google Scholar 

  • Lerceteau-Köhler E, Guérin G, Laigret F, and Denoyes-Rothan B (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria x ananassa) using AFLP mapping. Theor Appl Genet 107: 619–628

    PubMed  Google Scholar 

  • Lerceteau-Köhler E, Guérin G, and Denoyes-Rothan B (2005) Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theor Appl Genet 111: 862–870

    PubMed  Google Scholar 

  • Lewers KS, Styan SMN, and Hokanson SC (2005) Strawberry GeneBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hort Sci 130: 102–115

    CAS  Google Scholar 

  • Llop-Tous I, Dominguez-Puigjaner E, and Vendrell M (2002) Characterization of a strawberry cDNA clone homologous to calcium-dependent protein kinases that is expressed during fruit ripening and affected by low temperature. J Exp Bot 53: 2283–2285

    CAS  PubMed  Google Scholar 

  • Lopez AP, Portales RB, Lopez-Raez JA, Medina-Escobar N, Muñoz-Blanco J, and Franco AR (2006) Characterization of a strawberry late-expressed and fruit-specific peptide methionine sulphoxide reductase. Physiol Plant 126: 129–139

    CAS  Google Scholar 

  • Loughrin JH, Kasperbauer MJ (2002) Aroma of fresh strawberries is enhanced by ripening over red versus black mulch. J Agric Food Chem 50: 161–165

    CAS  PubMed  Google Scholar 

  • Lunkenbein S, Bellido M, Aharoni A, Salentijn EM, Kaldenhoff R, Coiner HA, Muñoz-Blanco J, and Schwab W (2006a) Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose: cinnamate glucosyltransferase from strawberry. Plant Physiol 140: 1047–1058

    Google Scholar 

  • Lunkenbein S, Coiner H, de Vos CHR, Schaart JG, Boone MJ, Krens FA, Schwab W, and Salentijn EMJ (2006b) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agr Food Chem 54: 2145–2153

    Google Scholar 

  • Lunkenbein S, Salentijn EM, Coiner HA, Boone MJ, Krens FA, and Schwab W (2006c) Up- and down-regulation of Fragaria x ananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism. J Exp Bot 57: 2445–2453

    Google Scholar 

  • Maas JL, Gouin-Behe C, Hartung JS, and Hokanson SC (2000) Sources of resistance for two differentially pathogenic strains of Xanthomonas fragariae in Fragaria genotypes. HortScience 35: 128–131

    Google Scholar 

  • Manning K (1998) Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta 205: 622–631

    CAS  PubMed  Google Scholar 

  • Martínez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, and Diaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot. 56: 1821–1829

    PubMed  Google Scholar 

  • Martínez-Zamora MG, Castagnaro AP, and Díaz Ricci JC (2004) Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 272: 480–487

    PubMed  Google Scholar 

  • Medina-Escobar N, Cárdenas J, Moyano E, Caballero JL, and Muñoz-Blanco J (1997) Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Mol Biol 34: 867–877

    CAS  PubMed  Google Scholar 

  • Medina-Escobar N, Cárdenas J, Muñoz-Blanco J, and Caballero JL (1998) Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein. Plant Mol Biol 36: 33–42

    CAS  PubMed  Google Scholar 

  • Mehli L, Kjellsen TD, Dewey FM, and Hietala AM. (2005) A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of comonitoring both partners at genomic and mRNA level. New Phytol 168: 465–474

    CAS  PubMed  Google Scholar 

  • Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, and Jacobs Jr DR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85: 895–909

    CAS  PubMed  Google Scholar 

  • Monfort A, Vilanova S, Davis TM, and Arús P (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria × ananassa. Mol Ecol Notes 6: 197–200

    CAS  Google Scholar 

  • Mori S, Kitamura H, and Kuroda K (2005) Varietal differences in Fusarium wilt-resistance in strawberry cultivars and the segregation of this trait in F1 hybrids. J Jpn Soc Hortic Sci 74: 57–59

    Google Scholar 

  • Moyano E, Portero-Robles I, Medina-Escobar N, Valpuesta V, Muñoz-Blanco J, and Caballero JL (1998) A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol 117: 711–716

    CAS  PubMed  Google Scholar 

  • Moyano E, Encinas-Villarejo S, Lopez-Raez JA, Redondo-Nivado J, Blanco-Portales R, Bellido ML, Sanz C, Caballero JL, and Muñoz-Blanco J (2004) Comparative study between two strawberry pyruvate decarboxylase genes along fruit development and ripening, post-harvest and stress condition. Plant Sci 166: 835–845

    CAS  Google Scholar 

  • Musidlowska-Persson A, Alm R, and Emanuelsson C (2007) Cloning and sequencing of the Bet v 1-homologous allergen Fra a 1 in strawberry (Fragaria ananassa) shows the presence of an intron and little variability in amino acid sequence. Mol Immunol 44: 1245–1252

    CAS  PubMed  Google Scholar 

  • NDong C, Quellet F, Houde M, and Sarhan F (1997) Gene expression during cold acclimation in strawberry. Plant Cell Physiol 38: 863–870

    CAS  PubMed  Google Scholar 

  • Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37: 211–215

    CAS  Google Scholar 

  • Olias R, Perez AG, and Sanz C (2002) Catalytic properties of alcohol acyltransferase in different strawberry species and cultivars. J Agric Food Chem 50: 4031–4036

    CAS  PubMed  Google Scholar 

  • Orsomando G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B, and Ruggieri S (2001) Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J Biol Chem 276: 21578–21584

    CAS  PubMed  Google Scholar 

  • Osorio S, Castillejo C, Quesada MA, Medina-Escobar N, Brownsey GJ, Suau R, Heredia A, Botella MA, and Valpuesta V (2008) Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J 54: 43–55

    CAS  PubMed  Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, and Iezzoni AF (2002) CPF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hort Sci 127: 462–710

    Google Scholar 

  • Palomer X, Domínguez-Puigjaner E, Vendrell M, and Llop-Tous I (2004) Study of the strawberry Cel1 endo-ß-(1,4)-glucanase protein accumulation and characterization of its in vitro activity by heterologous expression in Pichia pastoris. Plant Sci 167: 509–518

    CAS  Google Scholar 

  • Palomer X, Llop-Tous I, Vendrell M, Krens FA, Schaart JG, Boone MJ, van der Valk H, and Salentijn EMJ (2006) Antisense down- regulation of strawberry endo- ß-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci 171: 640–646

    CAS  Google Scholar 

  • Park JI, Kim IJ (2007) Changes in the expression of ADP-glucose pyrophosphorylase genes during fruit ripening in strawberry. Food Sci Biotechnol 16: 343–348

    CAS  Google Scholar 

  • Park JI, Lee YK, Chung WI, Lee IH, Choi JH, Lee WM, Ezura H, Lee SP, and Kim IJ (2006a) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP-glucose pyrophosphorylase. Mol Breeding 17: 269–279

    Google Scholar 

  • Park S, Cohen JD, and Slovin JP (2006b) Strawberry fruit with a novel indole-acyl modification. Planta 224: 1015–1022

    Google Scholar 

  • Perkins Veazie, P (1995) Growth and ripening of strawberry fruit. Hort Rev 17: 267–297

    Google Scholar 

  • Raab T, Lopez-Raez JA, Klein D, Caballero JL, Moyano E, Schwab W, and Muñoz-Blanco J (2006) FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18: 1023–1037

    CAS  PubMed  Google Scholar 

  • Rajashekar CB, Zhou H, Marcum KB, and Prakash O (1999) Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants. Plant Sci 148: 175–183

    CAS  Google Scholar 

  • Redondo-Nevado J, Moyano E, Medina-Escobar N, Caballero JL, and Muñoz-Blanco J (2001) A fruit-specific and developmentally regulated endopolygalacturonase gene from strawberry (Fragaria x ananassa cv. Chandler). J Exp Bot 52: 1941–1945

    CAS  PubMed  Google Scholar 

  • Rosin FM, Aharoni A, Salentijn EMJ, Schaart JG, Boone MJ, and Hannapel DJ (2003) Expression patterns of a putative homolog of AGAMOUS, STAG1, from strawberry. Plant Sci 165: 959–968

    CAS  Google Scholar 

  • Rosli HG, Civello PM, and Martínez GA (2004) Changes in cell wall composition of three Fragaria x ananassa cultivars with different softening rate during ripening. Plant Physiol Biochem 42: 823–831

    CAS  PubMed  Google Scholar 

  • Salentjin EMJ, Aharoni A, Schaart JG, Boone MJ, and Krens FA (2003) Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness. Physiol Plant 118: 571–578

    Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, and Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109: 1385–1391

    CAS  PubMed  Google Scholar 

  • Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, and Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112: 1349–1359

    CAS  PubMed  Google Scholar 

  • Sargent DJ, Rys A, Nier S, Simpson DW, and Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114: 373–384

    CAS  PubMed  Google Scholar 

  • Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW, Tobutt KR, and Monfort A (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51: 120–127

    CAS  PubMed  Google Scholar 

  • Schaart JG, Mehli L, and Schouten HJ (2005) Quantification of allele-specific expression of a gene encoding strawberry polygalacturonase-inhibiting protein (PGIP) using Pyrosequencing. Plant J 41: 493–500

    CAS  PubMed  Google Scholar 

  • Schieberle P, Hofmann T (1997) Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J Agric Food Chem 45: 227–232

    CAS  Google Scholar 

  • Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56: 627–629

    CAS  PubMed  Google Scholar 

  • Shaw D (1988) Genotypic variation and genotypic correlations for sugars and organic acids of strawberries. J Am Soc Hortic Sci 113: 770–774

    CAS  Google Scholar 

  • Shaw DV, Hansen J, Browne GT, and Shaw SM (2008) Components of genetic variation for resistance of strawberry to Phytophthora cactorum estimated using segregating seedling populations and their parent genotypes. Plant Pathol 57: 210–215

    Google Scholar 

  • Smith BJ, Galletta GJ, and Gupton CL (1996) USDA-ARS strawberry resistance breeding, disease biology, and management progress. In: Proceedings of IV North American Strawberry Conference. University of Florida, Gainesville, FL, pp 253–258

    Google Scholar 

  • Sugimoto T. Tamaki K, Matsumoto J, Yamamoto Y, Shiwaku K, and Watanabe K (2005) Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breed 124: 498–501

    CAS  Google Scholar 

  • Takeda T, Tamura M, Ohtaki M, and Matsuoka H (2003) Gene expression in cultured strawberry cells subjected to hydrodynamic stress. Biochem Eng J 15: 211–215

    CAS  Google Scholar 

  • Trainotti L, Spinello R, Piovan A, Spolaore S, Casadoro G, Schultz DJ, Craig R, Cox-Foster DL, Mumma RO, and Medford JI (2001) Beta-galactosidases with a lectin-like domain are expressed in strawberry. J Exp Bot 52: 1635–1645

    CAS  PubMed  Google Scholar 

  • Trainotti L, Pavanello A, and Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56: 2037–2046

    CAS  PubMed  Google Scholar 

  • Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, de Vos CH, Capanoglu E, Bovy A, and Battino M (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agric Food Chem 56: 696–704

    CAS  PubMed  Google Scholar 

  • Ulrich D, Komes D, Olbricht K, and Hoberg E (2007) Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet Resour Crop Evol 54: 1185–1196

    CAS  Google Scholar 

  • van de Weg WE (1997) Gene-for-gene relationships between strawberry and the causal agent of red stele root rot, Phytophthora fragariae var. fragariae. PhD Thesis, University of Wageningen, The Netherlands, 93 p

    Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5: 361–380

    CAS  PubMed  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5: 380–386

    CAS  PubMed  Google Scholar 

  • Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48: 140–146

    CAS  PubMed  Google Scholar 

  • Wang J, Ge H, Peng S, Zhang H, Chen P, and Xu J (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Hort Sci Biotech 79: 735–738

    CAS  Google Scholar 

  • Wang SY, Chen CT, Wang CY, and Chen P (2007) Resveratrol content in strawberry fruit is affected by preharvest conditions. J Agric Food Chem 55: 8269–8274

    CAS  PubMed  Google Scholar 

  • Warabieda W, Miszczak A, and Olszak RW (2005) The influence of methyl jasmonate (JA-Me) and B-glucosidase on induction of resistance mechanisms of strawberry against two-spotted spider mite (Tetranychus urticae Koch.). Commun Agric Appl Biol Sci 70: 829–836

    CAS  PubMed  Google Scholar 

  • Weebadde CK, Wang D, Finn CE, Lewers KS, Luby JJ, Bushakra J, Sjulin TM, Hancock JF (2008) Using a linkage mapping approach to identify QTL for day-neutrality in the octoploid strawberry. Plant Breeding 127: 94–101

    Google Scholar 

  • Wein M, Lavi N, Lunkenbein S, Lewinsohn E, Schwab W, and Kaldenhoff R (2002) Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J 31: 755–765

    CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, and Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393: 365–369

    CAS  PubMed  Google Scholar 

  • Winterbottom CQ (1991) Resistance of strawberry to Colletotrichum acutatum. Master of Science Thesis, University of Davis, California, USA, 69 p

    Google Scholar 

  • Wisemann NJ, Turnbull CGN (1999) Endogenous gibberellin content does not correlate with photoperiod-induced growth changes in strawberry petioles. Aust J Plant Physiol 26: 359–366

    Google Scholar 

  • Woolley L, James D, and Kenneth M (2001) Purification and properties of an endo-beta-1,4-glucanase from strawberry and downregulation of the corresponding gene, cel1. Planta 214: 11–21

    CAS  PubMed  Google Scholar 

  • Xie M, Chen JW, Qin QP, Jiang GH, Sun CB, Zhang HQ, and Xu HX (2007) (translated title from Chinese) The control of sugar accumulation within strawberry aggregate fruit by invertase and hexokinase. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33: 213–218

    CAS  PubMed  Google Scholar 

  • Xue S, Bors RH, and Strelkov SE (2006) Resistance sources to Xanthomonas fragariae in non-octoploid strawberry species. HortScience 40: 1653–1656

    Google Scholar 

  • Yubero-Serrano EM, Moyano E, Medina-Escobar N, Muñoz-Blanco J, and Caballero JL (2003) Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot 54: 1865–1877

    CAS  PubMed  Google Scholar 

  • Zebrowska J, Hortyński J, Cholewa T, and Honcz K (2006) Resistance to Verticillium dahliae (Kleb.) in the strawberry breeding lines. Commun Agric Appl Biol Sci 71: 1031–1036

    CAS  PubMed  Google Scholar 

  • Zhang Y, Shih DS (2007) Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. J Plant Physiol 164: 68–77

    CAS  PubMed  Google Scholar 

  • Zheng Q, Song J, Doncaster K, Rowland E, and Byers DM (2007) Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. J Agric Food Chem 55: 1663–1673

    CAS  PubMed  Google Scholar 

  • Zuidmeer L, Salentijn E, Rivas MF, Mancebo EG, Asero R, Matos CI, Pelgrom KTB, Gilissen LJWJ, and van Ree R (2006) The role of profilin and lipid transfer protein in strawberry allergy in the Mediterranean area. Clin Exp Allergy 36: 666–675.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwab, W., Schaart, J.G., Rosati, C. (2009). Functional Molecular Biology Research in Fragaria . In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_22

Download citation

Publish with us

Policies and ethics