Advertisement

Functional Genomics in Rose

  • Fabrice Foucher
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Rose is in the infancy of genomics as the genome sequence is not available and only few tools have been developed. Here, we will present all the tools (cDNA libraries, EST, databases, microarrays) that have been developed and their uses in molecular approaches to study different ornamental traits as scent, color, flower development and senescence.

Keywords

Floral Organ Ethylene Receptor Golden Gate Scent Production Expansin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bishopp, A., Mahonen, A.P., and Helariutta, Y. (2006). Signs of change: hormone receptors that regulate plant development. Development 133, 1857–1869.CrossRefPubMedGoogle Scholar
  2. Channeliere, S., Riviere, S., Scalliet, G., Szecsi, J., Jullien, F., Dolle, C., Vergne, P., Dumas, C., Mohammed, B., Hugueney, P., and Cock, J.M. (2002). Analysis of gene expression in rose petals using expressed sequence tags. FEBS Letters 515, 35–38.CrossRefPubMedGoogle Scholar
  3. Chmelnitsky, I., Khayat, E., and Zieslin, N. (2003). Involvement of RAG, a rose homologue of AGAMOUS, in phyllody development of Rosa hybrida cv. Motrea. Plant Growth Regulation 39, 63–66.CrossRefGoogle Scholar
  4. Church, S.A., Livingstone, K., Lai, Z., Kozik, A., Knapp, S.J., Michelmore, R.W., and Rieseberg, L.H. (2007). Using variable rate models to identify genes under selection in sequence pairs: their validity and limitations for EST sequences. Journal of Molecular Evolution 64, 171–180.CrossRefPubMedGoogle Scholar
  5. Clark, J.I., Brooksbank, C., and Lomax, J. (2005). It‘s all GO for plant scientists. Plant Physiology 138, 1268–1279.CrossRefPubMedGoogle Scholar
  6. Flament, I., Debonneville, C., and Furrer, A. (1993). Volatiles constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions. In Bioactive volatile compounds from plants, R. Tenashi, R.G. Buttery, and H. Sugisawa, eds (Washington, DC: American Chemical Society), pp. 269–281.CrossRefGoogle Scholar
  7. Foucher, F., Chevalier, M., Corre, C., Freslon, V., Legeai, F., and Hibrand-Saint Oyant, L. (manuscript submitted). Histological and molecular characterisation of the transition from vegetative to floral meristem in rose.Google Scholar
  8. Fukuchi-Mizutani, M., Savin, K., Cornish, E., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N. (1995). Senescence-induced expression of a homologue of DELTA 9 desaturase in rose petals. Plant Molecular Biology 29, 627–635.CrossRefPubMedGoogle Scholar
  9. Fukuchi-Mizutani, M., Ishiguro, K., Nakayama, T., Utsunomiya, Y., Tanaka, Y., Kusumi, T., and Ueda, T. (2000). Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Science 160, 129–137.CrossRefPubMedGoogle Scholar
  10. Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J.H., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. (2002). Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14, 2325–2338.CrossRefPubMedGoogle Scholar
  11. Hattendorf, A., and Debener, T. (2007b). Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiologia Plantarum 129, 775–786.Google Scholar
  12. Hibino, Y., Kitahara, K., Hirai, S., and Matsumoto, S. (2006). Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Science 170, 778–785.CrossRefGoogle Scholar
  13. Hibrand-Saint Oyant, L., Crespel, L., Zhang, L., Rajapakse, S., and Foucher, F. (2007). Genetic linkage map of Rose with new microsatellite markers to identify QTL controlling flowering traits. Tree Genetics and Genomes, accepted.Google Scholar
  14. Johnson, P.R., and Ecker, J.R. (1998). The ethylene gas signal tranduction pathway: a molecular perspective. Annual Review of Genetics 32, 227–254.CrossRefPubMedGoogle Scholar
  15. Jung, S., Abbott, A., Jesudurai, C., Tomkins, J., and Main, D. (2005). Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Functional & Integrative Genomics 5, 136–143.CrossRefGoogle Scholar
  16. Kagami, T., and Suzuki, M. (2005). Molecular and functional analysis of a vacuolar Na+/H+ antiporter gene of Rosa hybrida. Genes and Genetic Systems 80, 121–128.CrossRefPubMedGoogle Scholar
  17. Kitahara, K., and Matsumoto, S. (2000). Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Science (Limerick) 151, 121–134.CrossRefGoogle Scholar
  18. Kitahara, K., Hirai, S., Fukui, H., and Matsumoto, S. (2001). Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Science 161, 549–557.CrossRefGoogle Scholar
  19. Lan, T.H., DelMonte, T.A., Reischmann, K.P., Hyman, J., Kowalski, S.P., McFerson, J., Kresovich, S., and Paterson, A.H. (2000). An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research 10, 776–788.CrossRefPubMedGoogle Scholar
  20. Lavid, N., Wang, J.H., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2002). O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiology 129, 1899–1907.CrossRefPubMedGoogle Scholar
  21. Lim, K.Y., Werlemark, G., Matyasek, R., Bringloe, J.B., Sieber, V., El-Mokadem, H., Meynet, J., Hemming, J., Leitch, A.R., and Roberts, A.V. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 94, 501–506.CrossRefPubMedGoogle Scholar
  22. Ma, N., Cai, W., Lu, W., Tan, H., and Gao, J. (2005). Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the gene encoding ethylene biosynthesis enzymes. Science in China 48, 434–444.PubMedGoogle Scholar
  23. Ma, N., Tan, H., Liu, X., Xue, J., Li, Y., and Gao, J. (2006). Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of Experimental Botany 57, 2763–2773.CrossRefPubMedGoogle Scholar
  24. Meyer, V.G. (1966). Flower abnormality. The Botanical Review 32, 165–195.CrossRefGoogle Scholar
  25. Muller, R., and Stummann, B.M. (2003). Genetic regulation of ethylene perception and signal transduction related to flower senescence. Journal of Food, Agriculture & Environment 1, 87–94.Google Scholar
  26. Muller, R., Stummann, B.M., and Serek, M. (2000a). Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Reports 19, 1232–1239.Google Scholar
  27. Muller, R., Lind-Iversen, S., Stummann, B.M., and Serek, M. (2000b). Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses. Journal of Horticultural Science and Biotechnology 75, 12–18.Google Scholar
  28. Muller, R., Owen, C.A., Xue, Z., Welander, M., and Stummann, B.M. (2002). Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. Journal of Experimental Botany 53, 1223–1225.CrossRefPubMedGoogle Scholar
  29. Muller, R., Owen, C.A., Xue, Z., Welander, M., and Stummann, B. (2003). The transcription factor EIN3 is constitutively expressed in miniature roses with differences in postharvest life. Journal of Horticultural Science and Biotechnology 78, 10–14.Google Scholar
  30. Ogata, J., Kanno, Y., Itoh, Y., Tsugawa, H., and Suzuki, M. (2005). Plant biochemistry: Anthocyanin biosynthesis in roses. Nature 435, 757–758.CrossRefPubMedGoogle Scholar
  31. Sane, A.P., Tripathi, S.K., and Pravendra, N. (2007). Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene, RbEXPA1. Plant Science 172, 481–487.CrossRefGoogle Scholar
  32. Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Dumas, C., Bendahmane, M., Cock, J.M., and Hugueney, P. (2002). Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Letters 523, 113–118.CrossRefPubMedGoogle Scholar
  33. Scalliet, G., Lionnet, C., Bechec, M.l., Dutron, L., Magnard, J.L., Baudino, S., Bergougnoux, V., Jullien, F., Chambrier, P., Vergne, P., Dumas, C., Cock, J.M., and Hugueney, P. (2006). Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiology 140, 18–29.CrossRefPubMedGoogle Scholar
  34. Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2003). Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals. Plant Physiology 131, 1868–1876.CrossRefPubMedGoogle Scholar
  35. Suwabe, K., Tsukazaki, H., Iketani, H., Hatakeyama, K., Kondo, M., Fujimura, M., Nunome, T., Fukuoka, H., Hirai, M., and Matsumoto, S. (2006). Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 173, 309–319.CrossRefPubMedGoogle Scholar
  36. Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J.H., and Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biology and Technology 40, 97–105.CrossRefGoogle Scholar
  37. Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E., and Kusumi, T. (1995). Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant and Cell Physiology 36, 1023–1031.PubMedGoogle Scholar
  38. Wang, D., Fan, J., and Ranu, R.S. (2004a). Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa x hybrida). Plant Cell Reports 22, 422–429.Google Scholar
  39. Wang, K.L.C., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151.PubMedGoogle Scholar
  40. Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell (Cambridge) 78, 203–209.Google Scholar
  41. Wu, S., Watanabe, N., Mita, S., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2003). Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering 96, 119–128.PubMedGoogle Scholar
  42. Wu, S., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2004). The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology 135, 95–102.CrossRefPubMedGoogle Scholar
  43. Xu, Q., Wen, X., and Deng, X. (2007). Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding 19, 179–191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fabrice Foucher
    • 1
  1. 1.Inra AngersUMR Génétique et Horticulture (GenHort)France

Personalised recommendations