Skip to main content

Strawberry Genomics: Botanical History, Cultivation, Traditional Breeding, and New Technologies

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

The Origin of Strawberries – Cherokee Nation

When first man was created, he lived with the mate Creator gave him. When they began to quarrel, first woman left her husband. The man followed, sad and crying, but first woman kept going and never looked behind. Unetlanv, the Creator, took pity on first man and asked him if he was still angry with his wife. He said he wasn’t, so Unetlanv asked him if he would like to have her back. He answered, ‘yes!’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni A, Giri A., Verstappen F, Bertea C, Sevenier R, Sun Z, Jongsma M, Schwab W, and Bouwmeester H (2004). Gain and loss of fruit flavor compounds produced by wild and cultivated species. Plant Cell 16: 3110–3131

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Keizer L, Bouwmeester H, Sun Z, Alvarez-Huerta M, Verhoeven H, Blaas J, van Houweilingen A, De Vos C, van der Voet H, Jansen R, Guis M, Mol J, Davis R, Schena M, van Tunen A, and O’Connell A (2000). Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12: 647–661

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Yamamoto Y, Ohmido N, Oshima M, and Fukui K (2001). Estimation of the nuclear DNA content of strawberries (Fragaria spp.) compared with Arabidopsis thaliana by using dual-step flow cytometry. Cytologia 66: 431–436

    Google Scholar 

  • Arulsekar S, and Bringhurst RS, (1981). Genetic model for the enzyme marker PGI in diploid California Fragaria vesca. J. Hered. 73: 117–120

    Google Scholar 

  • Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, and Ashman TL (2003). High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor. Appl. Genet. 107: 1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Bors B, and Sullivan JA (1998). Interspecific crossability of nine diploid Fragaria species. HortScience 32: 439

    Google Scholar 

  • Bringhurst RS, and Senanayake YDA (1966). The evolutionary significance of natural Fragaria chiloensis x F. vesca hybrids resulting from unreduced gametes. Amer. J. Bot. 53: 1000–1006

    Article  Google Scholar 

  • Bringhurst RS, Voth V, and Shaw D (1990). University of California strawberry breeding. HortScience 25:834

    Google Scholar 

  • Cherokee Nation (2007). http://www.cherokee.org/home.aspx?section=culture&culture=culinfo&cat=PdWeE5zX1DE=&ID=drv5fzSkUvg= accessed 19 July 2007

  • Dai H, Lei J, and Deng M (2007). Investigation and studies on classification of wild Fragaria spp. distributed in the Changbai Mountains. Acta Horticulturae Sinica 34(1):63–66 [in Chinese with English summary]

    Google Scholar 

  • Darrow GM (1966). The Strawberry. History, Breeding and Physiology. Holt, Rinehart and Winston, New York, 447 pp

    Google Scholar 

  • Davis TM, DeMeglio LM, Yang R, Styan SMN, and Lewers KS (2006). Assessment of SSR Marker Transfer from the cultivated strawberry to diploid strawberry species:functionality, linkage group assignment, and use in diversity analysis. J. Amer. Soc. Hort. Sci. 131(4):506–512

    CAS  Google Scholar 

  • Davis TM, and Yu H (1997). A linkage map of the diploid strawberry, Fragaria vesca. J. Hered. 88:215–221

    CAS  Google Scholar 

  • Degener O (1975). Plants of Hawaii National Park Illustrative of Plants and Customs of the South Seas. Braun-Brumfield, Inc., Ann Arbor, MI, 316 pp

    Google Scholar 

  • Dirinck PJ, De Pooter HL, Willaert GA, and Schamp NM (1981). Flavor of cultivated strawberries: The role of the sulfur compounds. J. Sci. Food Agric. 29: 316–321

    Article  CAS  Google Scholar 

  • Ellis JR (1989). Frel. US Plant Patent http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=PP07,598.PN.&OS=PN/PP07,598&RS=PN/PP07,598

  • Eriksson T, Hibbs MS, Yoder AD, Delwiche CF, and Donoghue MJ (2003). The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. Int. J. Plant Sci. 164: 197–211

    Article  CAS  Google Scholar 

  • FAO (2007). Food and Agriculture. http://faostat.fao.org/site/339/default.aspx Accessed 19 July 2007

  • Federova NJ (1946). Crossibility and phylogenetic relations in the main European species of Fragaria Compt. Rend (Doklady) Acad. Sci. USSR. 30:545–547

    Google Scholar 

  • Fletcher SW (1917) The Strawberry in North America: History, Origin, Botany and Breeding. The Macmillan Company, New York

    Google Scholar 

  • Folta KM, and Davis TM (2006). Strawberry genes and genomics. Crit. Rev. Plant Sci. 25:399–413

    Article  CAS  Google Scholar 

  • Forney CF, and Breen PJ (1985). Dry matter partitioning and assimilation in fruiting and deblossomed strawberry. J. Amer. Soc. Hort. Sci. 110:181–185

    Google Scholar 

  • Hadonou A, Sargent MDJ, Wilson F, James CM, and Simpson DW (2004). Development of microsatellite markers in Fragaria their use in genetic diversity analysis and their potential for genetic linkage mapping. Genome 47:429–438

    Article  CAS  PubMed  Google Scholar 

  • Hammer K, and Pistrick K (2003). New versus old scientific names in strawberries (Fragaria L.). Genet. Resour. Crop Evol. 50(7):789–791

    Article  Google Scholar 

  • Hancock JF (1999). Strawberries. CABI Pub. University Press, Cambridge, MA, 237 pp

    Google Scholar 

  • Hancock JF, Soong GQ, and Sink KC (2008) Berry Crops. In: Kole C and Hall TC (eds) A Compendium of Transgenic Crop Plants. Vol. 4. Wiley- Blackwell. (In press)

    Google Scholar 

  • Harrison RE, Luby JJ, and Furnier GR (1997). Chloroplast DNA restriction fragment variation among strawberry (Fragaria spp.) taxa. J. Amer. Soc. Hort. Sci. 122:63–68

    Google Scholar 

  • Hedrick UP (1919). Sturtevant’s Edible Plants of the World. J. B. Lyon, Albany, NY

    Google Scholar 

  • Hedrick UP (1925). The Small Fruits of New York. J. B. Lyon, Albany, NY

    Google Scholar 

  • Hemphill R, and Martin LH (1992). Microwave oven-drying method for determining soluble solids in strawberries. HortScience 27:1326

    Google Scholar 

  • Hirvi T (1983). Mass fragmentographic and sensory analysis in the evaluation of the aroma of some strawberry cultivars. Lebensn. Wiss. Technol. 16:157–161

    CAS  Google Scholar 

  • Hirvi T, and Honkanen E (1982). The volatiles of two new strawberry cultivars, “Annelie” and Alaska Pioneer obtained by backcrossing of cultivated strawberries with wild strawberries, Fragaria vesca, Rügen and Fragaria virginiana. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 175: 113–116

    Article  CAS  Google Scholar 

  • Hodgson J (2007). Evolution of sequencing technology. Science. May 11, 2007. 316:846a pullout-poster

    Google Scholar 

  • Hokanson S, and Maas JL (2001). Strawberry biotechnology. In: Janick, J. (ed.) Plant Breeding Reviews, Vol. 21. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Hultén E (1927–1930) Flora of Kamchatka and the adjacent islands. Kungl. Svenska Vet. Akad. Handl., (1927)5(1): 1–346; (1928). 8(3): 1–213; (1930). 8(4), 1–358 [in Russian]

    Google Scholar 

  • Hultén E, (1968). Flora of Alaska and Neighboring Territories. A Manual of the Vascular Plants. Stanford University Press, Stanford, CA

    Google Scholar 

  • Kader AA (1991). Quality and its maintenance in relation to the postharvest physiology of strawberry. In: Luby JJ and Dale A (eds.). The Strawberry into the 21st Century. Timber Press, Portland, OR. pp. 145–152

    Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low- temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346–350

    Article  CAS  PubMed  Google Scholar 

  • Larsen M, and Poll L (1992). Odour thresholds of some important aroma compounds in strawberries. Zeitschrift für Lebensmittel- Untersuchung und-Forschung 195: 120–123

    Article  CAS  Google Scholar 

  • Lerceteau-Köhler E, Guérin G, Laigret F, and Denoyes-Rothan B (2003). Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria x ananassa) using AFLP mapping. Theor. Appl. Genet. 17: 619–628

    Article  Google Scholar 

  • Lei J, Li Y, Du G, Dai H, and Deng, M (2005). A natural pentaploid strawberry genotype from the Changbai Mountains in Northeast China. HortScience 40(5): 1194–1195

    Google Scholar 

  • Lei JJ, Dai HP, Hua TC, Qin DM, Zhao MH, and Qian Y, (2006) Studies of the taxonomy of Strawberry (Fragaria) species distributed in China. Acta Horticulturae Sinica 2006:01. Abstract [in Chinese]

    Google Scholar 

  • Maas JL, Galletta GJ, and Stoner GD (1991). Ellagic acid, an anticarcinogen in fruits, especially strawberry: A review. HortScience 26: 10–14

    Google Scholar 

  • Maas JL, Wang SY, and Galletta GJ (1996). Health enhancing properties of strawberry fruit. In: Pritts MP, Chandler CK, and Crocker TE. Proceedings of the IV. North American Strawberry Conference, Orlando, FL. pp. 11–18

    Google Scholar 

  • Mabberley DJ (2002). Potentilla and Fragaria (Rosaceae) reunited. Telopea 9(4):793–801

    Google Scholar 

  • Makino T (1979). The New Illustrated Flora of Japan. Hokuryukan Co. Ltd., Tokyo

    Google Scholar 

  • Manning K (1998a) Genes for fruit quality in strawberry. In: Cockshull KE, Gray D, Seymour GB and Thomas B (eds.) Genetic and Environmental Manipulation of Horticultural Crops. CAB International, Wallingford, UK. pp. 51–61

    Google Scholar 

  • Manning K (1998b) Genes for fruit quality in strawberry. In: Cockshull KE, Gray D, Seymour GB, and Thomas B (eds.) Genetic and Environmental Manipulation of Horticultural Crops. CAB International, Wallingford, UK, pp. 51–61

    Google Scholar 

  • Melville AH, Galletta GJ, Draper AD, and Ng TJ (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. HortScience 15: 49–750

    Google Scholar 

  • Morrow EB, and Darrow GM. 1952. Effects of limited inbreeding in strawberries. Proc. Amer. Soc. Hort. Sci. 39:262–268

    Google Scholar 

  • Njuguna W, Bassil N, Hummer K, and Davis T (2007). Genetic Diversity of Fragaria iinumae and F. nipponica based on microsatellite markers. HortScience 42(4):915

    Google Scholar 

  • Particka C, and Hancock JF (2005). Field evaluation of strawberry genotypes for tolerance to black root rot in fumigated and nonfumigated soil. J. Amer. Soc. Hort. Sci. 130: 688–693

    Google Scholar 

  • Pérez AG, Olías R, Sanz C, and Olías JM (1996). Furanones in strawberries: Evolution during ripening and postharvest shelf life. J. Agric. Food Chem. 44: 3620–3624

    Article  Google Scholar 

  • Pérez AG, Sanz C, Olías R, Ríos JJ, and Olías JM (1997). Aroma quality evaluation of strawberry cultivars in southern Spain. Acta Hort. 439: 337–340

    Google Scholar 

  • Potter D, Luby J, and Harrison R (2000). Phylogenetic relationships in Fragaria L. (Rosaceae) inferred from non-coding nuclear and chloroplast sequences. Syst. Bot. 25:337–348

    Article  Google Scholar 

  • Pyysalo T, Honkanen E, and Hirvi T (1979). Volatiles of wild strawberries, Fragaria vesca L. compared to those of cultivated strawberries, Fragaria x ananassa ‘Senga sengana.’ J. Agric. Food Chem. 27: 19–22

    Article  CAS  Google Scholar 

  • Ranwala AP, Suematsu C, and Masuda H (1992). Soluble and wall-bound invertases in strawberry fruit. Plant Sci. 84: 59–64

    Article  CAS  Google Scholar 

  • Ritchie JC (1984). Past and present vegetation of the far northwest of Canada. University of Toronto Press. Toronto 251 pp

    Google Scholar 

  • Rousseau-Gueutin M, Gaston A, Aïnouche A, Aïnouche M.L, Olbricht K, Staudt G, Richard L, and Denoyes-Rothan B. (2008). Origin and evolution of the polyploid Fragaria species through phylogenetical analyses of GBSSI and DHAR low-copy nuclear genes. http://www.adelaide.edu.au/acad/events/ accessed 07/07/2008.

  • Sanz C, Pérez AG, and Richardson DG (1994). Simultaneous HPLC determination of 2,5-dimethyl-4-hydroxy-3(2H)-furanon and related flavor components in strawberries. J. Food Sci. 59:139–141

    Article  CAS  Google Scholar 

  • Sargent D, Geibel JM, Hawins JA, Wilkinson MJ, Battey NH, and Simpson DW (2004) Quantitative and Qualitative Differences in Morphological Traits Revealed between Diploid Fragaria Species. Ann. Bot. 94(6):787–796

    Article  PubMed  Google Scholar 

  • Sargent, DJ, Rys A, Nier S, and Simpson DW (2007). The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 114:373–384.

    Article  CAS  PubMed  Google Scholar 

  • Senanayake YDA, and Bringhurst RS (1967). Improved techniques for the induction and isolation of polyploids in the genus Fragaria. Euphytica 25:725–734

    Google Scholar 

  • Scalzo J, Battino M, Costantini E, and Mezzetti B (2005). Breeding and biotechnology for improving berry nutritional quality. BioFactors 23: 213–220

    Article  CAS  PubMed  Google Scholar 

  • Shamaila M, Baumann TE, Eaton GW, Powrie WD, and Skura BJ (1992). Quality attributes of strawberry cultivars grown in British Columbia. J. Food Sci. 57: 696–699

    Article  CAS  Google Scholar 

  • Staudt GS (1989). The species of Fragaria, their taxonomy and geographical distribution. Acta Hort. 265: 23–34

    Google Scholar 

  • Staudt GS (1999a) Systematics and Geographic Distribution of the American Strawberry Species. Vol. 81, University of California Pub. Botany. 162 pp.

    Google Scholar 

  • Staudt GS (1999b). Notes on Asiatic Fragaria species: Fragaria nilgerrensis Schltdl. ex J. Gay. Bot. Jahrb. Syst. 121:297–310.

    Google Scholar 

  • Staudt GS (2003). Notes on Asiatic Fragaria species: III. Fragaria orientalis Losinsk. and Fragaria mandshurica spec. nov. Bot. Jahrb. Syst. 124:397–419

    Article  Google Scholar 

  • Staudt GS (2005). Notes on Asiatic Fragaria species: IV. Fragaria iinumae Makino. Bot. Jahrb. Syst. 126:163–175

    Article  Google Scholar 

  • Staudt, GS (2008). Fragaria iturupensis, a new source for strawberry inprovement? Proceedings of the VI International Strawberry Symposium. Huelva, Spain, abstract 887

    Google Scholar 

  • Staudt GS, and Dickoré WB (2001). Notes on Asiatic Fragaria species: Fragaria pentaphylla Losinsk. and Fragaria tibetica spec. nov. Bot. Jahrb. Syst. 123:341–354

    Google Scholar 

  • Tenllado F, Llave C, and Ramón Díaz-Ruíz J (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102 (1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann T, Kalinowski G, and Schwab W (2006). RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: A rapid assay for gene function analysis. Plant J 48: 818–826

    Article  CAS  PubMed  Google Scholar 

  • Viruel M, Sanchex AS, and Arus P (2002). An SSR and RFLP Linkage Map for the Octoploid Strawberry (Fragaria x ananassa). Plant and Animal Genome X Conference. San Diego, CA (Abstract)

    Google Scholar 

  • Weebadde CK, Wang D, Finn, CE, Lewers KS, Luby JJ, Bushakra J, Sjulin TM, and Hancock JF (2007). Using a linkage mapping approach to identify QTL for day-neutrality in the octoploid strawberry. Plant Breed. 1–11

    Google Scholar 

  • Wilhelm S, and Sagen JA (1974). A History of the Strawberry. University of California Division of Agriculture Pub. 4031. Berkeley CA

    Google Scholar 

  • Wolfe, JA (1969). Neogene floristic and vegetational history of the Pacific Northwest. Madrono 20:83–100

    Google Scholar 

  • Wrolstad RE, Putnam TP, and Varseveld GW (1970) Color quality of frozen strawberries: Effect of anthocyanin, pH, total acidity and ascorbic acid variability. J. Food Sci. 35: 448–452

    Google Scholar 

  • Wrolstad RE, and Shallenberger RS (1981) Free sugars and sorbitol in fruits-a compilation from the literature. J. Assoc. Off. Anal. Chem. 64:91–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim E. Hummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hummer, K.E., Hancock, J. (2009). Strawberry Genomics: Botanical History, Cultivation, Traditional Breeding, and New Technologies. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_20

Download citation

Publish with us

Policies and ethics