Genomics Approaches to Crop Improvement in the Rosaceae

  • Cameron Peace
  • Jay Norelli
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Genomic research in Rosaceae crops is commonly directed at understanding the genetic control of important agronomic traits with the aim of improving product quality and reducing production costs. Genomic knowledge can be used for genetic improvement of cultivars through breeding or genetic engineering. Genomic knowledge can also be used for the development of new cultural practices and the tailoring of existing production practices according to genetic categories of cultivars. The translation of genomic data and fundamental discoveries into practical results with real world applications is often termed “translational genomics”. However, the term is also used to describe the transfer of genomic knowledge from model organisms, such as Arabidopsis, to crop species, with practical application sometimes only implied.


Suppression Subtractive Hybridization Transcript Profile Fire Blight Soluble Solid Concentration Fire Blight Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alm R, Ekefjärd A, Krogh M, Häkkinen J, Emanuelsson C (2007). Proteomic variation is as large within as between strawberry varieties. J. Proteome Res. 6 : 3011–3020PubMedCrossRefGoogle Scholar
  2. Aranzana MJ, Carbo J, Arus P (2003). Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor. Appl. Genet. 106:1341–1352PubMedGoogle Scholar
  3. Bailey JS, French AP (1949). The inheritance of certain fruit and foliage characteristics in the peach. Mass. Agr. Expt. Sta. Bul. 452Google Scholar
  4. Baldi P, Patocchi A, Zini E, Toller C, Velaso R, Komjanc M (2004). Cloning and linkage mapping of resistance gene homologues in apple. Theor. Appl. Genet. 109:231–239PubMedCrossRefGoogle Scholar
  5. Balogh A, Koncz T, Tisza V, Kiss E, Heszky L (2005). The effect of 1-MCP on the expression of several ripening-related genes in strawberries. HortScience 40:2088–2090Google Scholar
  6. Ban Y, Honda C, Bessho H, Pang X-M, Moriguchi T (2007). Suppression subtractive hybridization identifies genes induced in response to UV-13 irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. J. Exp. Bot. 58:1825–1834PubMedCrossRefGoogle Scholar
  7. Bassett CA, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006). Global analysis of genes regulated by low temperature and photoperiod in peach bark. J. Am. Soc. Hort. Sci. 131:551–563Google Scholar
  8. Beavis, W.D., Grant, D. Albertsen, M. and Fincher, R. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141–145CrossRefGoogle Scholar
  9. Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008). Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161: 85–96CrossRefGoogle Scholar
  10. Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000). Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and stunts growth. Phytopathology 90: 72–77PubMedCrossRefGoogle Scholar
  11. Brown PTH, Lang FD, Lorz H (1992) Molecular changes in tissue culture-derived plants. Adv. Mol. Genet. 5:171–195Google Scholar
  12. Brummell DA, Balint-Kurti, Harpster MH, Payly JM, Oeller PW, Gutterson N (2003) Inverted repeat of a heterologous 3’-untranslated region for high-efficiency, high-throughput gene silencing. Plant J. 33:793–880PubMedCrossRefGoogle Scholar
  13. Calenge F, Drouet D, Denance C, Van de Weg WE, Brisset M-N, Paulin JP, Durel CE (2005). Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor. Appl. Genet. 111:128–135PubMedCrossRefGoogle Scholar
  14. Callahan AM, Scorza R, Bassett C, Nickerson M, Abeles FB (2004). Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Func. Plant Biol. 31:159–168CrossRefGoogle Scholar
  15. Callahan AM, Dardick CD, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2008) Gene Expression Profiling Of Peach Fruit During Stone Development. Plant & Animal Genomes XVI Conference, 2008
  16. Campalans A, Pages M, Nesseguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol. 21:633–643PubMedGoogle Scholar
  17. Chagne D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007). Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212PubMedCrossRefGoogle Scholar
  18. Chevreau E, Bell R (2005) Rosaceae: Pyrus spp. Pear and Cydonia spp. Quince. In: Litz RE (ed) Biotechnology of fruit and nut crops, CABI Publishing, Wallingford and Cambridge, MA, pp 543–565CrossRefGoogle Scholar
  19. Constantin GD, Gronlund M, Johansen IE, Stougaard J, Lund OS (2008) Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact. 21:720–727PubMedCrossRefGoogle Scholar
  20. Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190CrossRefGoogle Scholar
  21. Costa F, van de Weg WE., Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008). Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus x domestica Borkh.) and pear (Pyrus communis). Tree Genet. Genomes 4:575–586CrossRefGoogle Scholar
  22. Crisosto CH, Mitchell FG, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34: 1116–1118Google Scholar
  23. Dandekar AM (2002) Introduction and expression of transgenes in apples. In: Khachatourians GC, McHughen A, Scorza R, Nip W-K, Hui YH (eds) Transgenic plants and crops, Marcel Dekker, Inc., New York and Basel, pp 327–344Google Scholar
  24. Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004). Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res. 13:373–384CrossRefGoogle Scholar
  25. Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau AE (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol. Gen. Genet. 273: 326–335Google Scholar
  26. Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor. Appl. Genet. 103:316–322CrossRefGoogle Scholar
  27. Diatchenko L, Lau YFC, Campbel AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert PD (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93: 6025–6030PubMedCrossRefGoogle Scholar
  28. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howard W, Arus P (2004). Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc. Natl. Acad. Sci. USA 101:9891–9896PubMedCrossRefGoogle Scholar
  29. Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today and tomorrow. Plant Physiol. 147:456–468PubMedCrossRefGoogle Scholar
  30. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002). Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 105: 145–159PubMedCrossRefGoogle Scholar
  31. Fiehn O (2002). Metabolomics – the link between genotype and phenotype. Plant Mol. Biol. 48: 155–171PubMedCrossRefGoogle Scholar
  32. Filipecki M and Malepszy S (2006) Unintended consequences of plant transformation: A molecular insight. J. Appl. Genet. 47:277–286PubMedCrossRefGoogle Scholar
  33. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007). Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breeding 126:137–145CrossRefGoogle Scholar
  34. Folta KM (2006). Transformation of strawberry: the basis from translation genomics in Rosaceae. In Vitro Cell. Devel. Biol. Plant 42:482–490CrossRefGoogle Scholar
  35. Fridman E, Pichersky E (2005). Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr. Opin. Plant Biol. 8: 242–248PubMedCrossRefGoogle Scholar
  36. Gasic K, Gonzales DO, Thimmapuram J, Malnoy M, Gong G, Han Y, Vodkin LO, Liu L, Aldwinckle HS, Carroll N, Orvis K, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Korban SS (submitted) Comparative analysis and functional annotation of a large expressed sequence taf collection of apple (Malus x domestica)Google Scholar
  37. Geuna F, Banfi R, Bassi D (2007). Identification and characterization of transcripts differentially expressed during development of apricot (Prunus armeniaca L.) fruit. Tree Genet Genomes 1:69–78CrossRefGoogle Scholar
  38. Gianfranceschi L, Soglio V (2004). The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Horticult. 663:327–330Google Scholar
  39. Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell. Rep. 27:209–219PubMedCrossRefGoogle Scholar
  40. Grattapaglia D, Sederoff R (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137: 1121–1137PubMedGoogle Scholar
  41. Grimplet J, Romieu C, Sauvage FX, Lambert P, Audergon JM, Terrier N (2004). Transcriptomics and proteomics tools towards ripening markers for assisted selection in apricot. Acta Horticult. 663: 291–296Google Scholar
  42. Guarino C, Arena S, De Simone L, D’ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007). Proteomic analysis of the major soluble components in Annurca apple flesh. Mol. Nut. Food Res. 51 : 255–262CrossRefGoogle Scholar
  43. Hadfield KA, Bennett AB (1998). Polygalacturonases: many genes in search of a function. Plant Physiol. 117:337–343PubMedCrossRefGoogle Scholar
  44. Halász J, Hegedus A, Hermán R, Stefanovits-Bányai É, Pedryc A (2005). New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145:57–66CrossRefGoogle Scholar
  45. Han Y, Gasic K, Marron B, Beever JE, Korban S (2007). A BAC-based physical map of the apple genome. Genomics 89:630–637PubMedCrossRefGoogle Scholar
  46. Helliwill CA, Wesoey SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct. Plant Biol. 29:1217–1225CrossRefGoogle Scholar
  47. Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J. 48:818–826PubMedCrossRefGoogle Scholar
  48. Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005). Candidate gene database and transcript map for peach, a model species for fruit trees. Theor. Appl. Genet. 110:1419–1428PubMedCrossRefGoogle Scholar
  49. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG (2005). Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  50. Jensen P, Rytter J, Detwiler EA, Travis JW, NcNellis TW (2003). Rootstock effects on gene expression patterns in apple tree scions. Plant Mol. Biol. 53:493–511PubMedCrossRefGoogle Scholar
  51. Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res., 36(Database issue): D1034–D1040PubMedCrossRefGoogle Scholar
  52. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-Q, Nehra NS Lu CY, Dyson BK, Tsuda S, Ashikar R, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavanoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48:1589–1600PubMedCrossRefGoogle Scholar
  53. Kellerhals M, Eigenmann C (2006). Evaluation of apple fruit quality within the EU project HiDRAS. In: M Boos (ed) Ecofruit – 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference, pp 165–171Google Scholar
  54. Kellerhals M, Sauer C, Guggenbuehl B, Gantner S, Frey B, Frey JE, Patocchi A, Gessler C (2004). Apple breeding for high fruit quality and durable disease resistance. Acta Horticult. 663: 751–756Google Scholar
  55. Khan MA, Duffy B, Gessler C, Patocchi A (2006). QTL mapping of fire blight resistance in apple. Mol. Breed 17:299–306CrossRefGoogle Scholar
  56. Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:345–370CrossRefGoogle Scholar
  57. Kotoda N, Iwanami H, Takahashi S, Abe K (2006). Antisense expression of MdTFL1-like gene, reduces the juvenile phase in apple. J. Am. Soc. Horticult. Sci. 131:74–81Google Scholar
  58. Kuerkcueoglu S, Degenhardt J, Lensing J, Al-Masri A-N, Gua AE (2007). Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. J. Exp. Bot. 58:733–741CrossRefGoogle Scholar
  59. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005). Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor. Appl. Genet. 111:1504–1513PubMedCrossRefGoogle Scholar
  60. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005). ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6(Supple 4):S16 doi:10.1186/1471-2105-6-S4–S16Google Scholar
  61. Lester DR, Speirs J, Orr G, Brady CJ (1994). Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol. 105: 225–231PubMedCrossRefGoogle Scholar
  62. Lester DR, Sherman WB, Atwell BJ (1996). Endopolygalacturonase and the melting flesh (M) locus in peach. J. Am. Soc. Hort. Sci. 121: 231–235Google Scholar
  63. Li C, Sasaki N, Isogai M, Yoshikawa N (2004). Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors. Arch Virol. 149:1541–1558PubMedGoogle Scholar
  64. Mackay TFC (2004). The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14:253–257PubMedCrossRefGoogle Scholar
  65. Malnoy M, Reynoird JP, Borejsza-Wysocka E, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 Promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Res. 15:83–93PubMedCrossRefGoogle Scholar
  66. Malnoy M, Jin Q, Borejsza-Wysocka E, He SY, Aldwinckle HS (2007) Overexpresssion of the apple MpNRP1 gene confers increased disease resistance in Malus x domestica Google Scholar
  67. Malnoy M, Xu M, Borejsza-Wysocka E, Korban S, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequlais inciting apple scab disease. Mol. Plant Microbe Interact 21: 448–458PubMedCrossRefGoogle Scholar
  68. Martin RR (2002). Genetic engineering of strawberries and raspberries. In: Khachatourians GC, McHughen A, Scorza R, Nip W-K, Hui YH (eds) Transgenic plants and crops, Marcel Dekker, Inc., New York and Basel, pp 449–464Google Scholar
  69. Mathews L (2004). RNAi for plant functional genomics. Comp. Funct. Genom. 5: 240–244CrossRefGoogle Scholar
  70. Mishiba KI, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S (2005) Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J. 44:541–556PubMedCrossRefGoogle Scholar
  71. NCBI EST Database (2008). National Center for Biotechnology Information, Bethesda. Cited 6 Jul 2008
  72. Newcomb RD, CrowHurst RN, Gleave AP, Rikkerink HA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross, GS, Snowden KC, Souleyre EJF, Walton EF Yauk Y-K (2006). Analyses of expressed sequence tags from apple. Plant Physiol. 141: 147–166PubMedCrossRefGoogle Scholar
  73. Norelli JL, Bassett, C, Artlip T, Aldwinckle HS, Malnoy M, Borejsza-Wysocka EE, Gidoni D, Glaishman M (2007) Inducible DNA promoters for use in apple. Acta Horticult. 738: 329–334Google Scholar
  74. Norelli JL, Farrell RE Jr, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME (2008a) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics and Genomes: doi: 10.1007/sl1295-008-0164-yGoogle Scholar
  75. Norelli JL, Gardiner SE, Malnoy M, Aldwinckle HS, Baldo AM, Borejsza-Wysocka E, Farrell RE Jr, Lalli DA, Celton J-M, Bassett CL, Korban SS, Wisniewki ME (2008b). Using functional genomics to develop tools to breed fire blight resistant apple. Plant & Animal Genomes XVI Conference 2008
  76. Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH (2007). Molecular genetic dissection of chilling injury in peach fruit. Acta Horticult. 738:633–638Google Scholar
  77. Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008). Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage flesh browning in peach. Tree Genet. Genom. 4:543–554CrossRefGoogle Scholar
  78. Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, Iezzoni AF (2008). Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map Tree Genet. Genom. DOI 10.1007/s11295-008-0161-1Google Scholar
  79. Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230PubMedCrossRefGoogle Scholar
  80. Oraguzie NC, Wilcox PL (2007). An overview of association mapping. In: N Oraguzie, EHA Rikkerink, SE Gardiner, and HN De Silva (eds) Association Mapping in Plants. Springer Verlag, New York, pp. 1–9CrossRefGoogle Scholar
  81. Oraguzie NC, Volz RK, Whitworth CJ, Bassett HCM, Hall AJ, Gardiner SE (2007). Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol. Technol. 44:212–219CrossRefGoogle Scholar
  82. Pandey A, Mann M (2000). Proteomics to study genes and genomes. Nature 405: 837–846PubMedCrossRefGoogle Scholar
  83. Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006). Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol. 141: 811–824PubMedCrossRefGoogle Scholar
  84. Peace CP, Ahmad R, Gradziel TM, Dandekar AM, Crisosto CH (2005a). The use of molecular genetics to improve peach and nectarine post-storage quality. Acta Horticult. 682:403–410Google Scholar
  85. Peace CP, Crisosto CH, Gradziel TM (2005b). Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Mol. Breeding 16:21–31Google Scholar
  86. Peace CP, Crisosto CH, Garner DT, Dandekar AM, Gradziel TM, Bliss FA (2006). Genetic control of internal breakdown in peach. Acta Horticult. 713:489–496Google Scholar
  87. Peace CP, Callahan AM, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007). Endopolygalacturonase genotypic variation in Prunus. Acta Horticult. 738:639–646Google Scholar
  88. Pichler FB, Walton EF, Day M, Triggs C, Janssen B, Wunsche JN, Putterill J, Schaffer RJ (2007). Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomes 3:329–339CrossRefGoogle Scholar
  89. Peil A, Garcia-Libreros T, Rickter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007). Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126:470–475CrossRefGoogle Scholar
  90. Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004). Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor. Appl. Genet. 109:1519–1524PubMedCrossRefGoogle Scholar
  91. Pflieger S, Lefebvre V, Causse M (2001). The candidate gene approach in plant genetics: a review. Mol. Breeding 7:275–291CrossRefGoogle Scholar
  92. Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007). Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266:5–43Google Scholar
  93. RNAi News, Technology for Functional Genomics (2005). Rich Jorgensen discusses sense RNAi and forward genetics. Cited June 17, 2008
  94. Robertson DS (1989). Understanding the relationship between qualitative and quantitative genetics. p. 81–87. In: Helentjaris, T. and Burr, B. (eds), Development and Application of Molecular Markers to Problems in Plant Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  95. Rudell DR, Mattheis JP, Curry EA (2008). Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J. Agr. Food Chem. 56:1138–1147CrossRefGoogle Scholar
  96. Samuelian SK, Baldo AM, Pattison JA, Weber CA (2008). Isolation and linkage mapping of NBS-LRR resistance gene analogs in red raspberry (Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes. Tree Genet Genomes doi: 10.1007/s11295-008-0160-2Google Scholar
  97. Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006). An enhanced microsatellite map of diploid Fragaria. Theor. Appl. Genet. 112:1349–1359PubMedCrossRefGoogle Scholar
  98. Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007). A Genomics Approach Reveals That Aroma Production in Apple Is Controlled by Ethylene Predominantly at the Final Step in Each Biosynthetic Pathway. Plant Physiol 144: 1899–1912PubMedCrossRefGoogle Scholar
  99. Schauer N, Fernie AR (2006). Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 11:508–516PubMedCrossRefGoogle Scholar
  100. Schneider WL, Sherman DJ (2007). Acomprehensive Prunus pathogen detection array. Phytopath 97:S105Google Scholar
  101. Sholberg P, O’Gorman D, Bedford K, Leveswue CA (2005). Development of a DNA macroarray for detection and monitoring of economically important apple diseases. Plant Disease 89: 1143–1150CrossRefGoogle Scholar
  102. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arus P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008). Multiple models for Rosaceae genomics. Plant Physiol. 147:985–1003PubMedCrossRefGoogle Scholar
  103. Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006). Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet. Genomes 2:202–224CrossRefGoogle Scholar
  104. Soares M, Bonaldo M, Jelene P, Su L Lawton L (1994). Construction and characterization of a normalization cDNA library. Proc. Natl. Acad. Sci. USA 91:9228–9232PubMedCrossRefGoogle Scholar
  105. Sonneveld T, Tobutt KR, Robbins TP (2003). Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor. Appl. Genet. 107:1059–1070PubMedCrossRefGoogle Scholar
  106. Srinivasan C, Padilla IMG, Scorza R (2005) Rosaceae: Prunus spp. almond, apricot, cherry, nectarine, peach and plum In: Litz RE (ed) Biotechnology of fruit and nut crops, CABI Publishing, Wallingford and Cambridge, MA, pp 512–542CrossRefGoogle Scholar
  107. Sutherland BG, Tobutt KR, Robbins TP (2004). Molecular genetics of self-incompatibility in plums. Acta Horticult. 663:557–562Google Scholar
  108. Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000). Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor. Appl. Genet. 101:344–349CrossRefGoogle Scholar
  109. The United States Rosaceae Genomics, Genetics, and Breeding Initiative White Paper (2006). Cited June 18, 2008
  110. Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46:34–53PubMedCrossRefGoogle Scholar
  111. Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AI, Tao R (2004). The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39:573–586PubMedCrossRefGoogle Scholar
  112. van de Weg WE, Voorrips RE, Finkers HJ, Kodde LP, Jansen J, Bink MCAM (2004). Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Horticult. 663:45–50Google Scholar
  113. van Ooijen J (2005). MapQTLÒ5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen, The NetherlandsGoogle Scholar
  114. Vilanova S, Arús P, Sargent DJ, Monfort A (2007). Map comparison between two distant genomes of the Rosaceae: Prunus and Fragaria. Poster 454 in Plant & Animal Genome XV, San Diego, CAGoogle Scholar
  115. Wesley SA, Helliwell CA, Neil AS, Wang M-B, Liu Q, Gooding PS, Singh, SP, Abbott D, Stourtjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581–590PubMedCrossRefGoogle Scholar
  116. Xu Q, Wen X, Deng X (2007). Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol. Phylogeneti Evol. 44:315–324Google Scholar
  117. Yaegashi H, Yamatsuta T, Takahashi T, Li C, Isogai M, Kobori T, Ohki S, Yoshikawa N (2007). Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol. 152:1839–1849PubMedCrossRefGoogle Scholar
  118. Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008). A framework physical map for peach, a model Rosaceae species. Tree Genet. Genomes DOI 10.1007/s11295-008-0147-zGoogle Scholar
  119. Zheng, X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song, S, Pei Y, Li Y (2007). The cauliflower mosaic virus (CaMV) 35 S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell. Rep. 26:1195–1203Google Scholar
  120. Zhu Y, Barritt B (2008). Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet. Genomes DOI 10.1007/s11295-007-0131-zGoogle Scholar
  121. Zuo J, Qi-Wen N, Chua N-H (2000). An estrogen receptor-based transctivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24:265–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cameron Peace
    • 1
  • Jay Norelli
    • 2
  1. 1.Department of Horticulture and Landscape ArchitectureWashington State UniversityPullmanUSA
  2. 2.USDA-ARS-AFRSKearneysville

Personalised recommendations