Advertisement

Strawberry (Fragaria spp.) Structural Genomics

  • Daniel J. Sargent
  • Thomas M. Davis
  • David W. Simpson
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The genus Fragaria has a basic chromosome number of seven (x=7) (Ichijima, 1926), and four main fertility groups are recognized: the diploids (2n=2x=14) which include the model species for the genus, F. vesca, (Oosumi et al., 2006) amongst the 14 described species; the tetraploids (2n=4x=28) including F. orientalis; the single hexaploid species F. moschata (2n=6x=42); and four octoploid species (2n=8x=56): F. chiloensis, F. iturupensis, F. virginiana and the hybrid cultivated strawberry, F. ×ananassa.

Keywords

Linkage Group Cleave Amplify Polymorphic Sequence Scar Marker Amplify Fragment Length Polymorphism Intron Length Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akiyama Y, Yamamoto Y, Ohmido N, Oshima M, and Fukui K (2001) Estimation of the nuclear DNA content of strawberries (Fragaria spp.) compared with Arabidopsis thaliana by using dual-step flow cytometry. Cytologia 66: 431–436Google Scholar
  2. Albani MC, Battey NH, and Wilkinson MJ (2004) The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theoretical and Applied Genetics 109: 571–579CrossRefPubMedGoogle Scholar
  3. Arnau G, Lallemand J, and Bourgoin M (2003) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129: 69–79.CrossRefGoogle Scholar
  4. Arulsekar S, and Bringhurst RS (1981) Genetic model for the enzyme marker PGI in diploid California Fragaria vesca Its variability and use in elucidating the mating system. Journal of Heredity 72: 117–120Google Scholar
  5. Arulsekar S, Bringhurst RS, and Voth V (1981) Inheritance of PGI and LAP isozymes in octoploid cultivated strawberries. Journal of the American Society for Horticultural Science 106:679–683Google Scholar
  6. Arulsekar S, and Bringhurst RS (1983) Strawberry. In: Tanksley SD, Orton TJ (eds). Isozymes in Plant Genetics and Breeding, Vol. Part B. Elsevier Science Publishers, Amsterdam, pp. 391–400Google Scholar
  7. Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, and Ashman TL (2003) High variability and disomic segregation of microsatellites in octoploid Fragaria virginiana Mill. (Rosaceae). Theoretical and Applied Genetics 107: 1201–1207CrossRefPubMedGoogle Scholar
  8. Bassil NV, Gunn M, Folta K, and Lewers K (2006) Microsatellite markers for Fragaria from ‘Strawberry Festival’ expressed sequence tags. Molecular Ecology Notes 6: 473–476.CrossRefGoogle Scholar
  9. Bennett MD, Leitch IJ, Price HJ, and Johnston JS (2003) Comparisons with Caenorhabditis (∼ 100 Mb) and Drosophila (∼ 175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25 % larger than the Arabidopsis genome initiative estimate of ∼125 Mb. Annals of Botany 91: 547–557CrossRefPubMedGoogle Scholar
  10. Bors RH, and Sullivan JA (2005a) Interspecific hybridization of Fragaria moschata with two diploid species, F. nubicola and F. viridis. Euphytica 143: 201–207Google Scholar
  11. Bors RH, and Sullivan JA (2005b) Interspecific hybridization of Fragaria vesca subspecies with F. nilgerrensis, F. nubicola, F. pentaphylla, and F. viridis. Journal of the American Society for Horticultural Science 130: 418–423Google Scholar
  12. Bringhurst RS, and Khan DA (1963) Natural pentaploid Fragaria chiloensis-F. vesca hybrids in coastal California and their significance in polyploid Fragaria evolution. American Journal of Botany 50: 658–661CrossRefGoogle Scholar
  13. Bringhurst RS, Arulsekar S, Hancock JF, and Voth V (1981) Electrophoretic characterization of strawberry cultivars. Journal of the American Society for Horticultural Science 106:684–687Google Scholar
  14. Bringhurst RS (1990) Cytogenetics and Evolution in American Fragaria. Hortscience 25: 879–881.Google Scholar
  15. Brown T, and Wareing PF (1965). The genetical control of the everbearing habit and three other characters in varieties of Fragaria vesca. Euphytica 14: 97–112Google Scholar
  16. Byrne D, and Jelenković G (1976) Cytological diploidization in the cultivated strawberry Fragaria ×ananassa. Canadian Journal of Genetics Cytology 18:653–659Google Scholar
  17. Carrasco B, Garcés M, Rojas P, Saud G, Herrera R, Retamales JB, and Caligari PDS (2007) The Chilean strawberry [Fragaria chiloensis (L.) Duch.]: genetic diversity and structure. Journal of the American Society for Horticultural Science 132: 501–506Google Scholar
  18. Cipriani G, and Testolin R (2004) Isolation and characterization of microsatellite loci in Fragaria. Molecular Ecology Notes 4: 366–368CrossRefGoogle Scholar
  19. Cipriani G, Pinosa F, Bonoli M, and Faedi W (2006) A new set of microsatellite markers for Fragaria species and their application in linkage analysis. Journal of Horticultural Science and Biotechnology 81: 668–675Google Scholar
  20. Congiu L, Chicca M, Cella R, Rossi R, and Bernacchia G (2000) The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: A forensic application. Molecular Ecology 9: 229–232CrossRefPubMedGoogle Scholar
  21. Davis TM, Yu H, Haigis KM, and McGowan PJ (1995) Template mixing – a method of enhancing detection and interpretation of codominant RAPD markers. Theoretical and Applied Genetics 91: 582–588CrossRefGoogle Scholar
  22. Davis TM, and Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. Journal of Heredity 88: 215–221Google Scholar
  23. Davis TM, DiMeglio LM, Yang RH, Styan SMN, and Lewers KS (2006a) Assessment of SSR transfer from the cultivated strawberry to diploid strawberry species: Functionality, linkage group assignment, and use n diversity analysis. Journal of the American Society for Horticultural Science 131: 506–512Google Scholar
  24. Davis TM, Bennetzen JL, Pontaroli AC, San Miguel P, Folta KM, Tombolato DCM, Shields M, and Zhang Q (2006b) Sequence samples from the diploid strawberry model species, Fragaria vesca. In: Plant and Animal Genomes XIV Conference, San Diego, CA, USA, P27 – Genome Sequencing & ESTsGoogle Scholar
  25. Davis TM, Shields ME, Zhang Q, Tombolato D, and Folta KM (2007a) Gene pair markers: An innovative tool for comparative linkage mapping in the rosaceae family and in other taxa with small genomes. In: Plant and Animal Genomes XV Conference, San Diego, CA, USA, p. 193.Google Scholar
  26. Davis TM , Denoyes-Rothan B, and Lerceteau-Kohler E (2007b) Strawberry. In: Kole C (ed) Genome Mapping & Molecular Breeding in Plants Vol. 4: Fruits and Nuts. Springer, Heidelberg, Berlin, New York, TokyoGoogle Scholar
  27. Davis TM, Folta, KM, Shields, M, and Zhang Q (2008) Gene pair markers: An innovative tool for comparative linkage mapping. In: Takeda F, Handley DT, and Poling EB (ed.). Proceedings of 2007 N. American Strawberry Symposium. North American Strawberry Growers Association, Kemptville, ON Canada, pp. 105–107Google Scholar
  28. Debnath SC, Khanizadeh S, Jamieson AR, and Kempler C (2008) Inter simple sequence repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. Canadian Journal of Plant Science 88: 313–322Google Scholar
  29. Degani C, Rowland LJ, Saunders JA, Hokanson SC, Ogden EL, Golan-Goldhirsh A, and Galletta GJ,(2001) A comparison of genetic relationship measures in strawberry (Fragaria × ananassa Duch.) based on AFLPs, RAPDs, and pedigree data. Euphytica 117: 1–12CrossRefGoogle Scholar
  30. Deng C, and Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: A candidate gene approach. Theoretical and Applied Genetics 103: 316–322CrossRefGoogle Scholar
  31. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, and Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America 101: 9891–9896Google Scholar
  32. Evans, WD (1964) Cytogenetic investigations in the genus Fragaria. PhD Thesis. The Univerity of Reading, UKGoogle Scholar
  33. Fedorova, NJ, (1946) Crossability and phylogenetic relations in the main European species of Fragaria. Compilation of the National Academy of Sciences USSR 52: 545–547Google Scholar
  34. Folta KM, and Davis TM (2006) Strawberry genes and genomics. Critical Reviews in Plant Sciences 25: 399–415CrossRefGoogle Scholar
  35. Gidoni D, Rom M, Kunik T, Zur M, Izsak E, Izhar S, and Firon N (1994) Strawberry-cultivar identification using Randomly Amplified Polymorphic DNA (RAPD) markers. Plant Breeding 113: 339–342CrossRefGoogle Scholar
  36. Gil-Ariza DJ, Amaya I, Botella MA, Muñoz Blanco, J, Caballero JL, López-Aranda JM, Valpuesta V, and Sánchez-Sevilla JF (2006) EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria × ananassa) are useful for diversity studies and varietal identification among Fragaria species. Molecular Ecology Notes 6: 1195–1197CrossRefGoogle Scholar
  37. Graham J, McNichol RJ, and McNichol JW (1996) A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theoretical and Applied Genetics 93: 402–406CrossRefGoogle Scholar
  38. Guttridge GC (1973). Stem elongation and runnering in the mutant strawberry Fragaria vesca L. arborea Staudt. Euphytica 22: 357–361CrossRefGoogle Scholar
  39. Hadonou AM, Sargent DJ, Wilson F, James CM, and Simpson DW (2004) Development of microsatellite markers in Fragaria, their use in genetic diversity analysis and their potential for genetic linkage mapping. Genome 47: 429–438CrossRefPubMedGoogle Scholar
  40. Hancock JF, and Bringhurst RS (1978) Inter-populational differentiation and adaptation in perennial, diploid species Fragaria-vesca l. American Journal of Botany 65: 795–803CrossRefGoogle Scholar
  41. Hancock JF, and Bringhurst RS (1979) Ecological differentiation in perennial, octoploid species of Fragaria. American Journal of Botany 66: 367–375CrossRefGoogle Scholar
  42. Hancock JF, (1999) Strawberries. CABI Publishing, Oxon, UK, pp. 25–46Google Scholar
  43. Harrison RE, Luby JJ, and Furnier GR (1997a) Chloroplast DNA restriction fragment variation among strawberry (Fragaria spp.) taxa. Journal of the American Society for Horticultural Science 122: 63–68Google Scholar
  44. Harrison RE, Luby JJ, Furnier GR, and Hancock JF (1997b) Morphological and molecular variation among populations of octoploid Fragaria virginiana and F. chiloensis (Rosaceae) from North America. American Journal of Botany 84: 612–620Google Scholar
  45. Harrison RE, Luby JJ, Furnier GR, and Hancock JF (2000) Differences in the apportionment of molecular and morphological variation in North American strawberry and the consequences for genetic resource management. Genetic Resources and Crop Evolution 47: 647–657CrossRefGoogle Scholar
  46. Haymes KM, Henken B, Davis TM, and van de Weg WE (1997) Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theoretical and Applied Genetics 94:1097–1101CrossRefGoogle Scholar
  47. Haymes KM, van de Weg WE, Arens P, Maas JL, Vosman B, and Den Nijs APM (2000) Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and North American strawberry genotypes. Journal of the American Society for Horticultural Science 125: 330–339Google Scholar
  48. Hokanson SC, and Maas JL (2001). Strawberry biotechnology. Plant Breeding Reviews 21: 139–180.Google Scholar
  49. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, and Arús P (2005) Mapping with a few plants: Using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171: 1305–1309CrossRefPubMedGoogle Scholar
  50. Ichijima K (1926) Cytological and genetic studies on Fragaria. Genetics 11: 590–603PubMedGoogle Scholar
  51. Iwatsubo Y, and Naruhashi N (1989) Karyotypes of three species of Fragaria (Rosaceae). Cytologia 54: 493–497Google Scholar
  52. Iwatsubo Y, and Naruhashi N (1991) Karyotypes of Fragaria nubicola and F. daltoniana (Rosaceae). Cytologia 56: 453–457Google Scholar
  53. James CM, Wilson F, Hadonou AM, and Tobutt KR (2003) Isolation and characterization of polymorphic microsatellites in diploid strawberry (F. vesca L.) for mapping, diversity studies and clone identification. Molecular Ecology Notes 3: 171–173CrossRefGoogle Scholar
  54. Jones JK (1955) Cytogenetic Studies in the Genera Fragaria and Potentilla. PhD Thesis, Manchester University, UKGoogle Scholar
  55. Konieczny A, and Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant Journal 4: 403–410CrossRefPubMedGoogle Scholar
  56. Korbin M, Kuras A, and Zurawicz E (2002) Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cellular and Molecular Biology Letters 7: 785–794PubMedGoogle Scholar
  57. Kunihisa M, Fukino N, and Matsumoto S (2003) Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134: 209–215CrossRefGoogle Scholar
  58. Kunihisa M, Fukino N, and Matsumoto S (2005) CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fragaria × ananassa Duch.) cultivars, and their disomic inheritance. Theoretical and Applied Genetics 110: 1410–1418CrossRefPubMedGoogle Scholar
  59. Kuras A, Korbin M, and Zurawicz E (2004) Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria × ananassa Duch.) relationship. Plant Cell Tissue and Organ Culture 79: 189–193CrossRefGoogle Scholar
  60. Lei JJ, Li YH, Du GD, Dai HP, and Deng MQ (2005) A natural pentaploid strawberry genotype from the Changbai Mountains in northeast China. HortScience 40: 1194–1195Google Scholar
  61. Leister RT, Ausubel FM, and Katagiri F (1996) Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proceedings of the National Academy of Sciences of the United States of America 93: 15497–15502Google Scholar
  62. Lerceteau-Köhler E, Guerin G, Laigret F, and Denoyes-Rothan B (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria x ananassa) using AFLP mapping. Theoretical and Applied Genetics 107:619–628CrossRefPubMedGoogle Scholar
  63. Lerceteau-Köhler E, Guerin G, and Denoyes-Rothan B (2005) Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theoretical and Applied Genetics 111: 862–870CrossRefPubMedGoogle Scholar
  64. Lewers KS, Styan SMN, Hokanson SC, and Bassil NV (2005) Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. Journal of the American Society for Horticultural Science 130: 102–115.Google Scholar
  65. Lim KY (2004) Karyotype and ribosomal gene mapping in Fragaria vesca L. Acta Horticulturae 649: 103–106Google Scholar
  66. Lin J, and Davis TM (2000) S1 analysis of long PCR heteroduplexes: detection of chloroplast indel polymorphisms in Fragaria. Theoretical and Applied Genetics 101: 415–420CrossRefGoogle Scholar
  67. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, and King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theoretical and Applied Genetics 97: 60–73CrossRefGoogle Scholar
  68. Martinez-Zamora MG, Castagnaro AP, and Diaz Ricci JC (2004) Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Molecular Genetics and Genomics 272: 480–487CrossRefPubMedGoogle Scholar
  69. Milella L Saluzzi D, Lapelosa M, Bertino G, Spada P, Greco I, and Martelli G (2006) Relationships between an Italian strawberry ecotype and its ancestor using RAPD markers. Genetic Resources and Crop Evolution 53: 1715–1720CrossRefGoogle Scholar
  70. Monfort A, Vilanova S, Davis TM, and Arus P (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria ×ananassa. Molecular Ecology Notes 6: 197–200CrossRefGoogle Scholar
  71. Nier S, Simpson DW, Tobutt KR, and Sargent DJ (2006) Construction of a genetic linkage map of an interspecific diploid Fragaria BC1 mapping population (F. vesca 815 x [F. vesca 815 x F. viridis 903]) and its comparison to the Fragaria reference map (FVxFN). Journal of Horticultural Science and Biotechnology 81: 645–650Google Scholar
  72. Noguchi Y, Mochizuki T, and Sone K (2002) Breeding of a new aromatic strawberry by interspecific hybridization Fragaria ×ananassa x F. nilgerrensis. Journal of the Japanese Society for Horticultural Science 71: 208–213CrossRefGoogle Scholar
  73. Nourse SM, Fickus EW, Cregan PB, and Hokanson SC (2002) Development of simple sequence repeat (SSR) molecular markers in strawberry. In: Hokanson SC, Jamieson AR (eds). Strawberry Research to 2001. ASHS Press, Alexandria, VA, 48–53Google Scholar
  74. Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, and Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223: 1219–1230CrossRefPubMedGoogle Scholar
  75. Porebski S, and Catling PM (1998) RAPD analysis of the relationship of North and South American subspecies of Fragaria chiloensis. Canadian Journal of Botany-Revue Canadienne de Botanique 76: 1812–1817CrossRefGoogle Scholar
  76. Potter D, Luby, JJ, and Harrison, RE (2000) Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Systematic Botany 25: 337–348CrossRefGoogle Scholar
  77. Rajesh PN, Tekeoglu M, Gupta VS, Ranjekar PK, and Muehlbauer FJ (2002) Molecular mapping and characterization of an RGA locus RGAPtokin 1–2171 in chickpea. Euphytica 128: 427–433CrossRefGoogle Scholar
  78. Richardson CW (1914) A preliminary note on the genetics of Fragaria. Journal of Genetics 3: 171–177CrossRefGoogle Scholar
  79. Richardson CW (1918) A further note on the genetics of Fragaria. Journal of Genetics 7: 167–170CrossRefGoogle Scholar
  80. Richardson CW (1920). Some notes on Fragaria. Journal of Genetics 10: 39–46CrossRefGoogle Scholar
  81. Richardson CW (1923) Notes on Fragaria. Journal of Genetics 13: 147–152CrossRefGoogle Scholar
  82. Rousseau-Gueutin M, Barrot, L, Lerceteau-Köhler E, Sargent DJ, Monfort A, Simpson DW, Arús P, and Denoyes-Rothan B (submitted) Comparative genetic mapping of diploid and octoploid Fragaria (strawberry) revealing essentially disomic behavior of the octoploid genome and complete synteny between species. Genetics (submitted)Google Scholar
  83. Sargent DJ, Hadonou AM, and Simpson DW (2003) Development and characterisation of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Molecular Ecology Notes 3: 550–552CrossRefGoogle Scholar
  84. Sargent DJ, Geibel M, Hawkins JA, Wilkinson MJ, Battey NH, and Simpson DW (2004a) Quantitative and qualitative differences in morphological traits revealed between diploid Fragaria species. Annals of Botany 94: 787–796Google Scholar
  85. Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, and Simpson DW (2004b) A genetic linkage map of microsatellite, gene specific and morphological markers in diploid Fragaria. Theoretical and Applied Genetics 109: 1385–1391Google Scholar
  86. Sargent DJ (2005) A genetic investigation of diploid Fragaria. PhD thesis, The University of Reading pp. 223Google Scholar
  87. Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, and Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theoretical and Applied Genetics 112: 1349–1359CrossRefPubMedGoogle Scholar
  88. Sargent DJ, Rys A, Nier S, Simpson DW, and Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theoretical and Applied Genetics 114: 373–384CrossRefPubMedGoogle Scholar
  89. Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW, Tobutt KR, and Monfort A (2008). The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51: 120–127.CrossRefPubMedGoogle Scholar
  90. Senanayake YDA, and Bringhurst RS (1967) Origin of Fragaria polyploids I. Cytological analysis. American Journal of Botany 54: 221–228CrossRefGoogle Scholar
  91. Shimomura K, and Hirashima K (2006) Development and characterization of simple sequence repeats (SSR) as markers to identify strawberry cultivars (Fragaria × ananassa Duch.) Journal of the Japanese Society for Horticultural Science 75: 399–402CrossRefGoogle Scholar
  92. Staudt G (2006) Himalayan species of Fragaria (Rosaceae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 126:483–508CrossRefGoogle Scholar
  93. Staudt G, DiMeglio LM, Davis TM, and Gerstberger P (2003) Fragaria ×bifera Duch.: Origin and taxonomy. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 125: 53–72CrossRefGoogle Scholar
  94. Sugimoto T, Tamaki K, Matsumoto J, Yamamoto Y, Shiwaku K, and Watanabe K (2005) Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breeding 124: 498–501CrossRefGoogle Scholar
  95. Tyrka M, Dziadczyk P, and Hortynski JA (2002) Simplified AFLP procedure as a tool for identification of strawberry cultivars and advanced breeding lines. Euphytica 125: 273–280CrossRefGoogle Scholar
  96. van de Weg WE, Voorips RE, Finkers R, Kodde LP, Jansen J, and Bink MCAM (2004) Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Horticulturae 663: 45–50Google Scholar
  97. Vilanova S, Arús P, Sargent DJ, and Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biology 8:67CrossRefPubMedGoogle Scholar
  98. Viruel MA, Sánchez D, and Arús P (2002) An SSR and RFLP linkage map for the octoploid strawberry (Fragaria x ananassa). In: Plant, Animal and Microbe Genomes. 10th Conference, San Diego, California, USA. http://www.intl-pag.org/pag/10/abstracts/PAGX_p660.html
  99. Vision TJ, Brown DG, Shmoys DB, Durrett RT, and Tanksley SD (2000) Selective mapping: A strategy for optimizing the construction of high-density linkage maps. Genetics 155: 407–420PubMedGoogle Scholar
  100. Weebadde CK, Wang D, Finn CE, Lewers KS, Luby JJ, Bushakra J, Sjulin TM, and Hancock JF (2008) Using a linkage mapping approach to identify QTL for day-neutrality in the octoploid strawberry. Plant Breeding 127: 94–101.Google Scholar
  101. Williamson SC, Yu H, and Davis,TM (1995) Shikimate dehydrogenase allozymes: Inheritance and close linkage to fruit color in diploid strawberry. Journal of Heredity 86: 74–76Google Scholar
  102. Wolyn DJ, and Jelenković G (1990) Nucleotide-Sequence of an Alcohol-Dehydrogenase Gene in Octoploid Strawberry (Fragaria × ananassa Duch). Plant Molecular Biology 14: 855–857CrossRefPubMedGoogle Scholar
  103. Yarnell SH (1928) Notes on the somatic chromosomes of the seven-chromosome group of Fragaria. Genetics 14: 78–83Google Scholar
  104. Yu H, and Davis TM (1995) Genetic linkage between runnering and phosphoglucoisomerase allozymes, and systematic distortion of monogenic segregation ratios in diploid strawberry. Journal of the American Society for Horticultural Science 120: 687–690Google Scholar
  105. Zhang Z, Fukino N, Mochizuki T, and Matsumoto S (2003) Single-copy RAPD marker loci undetectable in octoploid strawberry. Journal of Horticultural Science and Biotechnology 78: 689–694.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Daniel J. Sargent
    • 1
  • Thomas M. Davis
    • 1
  • David W. Simpson
    • 1
  1. 1.East Malling ResearchUK

Personalised recommendations