Advertisement

Introduction to Rosa

  • Hilde Nybom
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The ornamental value of rose flowers have been recognized and enjoyed since the dawn of civilization. A huge number of cultivars has been developed either as garden plants or for the cut rose market, and more recently as indoor pot plants. In addition, the fruits, i.e. the rose hips, have been identified as a source of ornamental value and are now being commercialised in several countries. Rose flowers are also used for rose oil production, and to a lesser extent, for direct consumption or making various types of food products like tea, jam and candy. Rose hips are similarly used for food products, and attention is now drawn also to their medicinal properties.

Keywords

Powdery Mildew Wild Species Ploidy Level Vase Life Rose Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Babaei, A., Tabaei-Aghdaei, S.R., Khosh-Khui, M., Omidbaigi, R., Naghavi, M.R., Esselink, G.D., and Smulders, M.J.M. (2007). Microsatellite analysis of Damask rose (Rosa damascena Mill.) accessions from various regions in Iran reveals multiple genotypes. BMC Plant Biology 7, (8 March 2007).Google Scholar
  2. Baktir, I., Hazar, D., Usyal, S., and Ozel, S. (2005). Possible uses of dogrose branches and rose hips for ornamental purposes. Acta Horticulturae 690, 97–99.Google Scholar
  3. Baydar, N.G., Baydar, H., and Debener, T. (2004). Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers. Journal of Biotechnology 111, 263–267.CrossRefPubMedGoogle Scholar
  4. Blom, T.J., and Tsujita, M.J. (2003). Cut rose production. In Encyclopedia of rose science. Volumes 1–3, A.V. Roberts, T. Debener, and S. Gudin, eds (Oxford, Elsevier Science), pp. 594–600.Google Scholar
  5. Byrne, D.H., and Crane, Y.M. (2003). Meiosis. In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 273–279.Google Scholar
  6. Cairns, T. (2003). Classification/Horticultural classification schemes. In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 117–124.Google Scholar
  7. Carlson-Nilsson, B.U. (2002). Variation in Rosa with emphasis on the improvement of winter hardiness and resistance to Marssonina rosae (blackspot) (Agraria: Acta Universitatis Agriculturae Sueciae), pp. 51 pp. + papers I–X.Google Scholar
  8. Chaanin, A. (2003). Breeding/Selection strategies for cut roses. In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 33–41.Google Scholar
  9. Cinar, I., and Colakoglu, A.S. (2005). Potential health benefits of rose hip products. Acta Horticulturae 690, 253–257.Google Scholar
  10. Crespel, L., Ricci, S.C., and Gudin, S. (2006). The production of 2n pollen in rose. Euphytica 151, 155–164.CrossRefGoogle Scholar
  11. Debener, T., Bartels, C., and Mattiesch, L. (1996). RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Molecular Breeding 2, 321–327.CrossRefGoogle Scholar
  12. Debener, T., Drewes-Alvarez, R., and Rockstroh, K. (1998). Identification of five physiological races of blackspot, Diplocarpon rosae Wolf, on roses. Plant Breeding 117, 267–270.CrossRefGoogle Scholar
  13. De Cock, K. (in preparation). Studying the diversity of autochthonous roses (Rosa L.) in Europe, with a focus on Flanders (Belgium) (Gent: University of Gent).Google Scholar
  14. Dugo, M.L., Satovic, Z., Millan, T., Cubero, J.I., Rubiales, D., Cabrera, A., and Torres, A.M. (2005). Genetic mapping of QTLs controlling horticultural traits in diploid roses. TAG Theoretical and Applied Genetics 111, 511–520.CrossRefGoogle Scholar
  15. El-Mokadem, H., Crespel, L., Meynet, J., and Gudin, S. (2002). The occurrence of 2n-pollen and the origin of sexual polyploids in dihaploid roses (Rosa hybrida L.). Euphytica 125, 169–177.CrossRefGoogle Scholar
  16. Ercisli, S. (2005). Rose (Rosa spp.) germplasm resources of Turkey. Genetic Resources and Crop Evolution 52, 787–795.CrossRefGoogle Scholar
  17. Esselink, G.D., Smulders, M.J.M., and Vosman, B. (2003). Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theoretical and Applied Genetics 106, 277–286.PubMedGoogle Scholar
  18. Esselink, G.D., Nybom, H., and Vosman, B. (2004). Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theoretical and Applied Genetics 109, 402–408.CrossRefPubMedGoogle Scholar
  19. Guoliang, W. (2003). History of roses in cultivation/Ancient Chinese roses. In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 387–395.Google Scholar
  20. Horst, R.K. (1983). Black spot. In Compendium of rose diseases (St. Paul, MN: The American Phytopathological Society), pp. vii + 50 pp.Google Scholar
  21. Huylenbroeck, J.v., Leus, L., and Bockstaele, E.v. (2005). Interploidy crosses in roses: use of triploids. Acta Horticulturae 690, 109–112.Google Scholar
  22. Jan, C.H., Byrne, D.H., Manhart, J., and Wilson, H. (1999). Rose germplasm analysis with RAPD markers. HortScience 34, 341–345.Google Scholar
  23. Joyeaux, F. (2003). History of roses in cultivation/European (Pre-1800). In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 395–402.Google Scholar
  24. Kermani, M.J., Sarasan, V., Roberts, A.V., Yokoya, K., Wentworth, J., and Sieber, V.K. (2003). Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theoretical and Applied Genetics 107, 1195–1200.CrossRefPubMedGoogle Scholar
  25. Kiani, M., Zamani, Z., Khalighi, A., Fatahi, R., and Byrne, D.H. (2007). Wild genetic diversity of Rosa damascena Mill. germplasm in Iran revealed by RAPD analysis. Scientia Horticulturae, in press.Google Scholar
  26. Koopman, W.J.M., Vosman, B., Sabatino, G.J.H., Visser, D., Van Huylenbroeck, J., De Riek, J., De Cock, K., Wisseman, V., Ritz, C.M., Maes, B., Werlemark, G., Nybom, H., Debener, T., Linde, M., and Smulders, M.J.M. (manuscript submitted). AFLP markers as a tool to reconstruct complex relationships in the genus Rosa (Rosaceae).Google Scholar
  27. Lammerts, W.E. (1945). The scientific basis of rose breeding. American Rose Annual 30, 70–79.Google Scholar
  28. Lim, K.Y., Werlemark, G., Matyasek, R., Bringloe, J.B., Sieber, V., El-Mokadem, H., Meynet, J., Hemming, J., Leitch, A.R., and Roberts, A.V. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 94, 501–506.Google Scholar
  29. Linde, M., and Debener, T. (2003). Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theoretical and Applied Genetics 107, 256–262.CrossRefPubMedGoogle Scholar
  30. Linde, M., Mattiesch, L., and Debener, T. (2004). Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theoretical and Applied Genetics 109, 1261–1266.CrossRefPubMedGoogle Scholar
  31. Linde, M., Hattendorf, A., Kaufmann, H., and Debener, T. (2006). Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. TAG Theoretical and Applied Genetics 113, 1081–1092.CrossRefGoogle Scholar
  32. Ma, Y.X., Zhu, Y., and Wang, C.F. (1997). The ageing retarding effect of ‘Long-Life-CiLi’. Mechanism of Ageing Development 96, 171–189.CrossRefGoogle Scholar
  33. Malek, B.v., and Debener, T. (1998). Genetic analysis of resistance to blackspot (Diplocarpon rosae) in tetraploid roses. Theoretical and Applied Genetics 96, 228–231.CrossRefGoogle Scholar
  34. Matsumoto, S., Kouchi, M., Fukui, H., and Ueda, Y. (2000). Phylogenetic analyses of the subgenus Eurosa using the its nrDNA sequence. Acta Horticulturae 521, 193–202.Google Scholar
  35. Matsumoto, S., Kouchi, M., Yabuki, J., Kusunoki, M., Ueda, Y., and Fukui, H. (1998). Phylogenetic analyses of the genus Rosa using the matK sequence: molecular evidence for the narrow genetic background of modern roses. Scientia Horticulturae 77, 73–82.CrossRefGoogle Scholar
  36. Nybom, H., Esselink, G.D., Werlemark, G., and Vosman, B. (2004). Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. sect. Caninae DC. Heredity 92, 139–150.CrossRefGoogle Scholar
  37. Nybom, H., Esselink, G.D., Werlemark, G., Leus, L., and Vosman, B. (2006). Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. Journal of Evolutionary Biology 19, 635–648.CrossRefPubMedGoogle Scholar
  38. Olsson, A., Nybom, H., and Prentice, H.C. (2000). Relationships between Nordic dogroses (Rosa L. sect. Caninae, Rosaceae) assessed by RAPDs and elliptic Fourier analysis of leaflet shape. Systematic Botany 25, 511–521.CrossRefGoogle Scholar
  39. Olsson, M.E., Andersson, S., Werlemark, G., Uggla, M., and Gustavsson, K.E. (2005). Carotenoids and phenolics in rose hips. Acta Horticulturae 690, 249–252.Google Scholar
  40. Rehder, A. (1940). Manual of cultivated trees and shrubs. (New York: MacMillan).Google Scholar
  41. Ritz, C.M., Schmuths, H., and Wissemann, V. (2005). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. Journal of Heredity 96, 4–14.CrossRefPubMedGoogle Scholar
  42. Rusanov, K., Kovacheva, N., Vosman, B., Zhang, L., Rajapakse, S., Atanassov, A., and Atanassov, I. (2005). Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. TAG Theoretical and Applied Genetics 111, 804–809.CrossRefGoogle Scholar
  43. Scariot, V., Akkak, A., and Botta, R. (2006). Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. Journal of the American Society for Horticultural Science 131, 66–73.Google Scholar
  44. Schlosser, E. (1990). Horizontal resistance of some plant species to powdery mildew. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 55, 203–206.Google Scholar
  45. Schulz, H. (2003). Fragrance and pigments/odoriferous substances and pigments. In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 231–240.Google Scholar
  46. Shepherd, R.E. (1954). The history of the rose. (New York: Macmillan).Google Scholar
  47. Shupert, D.A., Byrne, D.H., and Pemberton, H.B. (2007). The inheritance of flower traits, leaflet number and prickles in rose. Acta Horticulturae, in press.Google Scholar
  48. Vosman, B., Visser, D., Voort, J.R.v.d., Smulders, M.J.M., and Eeuwijk, F.v. (2004). The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theoretical and Applied Genetics 109, 1718–1725.CrossRefPubMedGoogle Scholar
  49. Vries, D.P.d. (2003). Breeding/selection strategies for pot roses. In Encyclopedia of rose science, A.V. Roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 41–48.Google Scholar
  50. Vries, D.P.d., and Dubois, L.A.M. (2001). Developments in breeding for horizontal and vertical fungus resistance in roses. Acta Horticulturae 552, 103–112.Google Scholar
  51. Warholm, O., Skaar, S., Hedman, E., Molmen, H.M., and Eik, L. (2003). The effects of a standardized herbal remedy made from a subtype of Rosa canina in patients with osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Current Therapeutic Research-Clinical and Experimental 64, 21–31.CrossRefGoogle Scholar
  52. Wen, X.P., and Deng, X.X. (2005). Micropropagation of chestnut rose (Rosa roxburghii Tratt) and assessment of genetic stability in in vitro plants using RAPD and AFLP markers. Journal of Horticultural Science and Biotechnology 80, 54–60.Google Scholar
  53. Werlemark, G., and Nybom, H. (2001). Skewed distribution of morphological character scores and molecular markers in three interspecific crosses in Rosa section Caninae. Hereditas (Lund) 134, 1–13.CrossRefGoogle Scholar
  54. Winther, K., Apel, K., and Thamsborg, G. (2005). A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: A randomized, double-blind, placebo-controlled clinical trial. Scandinavian Journal of Rheumatology 34, 302–308.CrossRefPubMedGoogle Scholar
  55. Wissemann, V. (2003). Classification/Conventional taxonomy (wild roses). In Encyclopedia of rose science, A.V. roberts, T. Debener, and S. Gudin, eds (Oxford: Elsevier), pp. 111–117.Google Scholar
  56. Wissemann, V., and Ritz, C.M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical Journal of the Linnean Society 147, 275–290.CrossRefGoogle Scholar
  57. Wu, S., Ueda, Y., He, H., Nishihara, S., and Matsumoto, S. (2000). Phylogenetic analysis of Japanese Rosa species using matK sequences. Breeding Science 50, 275–281.Google Scholar
  58. Wylie, A.P. (1954). The history of garden roses, part I. J. Royal Horticultural Society 79, 555–574.Google Scholar
  59. Xu, Q., Wen, X., and Deng, X. (2005). Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). TAG Theoretical and Applied Genetics 111, 819–830.CrossRefGoogle Scholar
  60. Xu, Q., Wen, X., and Deng, X. (2007). Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding 19, 179–191.CrossRefGoogle Scholar
  61. Xue, A.G., and Davidson, C.G. (1998). Components of partial resistance to black spot disease (Diplocarpon rosae Wolf) in garden roses. HortScience 33, 96–99.Google Scholar
  62. Zhang, L.H. (2003). Genetic linkage map in tetraploid and diploid rose (Clemson, SC: Clemson University).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hilde Nybom
    • 1
  1. 1.Swedish University of Agricultural SciencesSweden

Personalised recommendations