Genetic Engineering and Tissue Culture of Roses

  • Thomas Debener
  • Laurence Hibrand-Saint Oyant
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The recent advances in rose genetics and in functional genetics described in the previous two chapters have improved our knowledge about interesting characteristics of the rose. Gene transfer technologies may facilitate the introgression of homologous or heterologous genes to improve major ornamental traits as e.g., scent, plant architecture and colour as well as biotic and abiotic stress responses and yield.


Somatic Embryo Somatic Embryogenesis Powdery Mildew Embryogenic Callus Somaclonal Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arene, L., Pellegrino, C., and Gudin, S. (1993). A comparison of the somaclonal variation level of Rosa hybrida L. cv. Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 71, 83–90.CrossRefGoogle Scholar
  2. Borissova, A., Tsolova, V., Angeliev, C., and Atanassov, A. (2000). Somatic embryogenesis of Rosa hybrida L. Biotechnology & Biotechnological Equipment 14, 44–51.Google Scholar
  3. Burrell, A.M., Lineberger, R.D., Rathore, K.S., and Byrne, D.H. (2006). Genetic variation in somatic embryogenesis of rose. HortScience 41, 1165–1168.Google Scholar
  4. Castillon, J., and Kamo, K.K. (2002). Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. HortScience 37, 973–977.Google Scholar
  5. Chevreau, E., Skirvin, R.M., Abu-Qaoud, H.A., Korban, S.S., and Sullivan, J.G. (1989). Adventitious shoot regeneration from leaf tissue of three pear (Pyrus sp.) cultivars in vitro. Plant Cell Reports 7, 688–691.Google Scholar
  6. Condliffe, P.C., Davey, M.R., Power, J.B., Koehorst-van Putten, H., and Visser, P.B. (2003). An optimised protocol for rose transformation applicable to different cultivars. Acta Horticulturae 612, 115–120.Google Scholar
  7. Dafny-Yelin, M., Guterman, I., Menda, N., Ovadis, M., Shalit, M., Pichersky, E., Zamir, D., Lewinsohn, E., Adam, Z., Weiss, D., and Vainstein, A. (2005). Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222, 37–46.CrossRefPubMedGoogle Scholar
  8. de Wit, J.C., Esendam, H.F., Honkanen, J.J., and Tuominen, U. (1990). Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Reports 9, 456–458.CrossRefGoogle Scholar
  9. Derks, F.H.M., Dijk, A.J.v., Hanisch ten Cate, C.H., Florack, D.E.A.,and (1995). Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis and Agrobacterium-mediated transformation. Acta Horticulturae 405, 205–209.Google Scholar
  10. Dohm, A., Ludwig, C., Schilling, D., and Debener, T. (2001). Transformation of roses with genes for antifungal proteins. Acta Horticulturae 547, 27–33.Google Scholar
  11. Dohm, A., Ludwig, C., Schilling, D., and Debener, T. (2002). Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Horticulturae 572, 105–111.Google Scholar
  12. Dubois, L.A.M., and Vries, D.P.d. (1995). Preliminary report on the direct regeneration of adventitious buds on leaf explants of in vivo grown glasshouse rose cultivars. Gartenbauwissenschaft 60, 249–253.Google Scholar
  13. Dubois, L.A.M., Vries, D.P.d., and Koot, A. (2000). Direct shoot regeneration in the rose: genetic variation of cultivars. Gartenbauwissenschaft 65, 45-–49.Google Scholar
  14. Elliot, R.F. (1970). Axenic culture of meristem tips of Rosa multiflora. Planta 95, 183–186.CrossRefGoogle Scholar
  15. Escalettes, V., and Dosba, F. (1993). In vitro adventitious shoot regeneration from leaves of Prunus spp. Plant Science (Limerick) 90, 201–209.CrossRefGoogle Scholar
  16. Estabrooks, T., Browne, R., and Zhongmin, D. (2007). 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). Plant Cell Reports 26, 153–160.CrossRefPubMedGoogle Scholar
  17. Fiola, J.A., Hassan, M.A., Swartz, H.J., Bors, R.H., and McNicols, R. (1990). Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell, Tissue and Organ Culture 20, 223–228.Google Scholar
  18. Firoozabady, E., and Moy, Y. (2004). Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cellular & Developmental Biology – Plant 40, 67–74.CrossRefGoogle Scholar
  19. Firoozabady, E., Moy, Y., Courtney-Gutterson, N., and Robinson, K. (1994). Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12, 609–613.CrossRefGoogle Scholar
  20. Fukuchi-Mizutani, M., Ishiguro, K., Nakayama, T., Utsunomiya, Y., Tanaka, Y., Kusumi, T., and Ueda, T. (2000). Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Science 160, 129–137.CrossRefPubMedGoogle Scholar
  21. Guterman, I., Masci, T., Chen, X.L., Negre, F., Pichersky, E., Dudareva, N., Weiss, D., and Vainstein, A. (2006). Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Molecular Biology 60, 555–563.CrossRefPubMedGoogle Scholar
  22. Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J.H., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. (2002). Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14, 2325–2338.CrossRefPubMedGoogle Scholar
  23. Hibino, Y., Kitahara, K., Hirai, S., and Matsumoto, S. (2006). Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Science 170, 778–785.CrossRefGoogle Scholar
  24. Hill, G.P. (1967). Morphogenesis of shoot primordia in cultured stem tissue of a garden rose. Nature 216, 596–597.CrossRefGoogle Scholar
  25. Hsia, C., and Korban, S.S. (1996). Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell, Tissue and Organ Culture 44, 1–6.CrossRefGoogle Scholar
  26. Huetteman, C.A., and Preece, J.E. (1993). Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue and Organ Culture 33, 105–119.CrossRefGoogle Scholar
  27. Ibrahim, R., and Debergh, P.C. (2000). Improvement of adventitious bud formation and plantlet regeneration from in vitro leaflet explants of roses (Rosa hybrida L.). Acta Horticulturae 520, 271–279.Google Scholar
  28. Ibrahim, R., and Debergh, P.C. (2001). Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Scientia Horticulturae 88, 41–57.CrossRefGoogle Scholar
  29. Jabbarzadeh, Z., and Khosh-Khui, M. (2005). Factors affecting tissue culture of Damask rose (Rosa damascena Mill.). Scientia Horticulturae 105, 475–482.CrossRefGoogle Scholar
  30. Kagami, T., and Suzuki, M. (2005). Molecular and functional analysis of a vacuolar Na+/H+ antiporter gene of Rosa hybrida. Genes and Genetic Systems 80, 121–128.CrossRefPubMedGoogle Scholar
  31. Kim, C.K., Oh, J.Y., Chung, J.D., Burrell, A.M., and Byrne, D.H. (2004a). Somatic embryogenesis and plant regeneration from in-vitro-grown leaf explants of rose. HortScience 39, 1378–1380.Google Scholar
  32. Kim, C.K., Chung, J.D., Park, S.H., Burrell, A.M., Kamo, K.K., and Byrne, D.H. (2004b). Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell, Tissue and Organ Culture 78, 107–111.Google Scholar
  33. Kintzios, S., Drossopoulos, J.B., and Lymperopoulos, C. (2000). Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from young mature leaves of rose. Journal of Plant Nutrition 23, 1407–1420.CrossRefGoogle Scholar
  34. Kitahara, K., and Matsumoto, S. (2000). Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Science (Limerick) 151, 121–134.CrossRefGoogle Scholar
  35. Kitahara, K., Hirai, S., Fukui, H., and Matsumoto, S. (2001). Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Science 161, 549–557.CrossRefGoogle Scholar
  36. Kitahara, K., Hibino, Y., Aida, R., and Matsumoto, S. (2004). Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Science 166, 1245–1252.CrossRefGoogle Scholar
  37. Korban, S.S., O’Connor, P.A., and Elobeidy, A. (1992). Effects of thidiazuron, naphthaleneacetic acid, dark incubation and genotype on shoot organogenesis from Malus leaves. Journal of Horticultural Science 67, 341–349.Google Scholar
  38. Kunitake, H., Imamizo, H., and Mii, M. (1993). Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Science (Limerick) 90, 187–194.CrossRefGoogle Scholar
  39. Lavid, N., Wang, J.H., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2002). O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiology 129, 1899–1907.CrossRefPubMedGoogle Scholar
  40. Ledbetter, D.I., and Preece, J.E. (2004). Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia Bartr. leaf explants. Scientia Horticulturae 101, 121–126.CrossRefGoogle Scholar
  41. Li, X.Q., Krasnyanski, S.F., and Korban, S.S. (2002a). Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. Journal of Plant Physiology 159, 313–319.Google Scholar
  42. Li, X.Q., Krasnyanski, S.F., and Korban, S.S. (2002b). Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiology and Biochemistry 40, 453–459.Google Scholar
  43. Li, X.Q., Gasic, K., Cammue, B., Broekaert, W., and Korban, S.S. (2003). Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218, 226–232.CrossRefPubMedGoogle Scholar
  44. Lloyd, D., Roberts, A.V., and Short, K.C. (1988). The induction in vitro of adventitious shoots in Rosa. Euphytica 37, 31–36.CrossRefGoogle Scholar
  45. Marchant, R., Davey, M.R., Lucas, J.A., and Power, J.B. (1996). Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Science (Limerick) 120, 95–105.CrossRefGoogle Scholar
  46. Marchant, R., Power, J.B., Lucas, J.A., and Davey, M.R. (1998a). Biolistic transformation of rose (Rosa hybrida L.). Annals of Botany 81, 109–114.Google Scholar
  47. Marchant, R., Davey, M.R., Lucas, J.A., Lamb, C.J., Dixon, R.A., and Power, J.B. (1998b). Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Molecular Breeding 4, 187–194.Google Scholar
  48. Matthews, D., Mottley, J., Horan, I., and Roberts, A.V. (1991). A protoplast to plant system in roses. Plant Cell, Tissue and Organ Culture 24, 173–180.CrossRefGoogle Scholar
  49. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–479.CrossRefGoogle Scholar
  50. Noriega, C., and Sondahl, M.R. (1991). Somatic embryogenesis in hybrid tea roses. Biotechnology 9, 991–993.CrossRefGoogle Scholar
  51. Pati, P.K., Madhu, S., Anil, S., and Ahuja, P.S. (2004). Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro Cellular & Developmental Biology – Plant 40, 192–195.CrossRefGoogle Scholar
  52. Pati, P.K., Rath, S.P., Madhu, S., Anil, S., and Ahuja, P.S. (2006). In vitro propagation of rose – a review. Biotechnology Advances 24, 94–114.CrossRefPubMedGoogle Scholar
  53. Roberts, A.V., Horan, I., Matthews, D., and Mottley, J. (1990). Protoplast technology and somatic embryogenesis in Rosa. In Integration of in vitro techniques in ornamental plant breeding. Proceedings, Symposium, 10–14 November 1990., pp. 110–115.Google Scholar
  54. Roberts, A.V., Yokoya, K., Walker, S., and Mottley, J. (1995). Somatic embryogenesis in Rosa ssp. In Somatic embryogenesis in woody plants, S.M. Jain, P. Gupta, and R. Newton, eds (Amsterdam: Kluwer Academic Publishers).Google Scholar
  55. Rouet-Mayer, M.A., Bureau, J.M., and Lauriere, C. (1992). Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiology 98, 971–978.CrossRefPubMedGoogle Scholar
  56. Rout, G.R., Debata, B.K., and Das, P. (1991). Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell, Tissue and Organ Culture 27, 65–69.CrossRefGoogle Scholar
  57. Rout, G.R., Samantaray, S., Mottley, J., and Das, P. (1999). Biotechnology of the rose: a review of recent progress. Scientia Horticulturae 81, 201–228.CrossRefGoogle Scholar
  58. Sarasan, V., Roberts, A.V., and Rout, G.R. (2001). Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Reports 20, 183–186.CrossRefGoogle Scholar
  59. Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Dumas, C., Bendahmane, M., Cock, J.M., and Hugueney, P. (2002). Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Letters 523, 113–118.CrossRefPubMedGoogle Scholar
  60. Schenk, R.U., and Hildebrandt, A.C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany 50, 199–204.CrossRefGoogle Scholar
  61. Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2003). Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals. Plant Physiology 131, 1868–1876.CrossRefPubMedGoogle Scholar
  62. Skirvin, R.M., Chu, M.C., and Walker, J.C. (1984). Tissue culture of the rose. American Rose Annual 69, 91–97.Google Scholar
  63. Song, G.Q., and Sink, K.C. (2005). Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Scientia Horticulturae 106, 60–69.CrossRefGoogle Scholar
  64. Souq, F., Coutos-Thevenot, P., Yean, H., Delbard, G., Maziere, Y., Barbe, J.P., and Boulay, M. (1996). Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Horticulturae 424, 381–388.Google Scholar
  65. Suo, Y., and Leung, D.W.M. (2002). BTH-induced accumulation of extracellular proteins and blackspot disease in rose. Biologia Plantarum 45, 273–279.CrossRefGoogle Scholar
  66. Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E., and Kusumi, T. (1995). Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant and Cell Physiology 36, 1023–1031.PubMedGoogle Scholar
  67. van der Salm, T.P.M., van der Toorn, C.J.G., Hanisch ten Cate, C.H., and Dons, H.J.M. (1996a). Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L. ‘Moneyway’. Plant Cell Reports 15, 522–526.Google Scholar
  68. van der Salm, T.P.M., van der Toorn, C.J.G., Hanish ten Cate, C.H., van der Krieken, W.M., and Dons, H.J.M. (1996b). The effects of exogenous auxin and rol genes on root formation in Rosa hybrida L. ‘Moneyway’. Plant Growth Regulation 19, 123–131.Google Scholar
  69. van der Salm, T.P.M., van der Toorn, C.J.G., Bouwer, R., Hanisch ten Cate, C.H., and Dons, H.J.M. (1997). Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Molecular Breeding 3, 39–47.CrossRefGoogle Scholar
  70. van der Salm, T.P.M., Bouwer, R., Dijk, A.J.v., Keizer, L.C.P., Cate, C.H.H.t., van der Plas, L.H.W., and Dons, J.J.M. (1998). Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. Journal of Experimental Botany 49, 847–852.CrossRefGoogle Scholar
  71. Wu, S., Watanabe, N., Mita, S., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2003). Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering 96, 119–128.PubMedGoogle Scholar
  72. Wu, S., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2004). The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology 135, 95–102.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Debener
    • 1
  • Laurence Hibrand-Saint Oyant
    • 1
  1. 1.Department of Molecular BreedingInstitute of Plant GeneticsGermany

Personalised recommendations